Supporting information

High Power Efficiency Solution-Processed Blue Phosphorescent OLEDs Using Exciplex-Type Host with a Turn-on Voltage Approaching the Theoretical Limit

Xinxin Ban[†], Kaiyong Sun[†], Yueming Sun^{*†}, Bin Huang[†], Shanghui Ye^{*‡}, Min Yang[‡], and Wei Jiang^{*†}

China, 210023

 $^{^{\}dagger}$ School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, P. R. China 211189

[‡] National Synergistic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, P. R.

^{*}E-mail: jiangw@seu.edu.cn (W. Jiang), sun@seu.edu.cn (Y.M. Sun), iamshye@njupt.edu.cn (S.H. Ye).

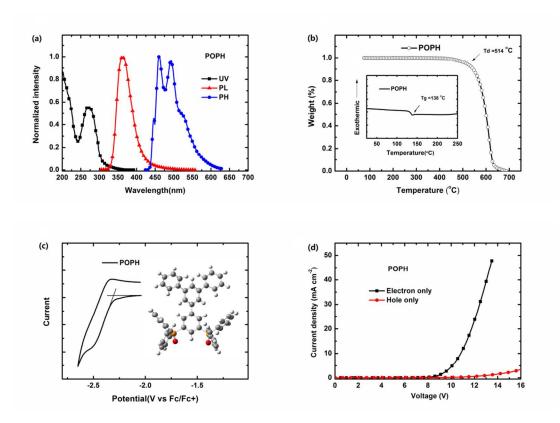


Figure S1. Physical properties of the electron-transporting material POPH. a) UV-Vis absorption, fluorescence and phosphorescence spectra of the spin-coated POPH film. b) TGA curve of POPH recorded at a heating rate of 10 °C min⁻¹. Inset: DSC trace recorded at a heating rate of 10 °C min⁻¹. c) Cyclic voltammogram of POPH in acetonitrile for reduction. Inset: Optimized space geometry for POPH. d) Current density-voltage (J–V) curves of hole- and electron-only devices based on POPH. The structure for hole-only device was ITO/PEDOT:PSS/POPH (60 nm)/Al, and the structure for electron-only device was ITO/POPH (60 nm)/TPBI (30 nm)/Ca (10nm)/Ag.

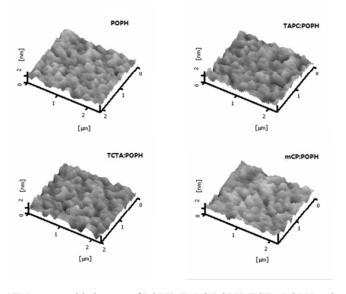
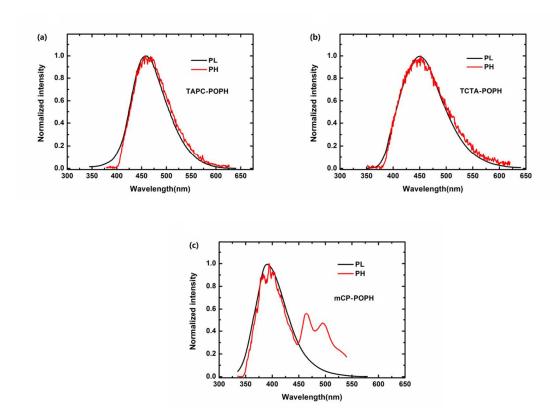



Figure S2. AFM topographic images of POPH, TAPC:POPH, TCTA:POPH and mCP:POPH.

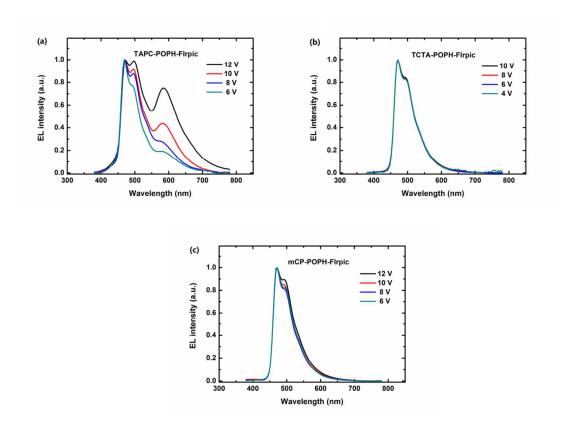


Figure S3. Fluorescence and phosphorescence spectra of mixed films at 77 K. (a)TAPC:POPH. (b) TCTA:POPH. (c) mCP:POPH.

Table S1. Photophysical properties of the exciplex emitters and their constituting molecules.

	λ_{max} $[nm]^a$	FWHM [nm] ^b	S_1 $[eV]^c$	T_1 $[eV]^c$	ΔE_{ST} $[eV]^d$	HOMO/ LUMO [eV] ^e	τ [ns] ^a
TAPC	375	43	3.59 ^e	2.98 ^e	0.61	-5.6/-2.0	2.5 (53%), 6.3 (47%)
TCTA	392	47	3.21 ^e	2.85 ^e	0.36	-5.8/-2.4	2.3 (100%)
mCP	365	54	3.49 ^e	$3.00^{\rm e}$	0.49	-6.1/-2.4	3.5 (100%)
POPH	363	46	3.41 ^e	2.78 ^e	0.65	-6.7/-2.5	20 (100%)
TAPC:POPH	460	82	2.69	2.64	0.059	-/-	4.4 (12%), 135 (88%)
ТСТА:РОРН	448	95	2.75	2.72	0.038	-/-	20 (23%), 150 (77%)
mCP:POPH	392	72	3.15	3.10	0.051	-/-	16 (38%), 80 (62%)

^a Measured in deposited films at 300 K. ^b The full width at half maximum (FWHM) of the emission spectra. ^c Estimated from high-energy peaks of film-state fluorescence and phosphorescence spectra at 77 K. ^d The difference between S_1 and T_1 . ^e Obtained from the reference.

Figure S4. Electroluminescence spectra of the (a) TAPC-POPH-FIrpic, (b) TCTA-POPH- FIrpic and (c) mCP-POPH-FIrpic based devices at different voltages.