Color manipulation of intense multi-luminescence from Ca-ZnOS:Mn²⁺ by Mn²⁺ concentration effect

Jun-Cheng Zhang,^{*,†} Li-Zhen Zhao,[†] Yun-Ze Long,[†] Hong-Di Zhang,[†] Bin Sun,[†] Wen-Peng Han,[†] Xu Yan,[†] and Xusheng Wang[‡]

[†]College of Physics, Qingdao University, Qingdao 266071, P. R. China [‡]Functional Materials Research Laboratory, Tongji University, Shanghai 200092, P. R. China *Corresponding author: jc-zhang@qdu.edu.cn or zhangjuncheng584@163.com (J. C. Zhang)

Table of Contents

- 1. Supplementary figures for
 - 1-1. FESEM images of CaZnOS:Mn²⁺ pellets (Figure S1).
 - 1-2. Crystal structure of CaZnOS (Figure S2).
 - 1-3. Color manipulation of CL from CaZnOS:Mn²⁺ (Figure S3).
 - 1-4. PL excitation and emission spectra of $CaZn_{1-x}Mn_xOS$ (x = 0.002) (Figure S4).
 - 1-5. PL excitation and emission spectra of $CaZn_{1-x}Mn_xOS$ (x = 0.04) (Figure S5).
 - 1-6. Elemental distribution mappings of CaZnOS:Mn²⁺ (Figure S6).
 - 1-7. EDS spectra of CaZnOS:Mn²⁺ (Figure S7).
- 2. Supplementary video (Video S1)

Figure S1. FESEM images of $CaZn_{1-x}Mn_xOS$ pellets: (a) x = 0; (b) x = 0.02; (c) x = 0.04; (d) x = 0.1.

Figure S2. Crystal structure of CaZnOS.

Figure S3. Color manipulation of CL from CaZnOS:Mn by Mn^{2+} concentration effect. (a) FESEM-CL image of CaZn_{1-x}Mn_xOS (x = 0.004). Inset is FESEM image. (b) Normalized CL spectra of CaZn_{1-x}Mn_xOS (x = 0.001, 0.003, 0.005, and 0.01). Inset shows CL spectra of CaZn_{1-x}Mn_xOS (x = 0 and 0.004). (c) Normalized CL spectra of CaZn_{1-x}Mn_xOS (x = 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1). (d) Enlarged CL spectra, showing the red shift.

Figure S4. PL excitation and emission spectra of $CaZn_{1-x}Mn_xOS$ (x = 0.002).

Figure S5. PL excitation and emission spectra of $CaZn_{1-x}Mn_xOS$ (x = 0.04).

Figure S6. (a) FESEM image of sintered $CaZn_{1-x}Mn_xOS$ (x = 0.1). (b)-(f) Different elemental distribution mappings.

Figure S7. EDS spectra of $CaZn_{1-x}Mn_xOS$ (x = 0, 0.005, 0.02, 0.04, and 0.1).

Video S1. Intense Tribo-ML from CaZnOS: Mn^{2+} with 3 mol% Mn^{2+} .

The discrete tribo-ML trail during the manual friction in Video S1 was ascribed to the nonuniformity of the samples. The oscillating Tribo-ML phenomena were also observed in other Tribo-ML measurements.^{1,2}

References

(1) Matsui H.; Xu C. N.; Liu Y.; Tateyama H. Origin of mechanoluminescence from Mn-activated ZnAl₂O₄: Triboelectricity-induced electroluminescence. *Phys. Rev. B* **2004**, *69*, 235109.

(2) Fu X.; Yamada H.; Xu C. N. Property of highly oriented SrAl₂O₄:Eu film on quartz glass substrates and its potential application in stress sensor. *J. Electrochem. Soc.* **2009**, *156*, J249.