Supporting Information for

Efficient and Inexpensive Sodium-Magnesium Hybrid Battery

Marc Walter,^{1,2} Kostiantyn V. Kravchyk,^{1,2} Maria Ibáñez,^{1,2} and Maksym V. Kovalenko^{*1,2}

¹ Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland

² Laboratory for Thin Films and Photovoltaics, Empa – Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland

*E-mail: mvkovalenko@ethz.ch

Figure S1. Cyclic voltammograms for Mg plating/stripping tests in three-electrode glass cells using Mg as a quasi-reference and counter electrode with a rate of 5 mV s⁻¹ either for (a) 2M NaBH₄ + 0.2M Mg(BH₄)₂ or (b) 2M LiBH₄ + 0.2M Mg(BH₄)₂ in diglyme as electrolytes.

Figure S2. Electrochemical performance of FeS_2 NCs cycled vs. Mg using 0.2M Mg(BH₄)₂ in diglyme as the electrolyte. Batteries were cycled with a current of 200 mA g⁻¹ in the potential range 0.4-1.95 V after initial discharge to 0.005 V.

Figure S3. (a) Galvanostatic charge/discharge curves and (b) capacity retention for FeS₂ NCs as the cathode in Li/Mg hybrid batteries. Batteries were cycled with a current of 200 mA g⁻¹ in the potential range of 0.4-1.95 V after initial discharge to 0.005 V, using 2M LiBH₄ + 0.2M Mg(BH₄)₂ in diglyme as the electrolyte.

Figure S4. XRD pattern of the CMK-3/sulfur composite prepared by melt-diffusion of sulfur into the CMK-3 matrix. The inset shows the corresponding EDX spectrum. The Cu signal is from the substrate.

Figure S5. Galvanostatic charge/discharge curves for CMK-3/S as the cathode material in Na/Mg hybrid batteries. Batteries were cycled with a current of 200 mA g^{-1} in the potential range of 0.4-1.95 V after initial discharge to 0.005 V, using 2M NaBH₄ + 0.2M Mg(BH₄)₂ in diglyme as the electrolyte.

Figure S6. (a) Powder X-ray diffraction patterns of bulk FeS_2 , FeS_2 NCs prepared by wetchemical (colloidal) synthesis and FeS_2 NCs prepared by dry mechanochemical synthesis (ballmilling of Fe and S powders). (b) TEM-image of mechano-synthesized FeS_2 NCs.

Figure S7. Galvanostatic charge/discharge curves for (a) bulk FeS_2 and (b) mechanosynhesized FeS_2 NCs. Batteries were cycled with a current of 200 mA g⁻¹ in the potential range of 0.4-1.95 V after initial discharge to 0.005 V, using 2M NaBH₄ + 0.2M Mg(BH₄)₂ in diglyme as the electrolyte.

Figure S8. (a) Galvanostatic charge/discharge curves and (b) capacity retention for FeS₂ NCs as the cathode. Batteries were cycled with a current of 200 mA g^{-1} in the potential range of 0.005-2.0 V, using 0.5M NaTFSI + 0.27M Mg₂AlCl₇ in THF as the electrolyte.