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SIMULATION OF ANALYTICAL METHODS 

In order to demonstrate the proposed formulation, simulated analytical method (reflecting 

analytical methods used in toxicology screening), and data adopted from Netherlands Food and 

Consumer Product Safety Authority (NVWA)
 
was used.  

Simulation of Analytical Method Performance Boundaries 

The selected analytical methods (depicted in Fig.2 in the manuscript) were assigned a 

specific value reflecting their performance boundaries (by using random number generator). This 

step is representative of the spike-in approach that is normally required to experimentally 

estimate the unknown parameters. For the random number generator, a reasonable boundary was 

assigned; first, taking in to account the data obtained from NVWA has already made an 

exhaustive use of existing analytical methods, a set of values containing the minimum observed 

CL (in mg/kg) for all 153 pesticides was created. The minimum and maximum possible values 

from this set were then assigned as the minimum and maximum boundaries for the random 

number generator, respectively. Fig.S1 depicts a graphical representation of the analytical 

method performance boundaries assigned.  

Grid Representation of Spike-in Biological Samples 

As discussed in the theory section of the manuscript, in order to estimate analytical 

method parameters, biological samples spiked-in with known CL of COI are required. In order to 

represent this experimental step with simulation, a numerical grid starting from 0 up to CL of 

saturation (computationally; where the parameter DSL is obtained) was created. Each CL that 

would have been used for spike-in was then represented numerically by selecting one of the 

values from the numerical grid iteratively in ascending order. For each iterative step, the selected 
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CL was then matched with the simulated analytical method boundaries using a Bayesian model 

described in the following section. 

ESTIMATION OF 'COI' OBSERVATION PROBABILITY DISTRIBUTION 

In order to estimate analytical method parameters, the probability distribution of COI 

observation versus CL is required (as illustrated on Fig.3 in the manuscript). With the simulated 

analytical method performance boundaries, and numerical grid representation of spike-in CL, an 

iterative process that applies the Bayesian formulation presented on Eq.(6-9) was performed. The 

aim of this step is to estimate the analytical parameters (MDL, MIL, C*, and DSL). Therefore, 

the iteration was run until P(H2|D) converges to 1 (referring to maximum probability), in which 

at that point the CL from the numerical grid at that iterative step was adopted as DSL. The 

iterative step explained can be formulated as follows:  

{
 
 
 

 
 
 

                for g = 1 −  G

                                      while P(H2|D, g) < 1
                          continue

         else 
                    break

                             DSL = CLg
       end
end

                                                                             (S1) 

On Eq.(S1), g refers to the index of a given CL from the numerical grid, the data (D) at 

every step of the iteration represents the chromatogram obtained by spiking a given biological 

sample with CLg of COI. As indicated on Eq.(9), a marginalization step to account for all 

possible combinations of considered analytical methods is necessary. In order to represent real 

case scenario, where one has no a priori information about the methods in question, the 

probabilities,  P(Ii|H2) and P(Ss|H2) in the formulation were assigned a flat probability 

distribution. Here it should be noted that the probabilities are basically indicating how probable it 
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is for the instrument (Ii) and software (Ss) in question are capable to support the hypothesis 

(H2).  Similarly, the probability for the likelihood,p(D|Ii, Ss, H2), that would in a normal case 

require feature extraction algorithm, was assigned a discrete probability value based on function 

f as follows: 

f =

{
 
 

 
 

 

   if CLg < Iiand Ss                   0 

if CLg ≥ Ii 𝑎𝑛𝑑 CLg < Ss     0.5

      if CLg < Ii 𝑎𝑛𝑑 CLg ≥ Ss     0.5

 if Clg ≥ Ii and Ss                  1

                                                                                   (S2) 

On Eq.(S2), Ii and Sj, represents the simulated performance boundary values assigned by 

the random number generator, for instrument and software, respectively. CLg refers to the 

randomly selected unique CL value at iteration g. The purpose of function f is to evaluate if any 

given combination of a software (Ss) and instrument (Ii) with known performance boundaries 

are capable of identifying COI at a given CL.  

Extraction of Analytical Method Parameters from the Simulated System 

Given the combination of all analytical methods considered, the first CL that obtains a 

posterior probability above 0.5 was used as an indication of the optimal CL necessary for 

positive identification of COI (probability of 0.5 taken as a logical boundary to identify when 

hypothesis H2 is true).  Therefore, by applying the same parameter extraction as depicted on 

Fig.3 in the manuscript, a value of 0.4119 mg/kg was adopted as MDL. Similarly, CL of 0.2074 

mg/kg, which obtained the first posterior probability above 0, and CL of 0.8201 mg/kg which 

obtained the first posterior probability of 1, was assigned as MIL and DSL, respectively. For the 

case of C*, CL of 0.00046 mg/kg; computed as the distance between the CL needed to obtain 

MIL and the CL needed to cause the first deflection that CL, was assigned.   
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K-means Clustering 

As discussed in the manuscript, after obtaining the analytical method parameters, the next 

step necessary would be to create CL grid (CLG) representing all analytically meaningful CL. In 

a follow up step, the CLG will be adjusted by a large dataset consisting of representative CL of 

COI by approaching it as a clustering problem. The method proposed for this classification 

(translation) of observed continuous CL (CCL) in to discrete CL (DCL) step is K-means 

clustering. Here it should be noted that the cluttering step can be interpreted as adjusting the 

analytically meaningful CLG using large dataset, or can also be interpreted as discretizing the 

observed large dataset in to analytically meaningful clusters using CLG. Either ways, both 

interpretations reflect on the same goal. Below are the steps to be followed during the 

classification (clustering) process: 

I. Distance between each CL in the observed data and all the CL in CLG will be 

calculated. 

II.  Based on the calculated distance, all the random samples within the large dataset will 

be allocated to the nearest CL value in the CLG.  

III. A new centroid is determined for each cluster by calculating the mean of samples in 

each cluster.  

IV. Distance between each CL in the large dataset and the new centroid values will be 

calculated  

V. Each sample is once again assigned to the nearest centroid.  

VI. Step III-V is repeated until convergence (the centroid values does not change 

indicating the variance within cluster is less than between clusters). 
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Once the clustering step has converged, the final centroids of each cluster are accepted as the 

DCL representation of the CCL of the large dataset. 

PROBABILISTIC BOOTSTRAP SAMPLING  

As discussed in the K-means cluttering section, one of the steps implemented in the 

method proposed is clustering. In this step, as mentioned, a large dataset consisting of 

representative CL of COI is classified to a specific CL by implementing CLG (created with 

method parameters) as an initial centroid. In this clustering step, in addition to using the 

observed large dataset, a bootstrap sampling is also conducted. This way, unobserved case 

scenarios in terms of CL can be contemplated.  

For the sampling process, two basic steps are followed. On the first step, a set consisting 

of elements representing index of each value in the large dataset is created. The elements in this 

set are then randomly selected with replacement. After the appropriate randomly selected index 

elements has been obtained, in contrary to the traditional bootstrap sampling approach where the 

same elements from the original dataset are selected based on the randomly selected indexes, 

here a probabilistic approach is followed. For a given randomly selected CL referred by a given 

randomly selected index, the possibility for the index to represent any other CL within the 

vicinity of the CL in question is contemplated. This selection process applies a normal 

probability distribution, taking the CL in question (in which the index is referring to) as the mean 

of the probability distribution, and 
C∗

2
  as its standard deviation. The probability of a randomly 

drawn new CL can be expressed as follows: 

P(CLn|CLx) =
1

(
C∗

2
)√(2π)

e
−
1

2
(
CLn−CLx

(
C∗
2
)

)

2

                                                                                        (S3) 
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On Eq.(S3) P(CLn|CLx) refers to the probability of the newly selected CL (CLn) given 

the CL in question (CLx). The reason for choosing such a parameter for the standard deviation is 

based on the defined analytical method parameters, in which C* has already been identified as 

the minimum possible CL needed to create a variation in system response. Therefore, with this 

understanding, as long as the variation between CLx and CLn does not exceed C* (95% of the 

cases remain withinCLx ± C
∗), it can be considered as the new bootstrap sample. This way, 

exhaustive case scenarios can be contemplated while still constraining the approach by the 

analytical method parameters.  

VALIDATION OF THE PROPOSED METHOD 

Validation One  

To validate the method proposed, reference data that can be used as the ground truth, 

reflecting all possible CL to be encountered in a laboratory setting, is compulsory. All statistical 

approaches are based on the assumption that there is a hypothetical population of samples from 

which the observed data are drawn. In reality, since it is not possible to obtain such a data, a 

validation step which adopts the data obtained from Netherlands Food and Consumer Product 

Safety Authority (NVWA), consisting of 4896 screening results of 153 pesticides from 2151 

fruits and vegetable samples obtained between January and July 2014, as the ground truth was 

formulated. The general idea behind this validation method is to show that, if a set of randomly 

drawn samples from the NVWA data (now adopted as the ground truth) contains sufficient 

information regarding the CL of COI, the final P(H0) obtained for the random samples using the 

method proposed should converge towards the P(H0) of the NVWA data itself. Here it should be 

noted that, the analytical method boundaries simulated for demonstrative purposes (Fig.S1) are 
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once again adopted for this validation step. Therefore, taking three pesticides as an example 

(Imazalil, Thiabendazole, and Ortho-phenylphenol), 2151 results were extracted for each. Next, 

from the extracted dataset, only 30% of the uniquely observed CL for each pesticide was 

randomly drawn and adopted in the computation (Fig.S2). In this way, the worst-case scenario 

can be contemplated and the robustness of the method can be tested. The 30% randomly drawn 

samples represent the large dataset of random samples required to apply the proposed method. 

Given the randomly drawn samples, the computational steps explained in the theory section 

(estimation of the analytical methods, probabilistic bootstrap sampling, clustering approach, and 

random draw approach) for each pesticide were followed. Fig.S3A-C depicts the clusters 

generated taking few bootstrap samples as an example. The final P(H0) obtained as the 

maximum likelihood estimate of the posterior probability distribution (depicted on Fig.S3D-F) 

for Imazalil, Thiabendazole, and Ortho-phenylphenol were 0.126, 0.171, and 0.180, respectively. 

Similarly, the P(H0) for the extracted CL from NVWA dataset for all pesticides (adopted as the 

ground truth) was also computed using direct application of Eq.(12), giving an output of 0.151, 

0.113, and 0.103, for Imazalil, Thiabendazole, and Ortho-phenylphenol, respectively. The 

difference between the probabilities obtained from the randomly drawn sample (representative 

sample) and the population sample (ground truth) indicates that the probabilities fall within 

acceptable range for all pesticides. Here two points should be noted; the first is that if the 

validation method proposed here is performed independently more than once, the probabilities 

obtained will have high precision but it is unlikely to have the same value at every digit, for the 

fact that a random number generator is involved in the process, the second point is convergence 

of the probability obtained by the random drawn sample to the probability obtained by the 

ground truth is sufficient to imply the expected outcome (validity of the proposed method). The 



S-10 
 

difference between the probabilities obtained by the ground truth and the randomly drawn 

sample for each pesticide can be attributed to the exhaustive contemplation conducted by the 

probabilistic bootstrap sampling, opposed to direct computation using Eq.(12). The exhaustive 

contemplation, however, is an advantage rather than limitation in real case scenarios for the fact, 

CL is a continuous variable with a very low chance to encounter the same CL in any two 

randomly drawn samples (evidenced by the data from NVWA) with the ground truth generally 

unknown. Therefore, the probabilistic bootstrap sampling allows the contemplation of 

unobserved but likely case scenarios to be included in the computation.  

Validation Two  

For the same reason as discussed in validation one section, a reference data that can be 

accepted as the ground truth, reflecting all possible CL to be encountered in a laboratory settings 

is compulsory. Therefore, for this particular validation step, all 4896 CL values obtained from 

NVWA dataset was extracted and assigned as the ground truth for a single hypothetical COI. 

This way, opposed to using a random number generator for such form of validation, a realistic 

value can be employed. In a similar fashion as in validation one, given the ground truth, a 

random draw was conducted that consisted of only 30% of the uniquely observed CL as 

representative CL values for the hypothetical COI (Fig.S4). That way, a worst case scenario can 

be contemplated and the robustness of the method can once again be tested.  

The randomly drawn CL represents the large number of observations normally required 

to apply the proposed method. Given this random draw, the idea behind the validation step is, in 

a similar fashion as in the previous validation step, to access and prove if, in fact the P(H0) 

obtained by using the randomly drawn representative samples will converge to the P(H0) 

obtained by direct application of Eq.(5) to the ground truth (the entire NVWA data in this case). 
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Opposed to validation one, the ground truth is large in size, and obtaining the expected outcome 

would imply that the method proposed is independent of the population sample but only 

dependent on the representativeness of the unique CL values obtained (in this case only 30%). 

The analytical method boundaries simulated for demonstrative purposes and applied for 

validation one (Fig.S1) are also once again adopted for this validation method. Given the data 

and the method parameters, Fig.S5A-B depicts the classification (clustering) results and the 

posterior probability distribution obtained by applying probabilistic-bootstrap-sampling. The 

mean as the maximum likelihood estimate of the normally distributed posterior probability was 

calculated to be 0.172. Similarly, given the method parameters, P(H0) was also calculated for the 

ground truth by direct application of Eq.(5) which obtained a result of 0.204. The convergence of 

the probability obtained by using the representative random draw towards the probability of the 

ground truth implies the expected outcome and underlines the validity of the proposed method. It 

should be noted that increasing the percentage of the randomly drawn uniquely observed CL will 

obviously lead to more convergence (result now shown). Taking in to account the validation step 

was aimed at testing the approach at worst case scenario, the result obtained with just 30% 

random samples has been found to be sufficient enough to validate the method.  
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Figure Captions  

Figure S1. Graphical representation of simulated analytical methods performance boundaries. 

Figure S2. Graphical representation of ground truth and random drawn samples. Part A 

Imazalil. Part B Thiabendazole. Part C Ortho-phenylphenol 

Figure S3. Part A-C Graphical representation of classification (clustering) result of continuous 

concentration level (CCL), versus discrete concentration level (DCL) for example bootstrap 

samples for the purpose of validation one, for Imazalil, Thiabendazole, and Ortho-phenylphenol, 

respectively.  

Part D-F Histogram representation of posterior probability distribution, obtained by exhaustive 

probabilistic-bootstrap-sampling for the purpose of validation one, for Imazalil, Thiabendazole, 

and Ortho-phenylphenol, respectively. 

Figure S4. Graphical representation of ground truth and random drawn samples for hypothetical 

COI for the purpose of validation two. 

Figure S5. Part A Graphical representation of classification (clustering) result of continuous 

concentration level (CCL), versus discrete concentration level (DCL) for example bootstrap 

samples for the purpose of validation two, for hypothetical COI. 

Part B Histogram representation of posterior probability distribution, obtained by exhaustive 

probabilistic-bootstrap-sampling for the purpose of validation two, for hypothetical COI. 
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Figure S5 
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