Supporting Information

Synthesis of Functionalized Pyrazoles via Vanadium-Catalyzed *C-N* Dehydrogenative Cross-Coupling and Fluorescence Switch-On Sensing of BSA Protein

Dinabandhu Sar, Raghunath Bag, Afsana Yashmeen, Subhendu Sekhar Bag* and Tharmalingam Punniyamurthy*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.

1.	General Information	S2
2.	General procedure for the synthesis of pyrazoles 3a-3z	S2
3.	Optimization Table 1 and Crystal structure and data of 3a	S3-S4
4.	Gram Scale Synthesis of 3a	S 4
5.	Recyclability Experiment	S5
6.	Characterization data of the products 3a-3z	S5-S18
7.	Study of photophysical properties of the fluorophoric compounds	S18-S24
8.	Studies on the interaction of two fluorophores with BSA protein	S24-S32
9.	NMR (¹ H and ¹³ C) spectra	S33-S84

Table of Contents

- **1. General information.** Aryl amines and V₂O₅ (98%) of Aldrich, VOSO₄ (97%) and VO(acac)₂ (99%) of Otto and SnCl₂·2H₂O (97%) of Merck were used as received. Aryl hydrazines, ^{1a} α,β -unsaturated ketones^{1b-c} and their corresponding hydrazones^{1d} were prepared according to literature procedure. Analytical TLC was performed on Merck silica gel G/GF 254 plates for progress of the reaction. NMR (¹H and ¹³C) spectra were recorded on DRX-400 Varian spectrometer, Bruker Avance III 600, and Bruker UltrashieldTM 300 using CDCl₃ as a solvent and Me₄Si as an internal standard. Chemical shifts (δ) are reported in ppm for all ¹H NMR and ¹³CNMR spectra and other data are reported as follows: s = singlet, d = doublet, m = multiplet and J = spin-spin coupling constant (Hz). Melting points were determined with a Büchi B-540 apparatus and are uncorrected. Perkin Elmer IR spectrometer was used for recording FT-IR spectra. Mass spectra were recorded on a Q-Tof ESI-MS instrument (model HAB 273). Single crystal X-ray data were collected using Bruker SMART APEX-II CCD diffractometer, which is equipped with 1.75 kW sealed-tube Mo-K α irradiation ($\lambda = 0.71073$ Å) at 298(2) K. The crystal structure was solved by direct method using *SHELXL-97* (Göttingen, Germany) and refined with full-matrix least squares on F² using SHELXL-97.
- **2.1. General procedure for the synthesis of pyrazoles 3a-p.** α, β -Unsaturated ketones **1a-p** (1 mmol) and aryl hydrazines **2a** (1.2 mmol) were stirred with NaOAc (2.9 mmol) in toluene: H₂O (1:1, 3 mL) at 60 °C for 1 h under air. The reaction mixture was cooled at room temperature and then treated with VOSO₄ (5 mol %). The resultant reaction mixture was stirred at room temperature under air. The progress of the reaction was monitored by TLC. After completion, toluene layer was separated and the aqueous solution was extracted with EtOAc (3 x 5 mL). The combined organic solution was washed with brine (1 x 10 mL) and water (1 x 10 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using hexane and ethyl acetate as eluent.
- **2.2. General procedure for the synthesis of pyrazoles 3q-z.** α,β -Unsaturated ketones **1** (1 mmol), and aryl hydrazines **2b-f** (1.2 mmol) were stirred in toluene (1.5 mL) at 60 °C for 1 h under air. The reaction mixture was cooled at room temperature and then treated with solution of VOSO₄ (5 mol %) in H₂O (1.5 mL). The resultant reaction mixture was stirred at room temperature under air. The progress of the reaction was monitored by TLC. The work up and purification of the pyrazoles were performed as described in 2.1.

Table 1. Optimization of the Reaction Conditions^a

entry	[V] (mol %)	solvent	yield (%) ^{b,c}
1	VOSO ₄ (20)	H_2O -toluene (1:1)	70
2	$VO(acac)_2$ (20)	H_2O -toluene (1:1)	55
3	V ₂ O ₅ (20)	H_2O -toluene (1:1)	54
4	VOSO ₄ (10)	H_2O -toluene (1:1)	72
5	$VOSO_4(5)$	H_2O -toluene (1:1)	73
6	$VOSO_4(5)$	H_2O -toluene (1:1)	$trace^d$
7	-	H_2O -toluene (1:1)	n.o.

^{*a*}Reaction Conditions: **1a** (1.0 mmol), **2a** (1.2 mmol), NaOAc (2.9 mmol), toluene : H₂O (1:1, 3 mL), 60 $^{\circ}$ C, 1 h; [V], rt, 18 h, air. ^{*b*}Isolated yield. ^{*c*}Accompanied ~10% unreacted **1a** and **2a**. ^{*d*}N₂ used. n. o = not observed.

3. Crystal Data and Structure Refinement for 3a at 298(2) K

Figure1. ORTEP diagram of 3-Methyl-1-phenyl-5-(2,4,5-trimethoxyphenyl)-1*H*-pyrazole **3a** with 50% ellipsoid. H-Atoms are omitted for clarity (CCDC 949193).

Identification code Empirical formula Formula weight	$\begin{array}{c} \textbf{3a} \\ C_{19}H_{20}N_2O_3 \\ 324.37 \end{array}$
Temperature Wavelength Crystal system Space group	298(2) 0.71073 Å Monoclinic P 21/c Loop xyz 'x, y, z'
Unit cell dimensions	$\begin{aligned} & \text{'-x, y+1/2, -z+1/2'} \\ & \text{'-x, -y, -z'} \\ & \text{'x, -y-1/2, z-1/2'} \\ & a = 12.4342(7)\text{\AA} \alpha(^\circ) = 90.00 \\ & b = 16.3750(11)\text{\AA} \beta(^\circ) = 106.914(4) \\ & c = 8.6369(5)\text{\AA} \gamma(^\circ) = 90.00 \end{aligned}$
Volume Z	1682.49(18) Å ³ 4
Density (calculated)	$1.281 Mg/m^3$
Absorption coefficient	0.087mm^{-1}
F(000)	688.0
Crystal size	0.24 x 0.22 x 0.21 mm
Theta range for data collection	2.49 to 25.40 °
Index ranges	-16<=h<=16, -22<=k<=22, -11<=l<=11
Reflections collected	4492
Independent reflections	3982 [R (int) = 0.0499]
Completeness to theta = 29.07°	99.7 %
Adsorption correction Refinement method	Multi-scan Full matrix least squares on F^2
Data / restraints / parameters	4402/0/221
$Goodness_of_fit on F^2$	1 0/2
Final R indices [I>2sigma (I)]	$Rl = 0.0563 \ wR^2 = 0.1581$
R indices (all data)	R1 = 0.0906, wR2 = 0.1899

4. Scheme S1. Gram Scale Synthesis

5. Scheme S2. Recyclability Experiments

6. Characterization data

3-Methyl-1-phenyl-5-(2,4,5-trimethoxyphenyl)-1H-pyrazole 3a. α,β-Unsaturated ketone **1a** (236 mg, 1 mmol), phenylhydrazine hydrochloride 2a (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was then cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred for 17 h under air. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.44$; purification (1:9 ethyl acetate/hexane); white solid. Yield 73% (236 mg); mp 142-143 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.28-7.19 (m, 5H), 6.73 (s, 1H), 6.42 (s, 1H), 6.27 (s, 1H), 3.89 (s, 3H), 3.73 (s, 3H), 3.37 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 150.2, 149.1, 142.9, 141.1, 140.1, 128.5, 126.5, 123.7, 114.4, 111.3, 108.4, 97.6, 56.4, 56.0, 55.8, 13.7; FT-IR (KBr) 2999, 2961, 2935, 2837, 1613, 1596, 1502, 1474, 1454, 1438, 1383, 1361, 1277, 1260, 1213, 1192, 1140, 1020, 856, 809, 762, 692 cm⁻¹; HRMS (APCI) m/z [M+H]⁺ calcd for C₁₉H₂₀N₂O₃: 325.1547, found: 325.1551.

3-Methyl-1,5-diphenyl-1*H***-pyrazole 3b.**² (E)-4-Phenylbut-3-en-2-one **1b** (146 mg, 1 mmol), phenylhydrazine hydrochloride 2a (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 ^oC for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was then cooled to room

temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred for 17 h under air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.41; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 48% (112 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.20 (m, 10H), 6.31 (s, 1H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 149.6, 143.8, 140.3, 130.8, 128.9, 128.7, 128.5, 128.2, 127.2, 125.2, 107.8, 13.7; FT-IR (neat) 3060, 2925, 1950, 1669, 1596, 1553, 1504, 1455, 1439, 1417, 1377, 1364, 1195, 1072, 1013, 969, 695 cm⁻¹; HRMS (APCI) *m*/*z* [M+H]⁺ calcd for C₁₆H₁₄N₂: 235.1230, found: 235.1232.

5-(2-Bromophenyl)-3-methyl-1-phenyl-1*H***-pyrazole 3c.** (*E*)-4-(2-Bromophenyl)but-3-en-2-one 1c (223 mg, 1 mmol), phenylhydrazine hydrochloride **2a** (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was the cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred for 20 h under air. Analytical TLC on silica gel, 1:6 ethyl acetate/hexane $R_f = 0.63$; purification (1:19 ethyl acetate/hexane); yellow solid. Yield 45% (140 mg); mp 73-74 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, *J* = 8.4 Hz, 1H), 7.27-7.19 (m, 8H), 6.30 (s, 1H), 2.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 149.3, 142.0, 140.2, 133.3, 132.9, 132.3, 130.3, 128.9, 127.4, 126.9, 124.2, 124.1, 109.4, 13.8; FT-IR (KBr) 3052, 2961, 2924, 2859, 1598, 1548, 1502, 1430, 1362, 1377, 1261, 1194, 1098, 1026, 970, 783, 756, 689 cm⁻¹; HRMS (APCI) *m/z* [M+H]⁺ calcd for C₁₆H₁₃BrN₂: 313.0335, found: 313.0335.

5-(2-Methoxyphenyl)-3-methyl-1-phenyl-1*H***-pyrazole 3d.** (*E*)-4-(2-Methoxyphenyl)but-3-en-2-one **1d** (176 mg, 1 mmol), phenylhydrazine hydrochloride **2a** (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was then cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred 18 h under air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.53$; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 66% (174 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.32 (t, *J* = 7.2 Hz, 1H), 7.27-7.23 (m, 5H), 7.18-7.16 (m,

1H), 6.96 (t, J = 7.8 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 6.27 (s, 1H), 3.37 (s, 3H), 2.40 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 156.6, 149.3, 141.3, 140.5, 131.3, 130.4, 128.6, 126.6, 123.6, 120.8, 120.5, 111.4, 108.8, 55.1, 13.8; FT-IR (neat) 3052, 2927, 2854, 2837, 1739, 1667, 1600, 1581, 1552, 1504, 1494, 1463, 1377, 1363, 1296, 1264, 1248, 1116, 1026, 970, 757 cm⁻¹; HRMS (APCI) m/z [M+H]⁺ calcd for C₁₇H₁₆N₂O: 265.1335, found: 265.1336.

3-Methyl-1-phenyl-5*-o*-tolyl-1*H*-pyrazole 3e.³ (*E*)-4-(2-Methylphenyl)but-3-en-2-one 1e (160 mg, 1 mmol), phenylhydrazine hydrochloride 2a (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred for 18 h under air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.73$; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 53% (131 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.22-7.15 (m, 9H), 6.19 (s, 1H), 2.40 (s, 3H), 2.00 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 149.4, 143.1, 140.5, 137.2, 131.3, 130.7, 130.5, 128.99, 128.90, 126.6, 125.9, 123.6, 108.9, 20.1, 13.8; FT-IR (neat) 3060, 2924, 2859, 1670, 1598, 1552, 1502, 1458, 1416, 1362, 1259, 1175, 1072, 1027, 968, 907, 762, 725 cm⁻¹; HRMS (APCI) *m*/*z* [M+H]⁺ calcd for C₁₇H₁₆N₂: 249.1386, found: 249.1386.

5-(4-Bromophenyl)-3-methyl-1-phenyl-1*H***-pyrazole 3f**.⁴ (*E*)-4-(4-Bromophenyl)but-3-en-2-one **1f** (225 mg, 1 mmol), phenylhydrazine hydrochloride **2a** (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was then cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred for 17 h under air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.58$; purification (1:19 ethyl acetate/hexane); yellow solid. Yield 41% (128 mg); mp 74-75 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, *J* = 7.8 Hz, 2H), 7.33 (t, *J* =

7.2 Hz, 2H), 7.30 (d, J = 6.6 Hz, 1H), 7.26-7.24 (m, 2H), 7.08 (d, J = 7.8 Hz, 2H), 6.31 (s, 1H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 149.8, 142.6, 140.0, 132.4, 131.8, 130.3, 129.2, 127.5, 125.3, 122.5, 108.3, 13.7; FT-IR (KBr) 2925, 1625, 1503, 1487, 1260, 1072, 1010, 968, 811, 767, 693 cm⁻¹; HRMS (APCI) m/z [M+H]⁺ calcd for C₁₆H₁₃BrN₂: 313.0335, found: 313.0335.

4-(3-Methyl-1-phenyl-1*H***-pyrazol-5-yl)benzonitrile 3g.⁴** (*E*)-4-(4-Cyanophenyl)but-3-en-2-one **1g** (171 mg, 1 mmol), phenylhydrazine hydrochloride **2a** (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was then cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred for 24 h under air. Analytical TLC on silica gel, 1:6 ethyl acetate/hexane $R_f = 0.55$; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 38% (98 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.57 (d, *J* = 7.8 Hz, 2H), 7.35-7.29 (m, 5H), 7.24 (d, *J* = 7.2 Hz, 2H), 6.39 (s, 1H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 150.0, 141.8, 139.7, 135.2, 132.4, 129.4, 129.1, 128.0, 125.4, 118.6, 111.8, 108.8, 13.6; FT-IR (neat) 3061, 2661, 2625, 2854, 2227, 1717, 1679, 1597, 1562, 1459, 1429, 1363, 1504, 1260, 1177, 1073, 1014, 970, 844, 799, 763, 695 cm⁻¹; HRMS (APCI) *m/z* [M+H]⁺ calcd for C₁₇H₁₃N₃: 260.1182, found: 260.1182.

5-(4-Fluorophenyl)-3-methyl-1-phenyl-1*H***-pyrazole 3h.**^{1c} (*E*)-4-(4-Fluorophenyl)but-3-en-2-one **1h** (164 mg, 1 mmol), phenylhydrazine hydrochloride **2a** (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was then cooled to room temperature, VOSO₄ (8 mg, 5 mol %) and stirred for 24 h under air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.53$; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 39% (98 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.32 (t, *J* = 7.8 Hz, 2H), 7.28-7.24 (m, 3H), 7.19-7.17 (m, 2H), 6.98 (t, *J* = 8.4 Hz, 2H), 6.28 (s, 1H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.5 (*J*_{C-F} = 246

Hz), 149.6, 142.8, 140.1, 130.6 ($J_{C-F} = 7.5$ Hz), 129.1, 127.4, 127.0, 125.3, 115.7 ($J_{C-F} = 21.0$ Hz), 107.9, 13.7; FT-IR (neat) 2924, 2850, 2351, 2073, 1636, 1508, 1427, 1383, 1362, 1225, 1158, 1014, 969, 838, 693 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₆H₁₃FN₂: 253.1136, found: 253.1137.

3-Methyl-1-phenyl-5*-p***-tolyl-1***H***-pyrazole 3i.**⁴ (*E*)-4-(4-Methylphenyl)but-3-en-2-one **1i** (160 mg, 1 mmol), phenylhydrazine hydrochloride **2a** (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was then cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and 19 h under air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.56$; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 62% (153 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.31 (d, *J* = 7.2 Hz, 2H), 7.27 (d, *J* = 7.2 Hz, 2H), 7.11-7.08 (m, 5H), 6.27 (s, 1H), 2.37 (s, 3H), 2.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 149.6, 143.9, 140.4, 138.2, 129.3, 129.0, 128.7, 128.0, 127.2, 125.3, 107.7, 21.4, 13.8; FT-IR (neat) 3001, 2957, 2925, 2856, 2836, 1666, 1604, 1517, 1462, 1443, 1377, 1366, 1298, 1249, 1181, 1105, 1033, 971, 833 cm⁻¹; HRMS (APCI) *m*/*z* [M+H]⁺ calcd for C₁₇H₁₆N₂: 249.1386, found: 249.1388.

Methyl 4-(3-methyl-1-phenyl-1*H*-pyrazol-5-yl)benzoate 3j. (*E*)-Methyl 4-(3-oxobut-1-en-1yl)benzoate 1j (204 mg, 1 mmol), phenylhydrazine hydrochloride 2a (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred for 19 h under air. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.60$; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 66% (192 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 7.8 Hz, 2H), 7.32 (d, *J* = 6.6 Hz, 2H), 7.30-7.24 (m, 5H), 6.38 (s, 1H), 3.90 (s, 3H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 166.8, 149.9, 142.7, 140.0, 135.2, 129.8, 129.6, 129.2, 128.6, 127.6, 125.4, 108.5, 52.4,

13.7; FT-IR (neat) 3061, 2951, 2845, 1722, 1611, 1596, 1570, 1509, 1500, 1459, 1434, 1364, 1311, 1278, 1181, 1112, 1018, 970, 860, 827, 771, 695 cm⁻¹; HRMS (APCI) m/z [M+H]⁺ calcd for C₁₈H₁₆N₂O₂: 293.1285, found: 293.1285.

5-(3,4-Dimethoxyphenyl)-3-methyl-1-phenyl-1*H***-pyrazole 3k.⁴ (***E***)-4-(3,4-Dimethoxyphenyl)but-3-en-2-one 1k (206 mg, 1 mmol), phenylhydrazine hydrochloride 2a (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred for 19 h under air. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane R_f = 0.47; purification (1:9 ethyl acetate/hexane); yellow liquid. Yield 59% (173 mg); ¹H NMR (600 MHz, CDCl₃) \delta 7.33-7.28 (m, 5H), 6.84 (d,** *J* **= 8.4 Hz, 1H), 6.63 (s, 1H), 6.28 (s, 1H), 3.87 (s, 3H), 3.62 (s, 3H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) \delta 149.5, 149.1, 148.7, 143.8, 140.4, 129.0, 127.3, 125.5, 123.5, 121.4, 112.0, 111.1, 107.2, 56.0, 55.8, 13.7; FT-IR (neat) 3062, 2999, 2932, 2835, 1597, 1553, 1513, 1500, 1463, 1436, 1362, 1254, 1235, 1164, 1136, 1073, 1026, 860, 807, 764, 696 cm⁻¹; HRMS (APCI)** *m/z* **[M+H]⁺ calcd for C₁₈H₁₈N₂O₂: 295.1441, found: 295.1445.**

3-Methyl-1-phenyl-5-(3,4,5-trimethoxyphenyl)-1*H***-pyrazole 31.** (*E*)-4-(3,4,5-Trimethoxyphenyl)but-3en-2-one **11** (236 mg, 1 mmol), phenylhydrazine hydrochloride **2a** (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred for 17 h under air. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.52$; purification (1:15 ethyl acetate/hexane); yellow liquid. Yield 68% (220 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.35-7.33 (m, 2H), 7.30-7.28 (m, 3H), 6.39 (s, 2H), 6.31 (s, 1H), 3.84 (s, 3H), 3.64 (s, 6H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 153.2, 149.6, 143.8, 140.4, 138.1, 129.0, 127.4, 126.1, 125.6, 107.3, 106.1, 61.1, 56.5, 56.1, 13.7; FT-IR (neat) 2935, 2834, 1691, 1585, 1551, 1500, 1462, 1426, 1362, 1322, 1239, 1126, 1007, 722, 696 cm⁻¹; HRMS (APCI) m/z [M+H]⁺ calcd for C₁₉H₂₀N₂O₃: 325.1547 [M+H]⁺, found: 325.1547.

5-Cyclohexyl-3-methyl-1-phenyl-1*H***-pyrazole 3m.⁴** (*E*)-4-Cyclohexylbut-3-en-2-one 1m (152 mg, 1 mmol), phenylhydrazine hydrochloride 2a (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred for 17 h under air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.54$; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 62% (148 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.44-7.43 (m, 4H), 7.34-7.32 (m, 1H), 6.01 (s, 1H), 2.69-2.65 (m, 1H), 2.31 (s, 3H), 2.01-1.99 (m, 2H), 1.82-1.80 (m, 2H), 1.73-1.70 (m, 1H), 1.47-1.35 (m, 5H); ¹³C NMR (150 MHz, CDCl₃) δ 158.8, 140.2, 139.1, 129.1, 127.3, 124.9, 104.2, 37.8, 33.5, 26.6, 26.3, 12.7; FT-IR (neat) 2925, 2851, 1727, 1599, 1553, 1504, 1447, 1380, 1261, 1072, 1016, 758, 695 cm⁻¹; HRMS (APCI) m/z [M+H]⁺ calcd for C₁₆H₂₀N₂: 241.1699, found: 241.1699.

5-Isobutyl-3-methyl-1-phenyl-1H-pyrazole 3n.⁴ (*E*)-4-Isobutylbut-3-en-2-one **1n** (126 mg, 1 mmol), phenylhydrazine hydrochloride **2a** (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred stirred for 19 h under air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.62$; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 54% (115 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.44-7.43 (m, 4H), 7.34-7.33 (m, 1H), 5.99 (s, 1H), 2.51 (d, *J* = 7.2 Hz, 2H), 2.31 (s, 3H), 1.97-1.93 (m, 1H), 0.97 (s, 3H), 0.96 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 153.0, 140.2, 139.2, 129.1, 127.3, 124.9, 106.7, 37.6, 29.1, 22.7, 12.7; FT-IR (neat) 3064, 2955, 2926,

2868, 1730, 1599, 1554, 1503, 1461, 1381, 1261, 1168, 1133, 1018, 759 cm⁻¹; HRMS (APCI) m/z [M+H]⁺ calcd for C₁₄H₁₈N₂: 215.1543, found: 215.1542.

5-Sec-butyl-3-methyl-1-phenyl-1*H***-pyrazole 30.** (*E*)-4-Secbutylbut-3-en-2-one **10** (126 mg, 1 mmol), phenylhydrazine hydrochloride **2a** (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred for 19 h under air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.41; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 58% (124 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.46-7.43 (m, 2H), 7.39-7.36 (m, 3H), 5.98 (s, 1H), 2.76-2.72 (m, 1H), 2.31 (s, 3H), 1.58-1.54 (m, 1H), 1.50-1.47 (m, 1H), 1.17 (d, *J* = 7.2 Hz, 3H), 0.78 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 150.5, 149.1, 140.2, 129.2, 128.0, 126.4, 103.0, 32.4, 30.5, 21.1, 13.8, 12.0; FT-IR (neat) 3064, 2964, 2929, 2874, 1720, 1598, 1546, 1503, 1455, 1381, 1262, 1104, 1072, 1020, 767 cm⁻¹; HRMS (APCI) m/z [M+H]⁺ calcd for C₁₄H₁₈N₂: 215.1543, found: 215.1543.

5-Isopropyl-3-methyl-1-phenyl-1*H***-pyrazole 3p**.⁴ (*E*)-4-Isopropylbut-3-en-2-one **1p** (112 mg, 1 mmol), phenylhydrazine hydrochloride **2a** (172 mg, 1.2 mmol) and NaOAc (237 mg, 2.9 mmol) were stirred at 60 °C for 1 h in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred for 18 h under air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.59; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 64% (128 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.44-7.43 (m, 4H), 7.33-7.32 (m, 1H), 6.03 (s, 1H), 3.04-2.99 (m, 1H), 2.31 (s, 3H), 1.29 (s, 3H), 1.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.7, 140.2, 139.2, 129.1, 127.3, 125.0, 103.9, 28.0, 23.1, 12.7; FT-IR (neat) 3064, 2962, 2928, 2869, 1725, 1599, 1552, 1504, 1457, 1380, 1300, 1130, 1071, 1016, 766 cm⁻¹; HRMS (APCI) *m*/*z* [M+H]⁺ calcd for C₁₃H₁₆N₂: 201.1386, found: 201.1386.

1-(4-Bromophenyl)-3-methyl-5-*p***-tolyl-1***H***-pyrazole 3q.** (*E*)-4-(4-Methylphenyl)but-3-en-2-one **1i** (160 mg, 1 mmol) and (4-bromophenyl)hydrazine **2b** (224 mg, 1.2 mmol) were stirred 60 °C for 1 h in toluene (1.5 mL) at under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) in H₂O (1.5 mL) and stirred for 20 h under air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.65$; purification (1:19 ethyl acetate/hexane); yellow solid. Yield 74% (241 mg); mp 75-77 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, *J* = 7.2 Hz, 2H), 7.16-7.08 (m, 6H), 6.27 (s, 1H), 2.36-2.35 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 149.5, 143.5, 138.9, 138.0, 131.6, 129.0, 128.3, 127.2, 126.1, 120.2, 107.8, 21.0, 13.3; FT-IR (KBr) 2922, 1634, 1509, 1491, 1400, 1359, 1261, 1097, 1070, 1012, 967, 827, 797 cm⁻¹; HRMS (APCI) m/z [M+H]⁺ calcd for C₁₇H₁₅BrN₂: 327.0491, found: 327.0492.

1-(4-Bromophenyl)-5-cyclohexyl-3-methyl-1*H***-pyrazole 3r. (***E***)-4-Cyclohexylbut-3-en-2-one 1m (152 mg, 1 mmol) and (4-bromophenyl)hydrazine 2b (224 mg, 1.2 mmol) were stirred at 60 °C for 1 h in toluene (1.5 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) in H₂O (1.5 mL) and stirred for 19 h under air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.57; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 61% (193 mg); ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d,** *J* **= 8.7 Hz, 2H), 7.28 (d,** *J* **= 8.4 Hz, 2H), 5.99 (s, 1H), 2.61-2.54 (m, 1H), 2.28 (s, 3H), 1.84-1.68 (m, 5H), 1.36-1.28 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 150.1, 149.2, 139.0, 132.1, 127.0, 121.2, 103.6, 35.1, 33.4, 26.2, 25.7, 13.5; FT-IR (neat) 2927, 2852, 1590, 1546, 1493, 1447, 1382, 1363, 1260, 1069, 1013, 989, 830 cm⁻¹; HRMS (APCI)** *m/z* **[M+H]⁺ calcd for C₁₆H₁₉BrN₂: 319.0804, found: 319.0805.**

1-(4-Chlorophenyl)-3-methyl-5-phenyl-1*H***-pyrazole 3s.⁵ (***E***)-4-Phenylbut-3-en-2-one 1b** (146 mg, 1 mmol) and (4-chlorophenyl)hydrazine **2c** (170 mg, 1.2 mmol) were stirred at 60 °C for 1 h in toluene (1.5 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) in H₂O (1.5 mL) and stirred stirred for 16 hunder air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.64$; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 71% (190 mg); ¹H NMR (600 MHz, CDCl₃) δ 7. 31 (s, 4H), 7.28-7.26 (m, 3H), 7.21 (d, *J* = 7.8 Hz, 2H), 6.30 (s, 1H), 2.37 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 150.0, 143.9, 138.8, 132.8, 130.6, 129.1, 128.8, 128.7, 128.4, 126.2, 108.3, 13.7; FT-IR (neat) 3060, 2925, 2860, 1892, 1596, 1551, 1493, 1453, 1405, 1377, 1364, 1311, 1267, 1192, 1093, 1015, 968, 831, 757, 697 cm⁻¹; HRMS (APCI) *m/z* [M+H]⁺ calcd for C₁₆H₁₃ClN₂: 269.0840, found: 269.0840.

1-(4-Chlorophenyl)-5-(furan-2-yl)-3-methyl-1*H***-pyrazole 3t.⁴ (***E***)-4-(furan-2-yl)but-3-en-2-one 1q (136 mg, 1 mmol) and (4-chlorophenyl)hydrazine 2c (170 mg, 1.2 mmol) were stirred at 60 °C for 1 h in toluene (1.5 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) in H₂O (1.5 mL) and stirred for 19 h under air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.73; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 60% (154 mg); ¹H NMR (600 MHz, CDCl₃) \delta 7.39 (d,** *J* **= 8.4 Hz, 3H), 7.33 (d,** *J* **= 8.4 Hz, 2H), 6.44 (s, 1H), 6.35 (s, 1H), 6.06 (s, 1H), 2.35 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) \delta 150.0, 144.5, 142.8, 139.0, 135.0, 131.1, 129.3, 126.9, 111.4, 109.2, 106.8, 13.6; FT-IR (neat) 3106, 2961, 2925, 2853, 1726, 1596, 1529, 1502, 1403, 1383, 1261, 1093, 1016, 984, 895, 833, 800, 742 cm⁻¹; HRMS (APCI)** *m/z* **[M+H]⁺ calcd for C₁₄H₁₁ClN₂O: 259.0633, found: 259.0636.**

1-(4-Chlorophenyl)-3-methyl-5-(3,4,5-trimethoxyphenyl)-1*H***-pyrazole 3u**. (*E*)-4-(3,4,5-Trimethoxyphenyl)but-3-en-2-one **1l** (236 mg, 1 mmol) and (4-chlorophenyl)hydrazine **2c** (170 mg, 1.2 mmol) were stirred at 60 °C for 1 h in toluene (1.5 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) in H₂O (1.5 mL) and stirred for 18 h under air. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.69$; purification (1:9 ethyl acetate/hexane); yellow solid. Yield 48% (171 mg); mp 159-160 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.24 (d, *J* = 9.0 Hz, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 6.76 (s, 1H), 6.42 (s, 1H), 6.24 (s, 1H), 3.90 (s, 3H), 3.78 (s, 3H), 3.38 (s, 3H), 2.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 150.7, 150.3, 149.5, 142.8, 140.2, 139.5, 131.8, 128.5, 124.5, 108.6, 97.2, 56.3, 55.9, 55.6, 13.6; FT-IR (KBr) 2959, 2927, 2850, 1666, 1611, 1498, 1465, 1437, 1407, 1384, 1362, 1261, 1219, 1208, 1142, 1092, 1032, 808 cm⁻¹; HRMS (APCI) *m/z* [M+H]⁺ calcd for C₁₉H₁₉ClN₂O₃: 359.1162, found: 359.1162.

1-(4-Methoxyphenyl)-3-methyl-5*p***-tolyl-1***H***-pyrazole 3v**.⁴ (*E*)-4-(4-Methylphenyl)but-3-en-2-one **1i** (160 mg, 1 mmol) and (4-methoxyphenyl)hydrazine **2d** (165 mg, 1.2 mmol) were stirred at 60 °C for 1 h in toluene (1.5 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) in H₂O (1.5 mL) and stirred for 17 h under air. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.48$; purification (1:19 ethyl acetate/hexane); yellow liquid. Yield 68% (189 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.19 (d, *J* = 8.4 Hz, 2H), 7.08 (s, 4H), 6.84 (d, *J* = 9.0 Hz, 2H), 6.25 (s, 1H), 3.80 (s, 3H), 2.36 (s, 3H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 158.7, 149.1, 143.9, 138.0, 133.7, 129.2, 128.6, 128.0, 126.8, 114.1, 107.0, 55.6, 21.4, 13.7; FT-IR (neat) 2993, 2924, 2855, 1678, 1607, 1516, 1462, 1443, 1366, 1298, 1249, 1180, 1106, 1032, 971, 833 cm⁻¹; HRMS (APCI) *m/z* [M+H]⁺ calcd for C₁₈H₁₈N₂O: 279.1492, found: 279.1494.

5-(4-Bromophenyl)-1-(2,4-dichlorophenyl)-3-methyl-1H-pyrazole 3w. (*E*)-4-(4-Bromophenyl)but-3en-2-one **1f** (225 mg, 1 mmol) and (3,4-dichlorophenyl)hydrazine **2e** (210 mg, 1.2 mmol) were stirred at 60 °C for 1 h in toluene (1.5 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) in H₂O (1.5 mL) and stirred for 16 h under air. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.74$; purification (1:19 ethyl acetate/hexane); yellow solid. Yield 58% (219 mg); mp 66-67 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.43 (s, 1H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.34 (s, 1H), 2.37 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 150.6, 144.8, 136.8, 135.6, 133.2, 131.9, 130.8, 130.4, 129.4, 129.1, 128.1, 122.8, 106.8, 13.8; FT-IR (KBr) 2924, 2850, 1622, 1562, 1499, 1484, 1427, 1390, 1362, 1194, 1073, 1010, 967, 812 cm⁻¹; HRMS (APCI) *m*/*z* [M+H]⁺ calcd for C₁₆H₁₁BrCl₂N₂: 380.9555, found: 380.9556.

1-(2,4-Dichlorophenyl)-3-methyl-5-(2,4,5-trimethoxyphenyl)-1*H***-pyrazole 3x.** Ketone **1a** (236 mg, 1 mmol) and (3,4-dichlorophenyl)hydrazine **2e** (210 mg, 1.2 mmol) were stirred at 60 °C for 1 h in toluene (1.5 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) in H₂O (1.5 mL) and stirred for 20 h under air. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.41$; purification (1:9 ethyl acetate/hexane); yellow solid; Yield 63% (246 mg); mp 62-63 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.33 (s, 1H), 7.12 (s, 2H), 6.59 (s, 1H), 6.31 (s, 1H), 6.21 (s, 1H), 3.78 (s, 3H), 3.62 (s, 3H), 3.48 (s, 3H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 150.9, 150.3, 149.9, 142.7, 142.2, 137.4, 134.3, 132.8, 130.2, 129.9, 127.1, 114.3, 110.3, 107.6, 97.1, 56.4, 56.0, 55.8, 13.7; FT-IR (KBr) 2998, 2924, 2852, 1614, 1511, 1497, 1464, 1436, 1382, 1266, 1223, 1209, 1151, 1083, 1032, 816 cm⁻¹; HRMS (APCI) m/z [M+H]⁺ calcd for C₁₉H₁₈Cl₂N₂O₃: 393.0767, found: 393.0770.

1,3-Diphenyl-5-(3,4,5-trimethoxyphenyl)-1*H***-pyrazole 3y.** (*E*)-1-phenyl-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one **1r** (298 mg, 1 mmol), phenylhydrazine hydrochloride **2a** (172 mg, 1.2 mmol) and NaOAc were stirred at 60 °C for 1 h (237 mg, 2.9 mmol) in toluene: H₂O (1:1, 3 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) and stirred for 17 h under air. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.39$; purification (1:9 ethyl acetate/hexane); yellow solid. Yield 72% (277 mg); mp 107-108 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, *J* = 7.8 Hz, 2H), 7.73-7.71 (m, 1H), 7.59 (t, *J* = 7.8 Hz, 1H), 7.51 (t, *J* = 7.2 Hz, 2H), 7.41-7.36 (m, 2H), 7.32 (s, 1H), 7.28-7.27 (m, 1H), 7.14 (s, 1H), 6.86 (s, 2H), 3.92 (s, 6H), 3.90 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 153.7, 145.2, 140.7, 138.5, 132.9, 130.5, 128.8, 128.6, 127.7, 125.5, 121.7, 105.9, 103.3, 61.2, 56.4; FT-IR (KBr) 2925, 2845, 1660, 1600, 1577, 1503, 1461, 1419, 1319, 1279, 1248, 1215, 1127, 1018, 983, 832, 782, 703, 603 cm⁻¹; HRMS (APCI) *m*/*z* [M+H]⁺ calcd for C₂₄H₂₂N₂O₃: 387.1703, found: 387.1704.

4-(5-*p***-Tolyl-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide 3z.** (*E*)-1,1,1-trifluoro-4-(p-tolyl)but-3-en-2-one **1s** (214 mg, 1 mmol) and 4-aminobenzenesulfonohydrazide **2f** (224 mg, 1.2 mmol) were stirred at 60 °C for 1 h in toluene (1.5 mL) under air. The reaction mixture was cooled to room temperature, treated with VOSO₄ (8 mg, 5 mol %) in H₂O (1.5 mL) and stirred for 17 h under air. Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.41$; purification (1:9 ethyl acetate/hexane); yellow liquid. Yield 45% (171 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.91(d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 6.74 (s, 1H), 4.88 (s, 2H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 145.4, 144.3 (q, *J_{C-F}* = 39.0 Hz, C), 142.8, 141.4, 140.0, 130.0, 128.9, 127.7, 126.5, 125.9, 122.9 (q, *J_{C-F}* = 267.0 Hz, C), 106.6, 21.5; FT-IR (neat) 3448, 2961, 2922, 2854,

1746, 1636, 1497, 1468, 1386, 1333, 1272, 1235, 1162, 1129, 1096 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₇H₁₄F₃N₃O₂S: 382.0832, found: 382.0836.

7. Study of Photophysical Properties of the Fluorophoric Compounds

7.1 UV-visible and Fluorescence Measurements

All UV-visible spectra of the compound (10 μ M) was measured in different solvents of varying dielectric constant by UV-visible spectrophotometer using 1 cm path length cell at 298 K. Fluorescence spectra of the compounds (10 μ M) were measured in different solvents of varying dielectric constant by fluorescence spectrophotometer at 298 K using 1 cm path length cell. All the sample solutions were prepared just before doing the experiment.

$$\Phi_{S} = \Phi_{R} \frac{Fl_{S}^{Area}}{Fl_{R}^{Area}} \frac{Abs_{R}}{Abs_{S}} \frac{n_{S}^{2}}{n_{R}^{2}}$$

The fluorescence quantum yields (Φ_s) were determined using quinine sulphate as a reference with the known Φ_r (0.54) in 0.1 molar solutions in sulphuric acid. The above equation was used to calculate the quantum yield.

Figure 2. UV-Visible (a), excitation (b), fluorescence emission spectra (c), and normalized fluorescence emission spectra (d) of **3a** in different solvents [10 μ M, r.t.; $\lambda_{ex} = \lambda_{max} \approx 300-305$ nm in each solvent].

Figure 3. UV-Visible (a), excitation (b), fluorescence emission spectra (c), and normalized fluorescence emission spectra (d) of **3k** in different solvents [10 μ M, r.t.; $\lambda_{ex} = \lambda_{max} \approx 263-272$ nm in each solvent].

Figure 4. UV-Visible (a), excitation (b), fluorescence emission spectra (c), and normalized fluorescence emission spectra (d) of **31** in different solvents [10 μ M, r.t.; $\lambda_{ex} = \lambda_{max} \approx 260-270$ nm in each solvent].

Figure 5. UV-Visible (a), excitation (b), fluorescence emission spectra (c), and normalized fluorescence emission spectra (d) of **3q** in different solvents [10 μ M, r.t.; $\lambda_{ex} = \lambda_{max} \approx 262-265$ nm in each solvent].

Figure 6. UV-Visible (a), excitation (b), fluorescence emission spectra (c), and normalized fluorescence emission spectra (d) of **3u** in different solvents [10 μ M, r.t.; $\lambda_{ex} = \lambda_{max} \approx 300-305$ nm in each solvent].

Figure 7. UV-Visible (a), excitation (b), fluorescence emission spectra (c), and normalized fluorescence emission spectra (d) of **3v** in different solvents [10 μ M, r.t.; $\lambda_{ex} = \lambda_{max} \approx 258-268$ nm in each solvent].

Figure 8. UV-Visible (a), excitation (b), fluorescence emission spectra (c), and normalized fluorescence emission spectra (d) of **3x** in different solvents [10 μ M, r.t.; $\lambda_{ex} = \lambda_{max} \approx 300-305$ nm in each solvent].

Figure 9. UV-Visible (a), excitation (b), fluorescence emission spectra (c), and normalized fluorescence emission spectra (d) of **3y** in different solvents [10 μ M, r.t.; $\lambda_{ex} = \lambda_{max} \approx 251-256$ nm in each solvent].

7.2. Photophysical Summary of Synthesized Compounds

Table 1. Summary table of photophysical properties of 3a

Entry	Solvents	Δf	UV-Vis & Fluorescence		
			λ_{max}^{abs} (nm)	λ_{max}^{fl} (nm)	D_{f}
	Hexane	0.001	257, 302	363	0.105
	Toluene	0.013	305	372	0.106
20	Dioxane	0.021	258, 303	373	0.132
38	EtOAc	0.201	256, 302	374	0.183
	DMSO	0.265	281, 303	384	0.162
	ACN	0.307	235, 302	394	0.184
	MeOH	0.309	240, 301	384	0.158

Table 2. Summary table of photophysical properties of 3k

Entry	Solvents	Δf	UV-Vis & Fl	uorescence
			$\lambda_{max}^{abs}(nm)$	λ_{max}^{fl} (nm)
	Hexane	0.001	203, 264	357
	Toluene	0.013	283	358
21,-	Dioxane	0.021	269	364
JK	EtOAc	0.201	263	363
	DMSO	0.265	272	373
	ACN	0.307	263	366
	MeOH	0.309	207, 264	366

14	bie et bailinai j tao	ie of photo	physical properties of	
Entry	Solvents	Δf	UV-Vis & Fluc	prescence
			λ_{max}^{abs} (nm)	λ_{max}^{fl} (nm)
	Hexane	0.001	263,	363
	Toluene	0.013	285, 328	363
21	Dioxane	0.021	269	370
51	EtOAc	0.201	262	368
	DMSO	0.265	267, 327	377
	ACN	0.307	261, 325	371
	MeOH	0.309	260, 324	374

Table 3. Summary table of photophysical properties of 31

Table 4. Summary table of photophysical properties of 3q

Entry	Solvents	Δf	UV-Vis & Fluorescence	
			λ_{max}^{abs} (nm)	λ_{max}^{fl} (nm)
	Hexane	0.001	214, 264	367
	Toluene	0.013	284	293
2.4	Dioxane	0.021	219, 262	374
38	EtOAc	0.201	262	377
	DMSO	0.265	278	290, 379
	ACN	0.307	205, 259	380
	MeOH	0.309	208, 257	297, 382

Table 5. Summary table of photophysical properties of 3u

Entry	Solvents	Δf	UV-Vis & Fluorescence	
			λ_{max}^{abs} (nm)	λ_{max}^{fl} (nm)
	Hexane	0.001	258, 300	367
	Toluene	0.013	303	380
	Dioxane	0.021	257, 301	380
3w	EtOAc	0.201	259, 301	383
	DMSO	0.265	302	382
	ACN	0.307	256, 300	382
	MeOH	0.309	254, 302	391

Table 6. Summary table of photophysical properties of 3v

Entry	Solvents	Δf	UV-Vis & Fluorescence	
			λ_{max}^{abs} (nm)	λ_{max}^{fl} (nm)
	Hexane	0.001	260, 299	372
	Toluene	0.013	284, 301	372
2+	Dioxane	0.021	268, 301	372
31	EtOAc	0.201	260, 300	373
	DMSO	0.265	265, 301	373
	ACN	0.307	259, 299	375
	MeOH	0.309	258, 299	373

Entry	Solvents	Δf	UV-Vis & Fluorescence	
			λ_{max}^{abs} (nm)	λ_{max}^{fl} (nm)
	Hexane	0.001	249,301	361
	Toluene	0.013	305	358
2	Dioxane	0.021	249, 303	355, 382
3V	EtOAc	0.201	253, 302	366
	DMSO	0.265	303	355, 375, 355
	ACN	0.307	247, 301	358, 407
	MeOH	0.309	245, 301	355, 407

 Table 7. Summary table of photophysical properties of 3x

Table 8. Summary table of photophysical properties of 3y

Entry	Solvents	Δf	UV-Vis	s & Fluorescenc	e
			λ_{max}^{abs} (nm)	$\lambda_{max}^{fl}(nm)$	$ \Phi_{f} $
	Hexane	0.001	251, 335	376	0.007
	Toluene	0.013	253, 339	384	0.011
	Dioxane	0.021	339	385	0.009
3у	EtOAc	0.201	256, 334	388	0.007
	DMSO	0.265	280,344	415	0.017
	ACN	0.307	252, 330	409	0.008
	MeOH	0.309	254, 338	404	0.006

8. Studies on the Interaction of two Fluorophores with BSA protein

8.1. General experimental Section

8.1.1. Materials:

BSA, Na₂HPO₄ and NaH₂PO₄.H₂O (for preparation of phosphate buffer) were purchased from Merck, India and used without further purification. Water was obtained from a Milli-Q purification system. All experiments were performed with freshly prepared solutions.

8.1.2. Preparation of BSA Solution

To prepare the BSA solution Milli-Q water was used. A 1000 μ M of stock BSA solution was prepared by dissolving 0.198 gm of BSA in 3 mL Milli-Q water.

8.1.3. General experimental for studying the interaction with BSA:

All the spectral measurements were carried out at room temperature. To study the interaction of compound with BSA, an aqueous solution of compound (30 μ M in 1mL solution) was titrated with different concentrations of BSA (ranging from 0, 7.5, 15, 22.5, 30, 37.5, 45, 60, 75, 90 μ M). The total volume of the final solution for each sample was 1 mL. As the fluorophores are not soluble in water, 2-3% DMF is used to solubilize them. The presence of 2-3% DMF does not induce structural changes to biomolecules. Each sample solution was mixed well before spectral measurements.

8.1.4. Photophysical Study

UV-Visible Study

The UV-Visible absorbance measurements were performed using Shimadzu UV-2550 UV-Visible spectrophotometer with a cell of 1 cm path length at 298 K. All the UV-Visible studies were carried out in 0.1 mM phosphate buffer of pH 7.0 at 298 K. A 3 % DMF was used to solubilize the probe. The measurements were taken in absorbance mode and the absorbance values of the sample solutions were measured in the wavelength regime of 200-600 nm. All the experiments were carried out with freshly prepared sample solutions.

8.1.5. Fluorescence Study

All fluorescence and steady state anisotropy experiments were performed using a Fluoromax 4 spectrophotometer with a cell of 1 cm path length at 298 K. All the fluorescence studies were carried out in 0.1 mM phosphate buffer of pH 7.0 at 298 K. A 3 % DMF was used to solubilize the probe. Steady state anisotropy of the solutions was measured using Fluoromax 4 spectrophotometer.

Study of UV-Visible and fluorescence properties of 3a in presence BSA

Figure 10. UV-Visible (a), excitation (b), fluorescence emission spectra (c), and normalized fluorescence emission spectra (d) of **3a** in presence of increasing BSA concentration at 298K. **3a**= 30 μ M and [BSA] = 0, 7.5, 15, 22.5, 30, 37.5, 45, 60, 75, 90 μ M. [$\lambda_{ex} = \lambda_{max} \approx 300$ nm].

8.1.6. Summary Table of Fluorescence of 3a with BSA.

BSA : 3a	UV-Vis & Fluorescence		
	λ_{max}^{abs} (nm)	λ_{max}^{fl} (nm)	
1:0	300	397	
1:0.25	300	395	
1:0.5	300	394	
1:0.75	300	392	
1:1	279, 300	391	
1:1.25	278	391	
1:1.5	278	389	
1:2	277	387	
1:2.5	277	385	
1:3	277	385	
0:1	277	346	

Table 9. Summary table of photophysical properties of the 3a with interaction with BSA

8.1.7. Stern Volmer plot

In the simplest case of quenching of fluorescence, Stern-Volmer equation, was used

```
I_0/I = 1 + K_{SV}[Q]
```

Where I_0 and I are the fluorescence intensities observed in the absence and presence, of the quencher respectively, and K_{SV} is the Stern-Volmer quenching constant

Thus, the plot of I₀/ I versus [BSA] yields a straight line with a slope equal to K_{SV}. Here K_{SV}=0.00488

Figure 11: Stern-Volmer plot of 3a fluorophore in presence of increasing BSA concentration. [3a] = 30 μ M and [BSA] = 0, 7.5, 15, 22.5, 30, 37.5, 45, 60.

8.1.8. Absorption Job's Plot from UV-Visible Study

To quantify the stoichiometry between fluorophore (**3a**) and the BSA protein, the absorption measurement was carried out for Job's plot. For this purpose, an equal concentration of probe (**3a**) and BSA protein solutions was prepared separately in Phosphate buffer. Then, the fluorophore and the BSA protein were mixed in different fraction of volume maintaining the total volume of mixture 1 mL. All the solutions were mixed well and kept for some time in room temperature. Then the absorbance spectra of the solutions of different composition of fluorophore and BSA protein were recorded. To calculate the Probe-BSA protein complexation ratio, [Probe-BSA protein] *vs. Xprobe* were plotted, where [Probe -BSA protein] = $\Delta A/A0 \times [probe]$, { $\Delta A = (A-A0)$ }; and *Xprobe* is the mole fraction of probe, {*Xprobe* = [probe]/([*probe*] + [*BSA*])}. The Job's plot (**Figure 12**) showed the point of maximum at the mole fraction of ~0.50 of the probe, which clearly indicated a 1:1 stoichiometry of the probe to BSA in the complex.

Figure 12: Job's plot of probe, **3a** in presence of BSA protein indicates a 1:1 stoichiometry of the probe to BSA in the complex.

Figure 13: Fluoroscene anisotropy and polarization change of fluorophore in presence of various concentration of BSA. [fluorophore(**3a**)] = 30 μ M and [BSA] =0, 15, 30, 45, 60 and 75 μ M.

8.1.10. Study of UV-Visible and fluorescence properties of 3y in presence of BSA

Figure 14. UV-Visible (a), excitation (b), and fluorescence emission spectra (c) of **3y** in presence of increasing BSA concentration at 298K. **3y**= 30 μ M and [BSA] = 0, 7.5, 15, 22.5, 30, 37.5, 45, 60, 75, 90 μ M.

8.1.11. Summary table of fluorescence 3y with BSA.

BSA: 3y	UV-Vis & Fluorescence	
	λ^{abs}_{max}	$\lambda_{max}^{~fl}$
	(nm)	(nm)
1:0	335	381, 420
1:0.25	335	381, 420
1:0.5	275, 335	381, 420
1:0.75	277, 335	381, 420
1:1	277, 335	381, 420
1:1.25	277, 335	420
1:1.5	277, 335	421
1:2	277	421
1:2.5	278	421
1:3	278	421
0:1	278	412

Table 10. Summary table of photophysical properties of the 3y with interaction with BSA

8.1.12. Benesi-Hildebrand plot

The association constant (K) of the fluorophore (**3y**) with BSA was determined by a Benesi-Hildebrand plot. From the slope of the $1/(I - I_0)$ *vs*. 1/[BSA] plot binding constant K was determined and its value is $1.64 \times 10^4 \text{ M}^{-1}$.

Figure 15: Benesi- Hildebrand plot of **3y** in presence of increasing BSA concentration. $[3y] = 30 \mu M$ and [BSA] = 0, 7.5, 15, 22.5, 30, 37.5, 45, 60.

8.1.13. Absorption Job's Plot from UV-Visible Study

Absorption measurement was carried out for Job's plot to quantify the stoichiometry between fluorophore (3y) and the BSA protein. The Job's plot (Figure 16) showed the point of maximum at the mole fraction of ~0.50 of the probe, which clearly indicated a 1:1 stoichiometry of the probe to BSA in the complex.

Figure 16: Absorption Job's plot of probe, **3y** in presence of BSA protein indicates a 1:1 stoichiometry of the probe to BSA in the complex.

8.1.14. Study of Fluorescence Anisotropy

Figure 17: Fluoroscene anisotropy and polarization change of fluorophore in presence and absence of various concentration of BSA. [fluorophore(3y)] = 30 μ M and [BSA] =0, 15, 30, 45, 60 and 75 μ M.

8.1.15. Study of Circular Dichroism Spectroscopy

Circular dichroism spectra were recorded using a CD spectropolarimeter with a cell path length of 10 nm at 25 $^{\circ}$ C. All the samples were prepared in spectroscopic grade methanol solvent with 60 μ M concentration.

Figure 18. CD spectra of BSA in absence and in presence of synthesized compounds, 3a and 3y, respectively (60 μ M concentration of each).

References

- (a) Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. In *Vogel's Textbook of Practical Organic Chemistry*, 5thEd., Pearson Education Pte. Ltd., Delhi, **2004**. (b) Cao, L.; Ding, J.; Gao, M.; Wang, Z.; Li, J.; Wu, A. *Org. Lett.* **2009**, *11*, 3810. (c) Hu, J.; Chen, S.; Sun, Y.; Yang, J.; Rao, Y. *Org. Lett.* **2012**, *14*, 5030. (d) Guru, M. M.; Ali, M. A.; Punniyamurthy, T. *J. Org. Chem.* **2011**, *76*, 5295.
- Kim, B. R.; Sung, G. H.; Ryu, K. E.; Lee, S.-G.; Yoon, H. J.; Shin, D.-S.; Yoon, Y.-J. Chem. Commun. 2015, 51, 9201.
- 3. Dvorak, C. A.; Rudolph, D. A.; Ma, S.; Carruthers, N. I. J. Org. Chem. 2005, 70, 4188.
- 4. Sar, D.; Paul, R.; Sengoden, M.; Punniyamurthy, T. Asian J. Org. Chem. 2014, 3, 638.
- 5. Liang, D.; Zhu, Q. Asian J. Org. Chem. 2015, 4, 42.

9. ¹H and ¹³C NMR Spectra

DS-243-1H

S35

DS_359_ 13C

DS-294-1H

DS-294-13C

DS-237-1H

DS-237-13C

DS-256-1H

DS-139rep-1H

DS-148-1H

DS-248-1-13C

DS-536-f-1H

DS-536_13C

98'T9T

92.51

227.11 227.11 227.11

06'LOT ----

Parameters DS-536_13C 1	ion Parameters 20150901 13.41 spect PABBO BB/
Data F	puisiti 5 mm
Current NAME EXPNO PROCNO	F2 - Acq Date_ Time INSTRUM PRORHD

H2 HZ 8ec usec vusec vusec	MHZ
20150901 13.41 13.41 13.41 13.64 249630 248 248 248 248 248 1.300465 1.300465 0.3844779 6.50 6.50 293.6 2.00000000	CHANNEL f1 ===: 150.9279571
Date_ Time INSTRUM FINSTRUM FULFROG SOLVENT SSM SSM FIDRES AQ BW RG C C D D M D D D D D D D D D D	rb0 sF01

MHz	usec W
CHANNEL fl ===: 150.9279571	13C 10.50 95.0000000
SPOL	NUC1 P1 PLM1

	2Kg		usec	3	3	3
CHANNEL f2 ===:	600.1724007	waltz16	70.00	21.0000000	0.61714000	0.30239999
***	SP02	CPDPRG[2	PCPD2	PLM2	PLM12	PLM13

srs	ŝ			NΠ	
paramete 16384	9128378	ň		1.00	
Processing	150.		0		
		_			

0 P2 -SI SF WDW WDW SSB SSB CB PC

1.40

bba ŀ

2 190

DS-177-1H

DS-177-13C

DS-524D-2-1H

DS-524D-1-13C

DS-144-1H

DS-150-1H

DS-150-13C

DS-152-1H

DS-152-13C

DS-297-13C

DS-216-1H

DS-177-13C-

DS-300

DS-300

DS-302

DS-CI-PDT_1H

JS-2R-13C

ru-ct-1H

DS-FU-CL-13C

DS-290-1H

DS-290

S74

DS-178-1-13C

167-1-1H

DS-267-1rep-13C

S79

B%-248-13C

S80

150-1rep-1H

DS-250-13C

DS-CF3-3-1H

DS-CF3-4-13C