Fragment Parameters for the Calibration of Molecular Weights of Rod-Like Oligomers/Polymers by Gel Permeation Chromatography

Chih-Chun Chen, Chih-Wei Chen, Kamani Satyanarayana, and Tien-Yau Luh* Department of Chemistry, National Taiwan University, Taipei, Taiwan 106

Supporting Information

- 1. Experimental details for the synthesis of **1a**, **1b**, and **1c**.
- 2. ¹H and ¹³C NMR spectra for all new compounds shown in Scheme S1.
- 3. GPC profiles for **1a**, **1b**, and **1c**.
- 4. Plots of M_n , and M_c against M_r values for 1-15.

Scheme S1 Synthetic scheme

S2

General. All melting points were recorded on a Fargo MP-ID equipment and were uncorrected. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a Varian 400 Unity plus (400 MHz) at ambient temperature. Chemical shifts (δ) and coupling constants (*J*) were expressed in unit of ppm and Hz, respectively. Samples for ¹H and ¹³C NMR measurements were dissolved in CDCl₃. Infrared Spectra were taken on a Bio-Rad FTS-40 infrared spectrophotometer using KBr palate for solid samples. MALDI-mass spectra were conducted on an Applied Biosystem 4800 Proteomics Analyzer equipped with an Nd/YAG laser (335 nm) operating at repetition rate of 200 Hz. EI and Fab-mass spectra were collected on a JMS-700 double focusing mass spectrometer. Electrospray ionization (ESI) mass spectra were measured on a Waters LCT premier/XE mass spectrometer analyzer.

3,4-Didodecyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolanyl)thiophene (17)

Under N₂, to a THF solution (180 mL) of **16**^{S1} (11.1 g, 26.4 mmol) was added dropwise "BuLi (2.5 M in hexane, 12.7 mL, 31.7 mmol) at -78 °C. After stirring at rt for 3 h, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4.9 g, 26.2 mmol) was added dropwise at -78 °C and the mixture was stirred at rt overnight. Water (10 mL) was added, and the mixture was extracted with EA (30 mL). The organic layer was washed with saturated NH₄Cl (50 mL x 3), brine (50 mL), dried (MgSO₄), filtered and the filtrate was concentrated in vacuo. The residue was chromatographed on silica gel (hexane) to afford **17** as a colorless oil (12 g, 83%): ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, *J* = 6.8 Hz, 6 H), 1.26-1.36 (m, 48 H), 1.46 (quint, *J* = 7.7 Hz, 2 H), 1.60 (quint, *J* = 7.7 Hz, 2 H), 2.52 (t, *J* = 7.7 Hz, 2 H), 2.80 (t, *J* = 7.7 Hz, 2 H), 7.16 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.7, 24.8, 28.6, 29.37, 29.47, 29.54, 29.62, 29.68, 29.72, 30.1, 32.0, 83.4, 127.0, 143.9, 153.4; IR (KBr) v 2976, 2924, 2853, 1541, 1457, 1378, 1371, 1339, 1305, 1145, 856, 758, 659 cm⁻¹; HRMS (ESI) (M + Na) calcd for $C_{34}H_{63}BNaO_2S$: 569.4540; found: 569.4537.

3,4-Didodecyl-2,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolanyl)thiophene (21)

In a manner similar to that described for the synthesis of **17**, a mixture of **20**^{S1} (3.4 g, 5.9 mmol), ^{*n*}BuLi (2.5 M in hexane, 9.4 mL, 23.5 mmol), and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.3 g, 17.6 mmol) was transformed into **21** as a colorless oil (1.7 g, 44%): ¹H NMR (400 MHz, CDCl₃) δ 0.89 (t, *J* = 6.8 Hz, 6 H), 1.26-1.36 (m, 60 H), 1.46 (quint, *J* = 7.5 Hz, 4 H), 2.78 (t, *J* = 7.5 Hz, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.7, 24.8, 28.5, 29.38, 29.48, 29.68, 29.73, 29.8, 31.9, 32.5, 83.4, 154.0; IR (KBr) v 2924, 2853, 1527, 1467, 1371, 1341, 1305, 1270, 1167, 1136, 1104, 857, 684 cm⁻¹; HRMS (MALDI) (M + Na) calcd for C₄₀H₇₄B₂NaO₄S: 695.5392; found: 695.5386.

Hydroxymethyl-substituted 2-(3,4-didodecyl-2-thienyl)-5-bromo-3,4-dioxythiophene (19)

A mixture of 18^{S2} (6.4 g, 17.9 mmol), 17 (9.4 g, 17.2 mmol), aqueous K₂CO₃ (2 M, 34 mL), and Pd(PPh₃)₄ (990 mg, 0.86 mmol) in THF (170 mL) was degassed with freeze-pump-thaw method and the mixture was stirred at 70 °C for 2 days. Water (10 mL) was added, and the mixture was extracted with EA (30 mL). The organic layer was washed with saturated NH₄Cl (50 mL x 3), brine (50 mL), dried (MgSO₄),

filtered and the filtrate was concentrated in vacuo. The residue was chromatographed on silica gel (EA/hexane = 8/92) to afford **1b**₀ (1.12 g, 9%) and **19** as a white solid (4.23 g, 35%): mp 59-60 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, *J* = 6.8 Hz, 3 H), 0.89 (t, *J* = 6.8 Hz, 3 H), 0.98 (s, 3 H), 1.26-1.50 (m, 38 H), 1.55-1.60 (m, 1 H), 1.64 (quint, *J* = 7.7 Hz, 2 H), 2.50 (t, *J* = 7.7 Hz, 2 H), 2.57 (t, *J* = 8.0 Hz, 2 H), 3.71-3.77 (m, 2 H) 3.78 (d, *J* = 12.0 Hz, 1 H), 3.84 (d, *J* = 12.0 Hz, 1 H), 4.12 (d, *J* = 12.0 Hz, 1 H), 4.19 (d, *J* = 12.0 Hz, 1 H), 6.93 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 17.0, 22.7, 27.80, 29.2, 29.36, 29.54, 29.62, 29.66, 29.7, 29.8, 30.3, 31.2, 44.0, 65.5, 76.6, 109.0, 120.7, 126.2, 141.0, 142.7, 144.8, 145.3; IR (KBr) v 3335, 2954, 2920, 2849, 1546, 1502, 1468, 1434, 1389, 1370, 1052, 1024, 873, 762, 734, 720 cm⁻¹; HRMS (EI) (M) calcd for C₃₇H₆₁BrO₃S₂: 696.3245; found: 696.3256.

Hydroxymethyl-substituted 2,5-[bis(3,4-didodecyl-2-thienyl)]-3,4-dioxythiophene (1b₀)

In a manner similar to that described for the synthesis of **19**, a mixture of **18**^{S2} (1.8 g, 5.0 mmol), **17** (6.0 g, 10.9 mmol), aqueous K₂CO₃ (2 M, 20 mL), and Pd(PPh₃)₄ (287 mg, 0.25 mmol) was transformed into **1b**₀ as a pale yellow solid (3.7 g, 72%): mp 56-57 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 6.8 Hz, 6 H), 0.88 (t, *J* = 6.8 Hz, 6 H), 0.97 (s, 3 H), 1.24-1.44 (m, 72 H), 1.50 (quint, *J* = 7.8 Hz, 4 H), 1.59 (t, *J* = 5.8 Hz, 1 H), 1.65 (quint, *J* = 7.7 Hz, 4 H), 2.51 (t, *J* = 7.7 Hz, 4 H), 2.65 (t, *J* = 7.8 Hz, 4 H), 3.78 (d, *J* = 5.8.0 Hz, 2 H), 3.80 (d, *J* = 12.0 Hz, 2 H), 4.17 (d, *J* = 12.0 Hz, 2 H), 6.93 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.4, 16.9, 22.7, 28.0, 29.2, 29.37, 29.46, 29.4, 29.55, 29.69, 29.73, 29.94, 30.4, 32.0, 43.9, 65.6, 76.5, 115.0, 120.3, 127.3, 140.1, 142.7, 145.7; IR (KBr) v 3345, 2954, 2920, 2850, 1544, 1530, 1494, 1468,

1427, 1392, 1366, 1210, 1081, 1043, 964, 878, 721 cm⁻¹; HRMS (MALDI) (M) calcd for C₆₅H₁₁₂O₃S₃: 1036.7768; found: 1036.7774; GPC (THF): $M_n = 1733$, PDI = 1.01. **TBS-protected hydroxymethyl-substituted 2,5-[bis(3,4-didodecyl-2-thienyl)]-3,4dioxythiophene (1a₀)**

1a₀ X = OSi(${}^{t}C_{4}H_{9}$)(CH₃)₂, R = C₁₂H₂₅

Under N₂, a DCM solution (10 mL) of $1b_0$ (1.0 g, 1.0 mmol), imidazole (203 mg, 3.0 mmol), and tert-butyldimethylsilyl chloride (195 mg, 1.3 mmol) was stirred at rt overnight. Water (10 mL) was added, and the mixture was extracted with DCM (20 mL). The organic layer was washed with saturated NH₄Cl (20 mL x 3), brine (20 mL), dried (MgSO₄), filtered and the filtrate was concentrated in vacuo. The residue was chromatographed on silica gel (DCM/hexane = 10/90) to afford $1a_0$ as a yellow oil (1.05 g, 92%): ¹H NMR (400 MHz, CDCl₃) δ 0.06 (s, 6 H), 0.88 (t, *J* = 6.8 Hz, 6 H), 0.89 (t, J = 6.8 Hz, 6 H), 0.90 (s, 9 H), 0.99 (s, 3 H), 1.24-1.44 (m, 72 H), 1.51 (quint, J = 7.7 Hz, 4 H), 1.65 (quint, J = 7.6 Hz, 4 H), 2.52 (t, J = 7.6 Hz, 4 H), 2.67 (t, J = 7.6 H 7.7 Hz, 4 H), 3.67 (s, 2 H), 3.81 (d, J = 12.0 Hz, 2 H), 4.06 (d, J = 12.0 Hz, 2 H), 6.93 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ -5.5, 14.1, 17.1, 18.3, 22.7, 25.9, 28.0, 29.2, 29.20, 29.39, 29.47, 29.57, 29.67, 29.70, 29.74, 30.0, 30.3, 32.0, 44.2, 65.8, 76.5, 114.6, 120.2, 127.6, 140.0, 142.6, 145.9; IR (KBr) v 2957, 2925, 2853, 1496, 1464, 1426, 1391, 1373, 1256, 1102, 1075, 1006, 837, 775, 721 cm⁻¹; HRMS (MALDI) (M) calcd for C₇₁H₁₂₆O₃S₃Si: 1150.8638; found: 1150.8654; GPC (THF): *M_n* = 1816, PDI = 1.01.

4,4,5,5-Tetramethyl-1,3,2-dioxaborolanyl-substituted 1a₀ (22)

22 X = $OSi({}^{t}C_{4}H_{9})(CH_{3})_{2}$, R = $C_{12}H_{25}$

In a manner similar to that described for the synthesis of 17, a mixture of $1a_0$ (6.4 g, 5.6 mmol), ⁿBuLi (2.5)М in hexane, 2.6 mL, 6.5 mmol), and 2-isopropoxy-4,4,5,5-tetramethyl- 1,3,2-dioxaborolane (1.0 g, 5.4 mmol) was transformed into 22 as a yellow oil (3.7 g, 50%): ¹H NMR (400 MHz, CDCl₃) δ 0.11 (s, 6 H), 0.93 (t, J = 6.8 Hz, 6 H), 0.94 (t, J = 6.8 Hz, 6 H), 0.95 (s, 9 H), 1.04 (s, 3 H), 1.25-1.49 (m, 84 H), 1.52-1.63 (m, 6 H), 1.70 (quint, J = 7.6 Hz, 2 H), 2.57 (t, J = 7.6 Hz, 2 H), 2.73 (t, J = 8.8 Hz, 2 H), 2.75 (t, J = 8.8 Hz, 2 H), 2.85 (t, J = 7.8 Hz, 2 H), 3.69 (d, J = 10.0 Hz, 1 H), 3.75 (d, J = 10.0 Hz, 1 H), 3.86 (d, J = 12.0 Hz, 1 H), 3.89(d, J = 12.0 Hz, 1 H), 4.06 (d, J = 12.0 Hz, 1 H), 4.07 (d, J = 12.0 Hz, 1 H) 6.67 (s, 1 H)H); ¹³C NMR (100 MHz, CDCl₃) δ -5.6, 14.1, 17.1, 22.7, 24.8, 25.9, 28.0, 29.2, 29.4, 29.48, 29.57, 29.71, 29.74, 30.0, 30.3, 30.7, 31.9, 32.5, 44.2, 65.9, 76.4, 83.4, 114.5, 114.9, 120.2, 127.7, 140.0, 141.4, 142.6, 145.9, 154.0; IR (KBr) v 2955, 2922, 2853, 1495, 1465, 1390, 1371, 1339, 1305, 1271, 1257, 1144, 1077, 776, 721, 670 cm⁻¹; HRMS (FAB) (M) calcd for C₇₇H₁₃₇BO₅S₃Si: 1276.9491; found: 1276.9510.

Alternating tris-(3,4-didodecylthiophene)-bis-(hydroxymethyl-substituted-3,4dioxythiophene) pentamer (1b₁)

1b₁ R = $C_{12}H_{25}$

In a manner similar to that described for the synthesis of **19**, a mixture of **19** (3.2 g, 4.6 mmol), **21**(1.4 g, 2.1 mmol), aqueous K₂CO₃ (2 M, 4.8 mL), and Pd(PPh₃)₄ (120 mg, 0.1 mmol) was transformed into **1b**₁ as a yellow solid (2.34 g, 69%): mp 96-98 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.86 (t, *J* = 6.8 Hz, 6 H), 0.87 (t, *J* = 6.8 Hz, 6 H), 0.88 (t, *J* = 6.8 Hz, 6 H), 0.97 (s, 3 H), 0.98 (s, 3 H), 1.20-1.45 (m, 108 H), 1.47-1.58 (m, 8 H), 1.59-1.70 (m, 6 H), 2.52 (t, *J* = 7.8 Hz, 4 H), 2.62-2.71 (m, 8 H), 3.79 (d, *J* = 6.0 Hz, 4 H), 3.81 (d, *J* = 12.4 Hz, 2 H), 3.82 (d, *J* = 12.0 Hz, 2 H), 4.18 (d, *J* = 12.0 Hz, 2 H), 4.19 (d, *J* = 12.4 Hz, 2 H), 6.95 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 16.9, 22.7, 28.2, 28.4, 28.5, 28.6, 29.2, 29.38, 29.45, 29.51, 29.57, 29.66, 29.70, 29.74, 30.0, 30.1, 30.4, 30.7, 31.9, 43.9, 65.7, 76.5, 114.5, 115.2, 120.3, 127.3, 127.7, 140.1, 140.6, 142.7, 145.7, 145.8; IR (KBr) v 3421, 2955, 2920, 2850, 1496, 1467, 1457, 1429, 1364, 1051, 897, 721 cm⁻¹; MS (MALDI) (M) calcd for C₁₀₂H₁₇₂O₆S₅: 1653.1757; found: 1653.1692; GPC (THF): *M_n* = 2668, PDI = 1.01.

TBS-protected 1b₁ (1a₁)

1a₁ X = OSi(${}^{t}C_{4}H_{9}$)(CH₃)₂, R = C₁₂H₂₅

In a manner similar to that described for the synthesis of $1a_0$, a mixture of $1b_1$ (309 mg, 0.2 mmol), imidazole (76 mg, 1.1 mmol), and tert-butyldimethylsilyl chloride (73 mg, 0.5 mmol) was transformed into $1a_1$ as a yellow solid (282 mg, 83%): mp 37-39 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.10 (s, 12 H), 0.90 (t, J = 6.8 Hz, 6 H), 0.91 (t, J = 6.8 Hz, 6 H), 0.92 (t, J = 6.8 Hz, 6 H), 0.94 (s, 18 H) 1.03 (s, 6 H), 1.20-1.49 (m, 108 H), 1.52-1.63 (m, 8 H), 1.69 (quint, J = 7.6 Hz, 4 H), 2.56 (t, J = 7.6 Hz, 4 H), 2.67-2.79 (m, 8 H), 3.72 (s, 4 H), 3.85 (d, J = 12.0 Hz, 2 H), 3.86 (d, J = 12.0 Hz, 2 H), 4.10 (d, J = 12.0 Hz, 2 H), 4.12 (d, J = 12.0 Hz, 2 H), 6.96 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ -5.55, -5.52, 14.1, 17.1, 18.3, 22.7, 25.9, 28.0, 28.3, 29.2, 29.39,

29.46, 29.51, 29.58, 29.65, 29.68, 29.72, 29.76, 30.0, 30.1, 30.3, 30.6, 31.9, 44.2, 65.9, 76.6, 114.3, 114.8, 120.2, 127.7, 127.8, 139.9, 140.4, 142.6, 145.8, 145.9; IR (KBr) ν 2957, 2922, 2851, 1494, 1469, 1427, 1374, 1363, 1258, 1104, 1077, 1030, 837, 774, 720 cm⁻¹; HRMS (MALDI) (M) calcd for C₁₁₄H₂₀₀O₆S₅Si₂: 1881.3487; found: 1881.3459; GPC (THF): $M_n = 2755$, PDI = 1.01.

4,4,5,5-Tetramethyl-1,3,2-dioxaborolanyl-substituted 1a₁ (23)

23 X = OSi(${}^{t}C_{4}H_{9}$)(CH₃)₂, R = C₁₂H₂₅

In a manner similar to that described for the synthesis of 17, a mixture of $1a_1$ (2.28 g, 1.2 mmol). ^{*n*}BuLi (2.5 M in hexane. 0.58 mL, 1.5 mmol). and 2-isopropoxy-4,4,5,5-tetramethyl- 1,3,2-dioxaborolane (225 mg, 1.2 mmol) was transformed into 23 as a yellow oil (1 g, 41%): ¹H NMR (400 MHz, CDCl₃) δ 0.09 (s, 12 H), 0.87-0.95 (m, 36 H), 1.02 (s, 6 H), 1.22-1.48 (m, 120 H), 1.50-1.61 (m, 10 H), 1.68 (quint, J = 7.6 Hz, 2 H), 2.55 (t, J = 7.6 Hz, 2 H), 2.66-2.76 (m, 8 H), 2.82 (t, J =7.8 Hz, 2 H), 3.63-3.78 (m, 4 H), 3.79-3.92 (m, 4 H), 4.04-4.16 (m, 4 H), 6.95 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ -5.56, -5.53, 14.1, 17.1, 18.3, 22.7, 24.8, 25.9, 28.0, 28.3, 29.2, 29.39, 29.48, 29.57, 29.70, 29.76, 29.95, 30.0, 30.1, 30.3, 30.6, 30.7, 31.9, 44.2, 66.0, 76.5, 83.4, 114.33, 114.34, 114.64, 114.65, 114.69, 114.74, 120.2, 127.7, 127.8, 127.9, 134.3, 139.9, 140.4, 140.5, 141.4, 142.6, 145.9, 154.1; IR (KBr) v 2953, 2924, 2853, 1467, 1427, 1390, 1371, 1338, 1257, 1144, 1076, 838, 776, 671 cm⁻¹; HRMS (MALDI) (M + H) calcd for $C_{120}H_{212}BO_8S_5Si_2$: 2008.4417; found: 2008.4391. Bis-TBS-protected alternating tetrakis-(3,4-didodecylthiophene)-tris-(hydroxymethyl-substituted-3,4- dioxythiophene) heptamer (1c1)

1c₁ X = OSi(${}^{t}C_{4}H_{9}$)(CH₃)₂, R = C₁₂H₂₅

In a manner similar to that described for the synthesis of **19**, a mixture of **18** ^{S2} (0.4 g, 1.17 mmol), **22** (4.5 g, 3.52 mmol), aqueous K₂CO₃ (2 M, 4.5 mL), and Pd(PPh₃)₄ (70 mg, 0.06 mmol) was transformed into **1c**₁ as a red solid (2.1 g, 72%): mp 67-68 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.11 (s, 12 H), 0.89-0.96 (m, 24 H), 0.95 (s, 18 H) 1.02 (s, 3 H), 1.04 (s, 6 H) 1.25-1.49 (m, 144 H), 1.52-1.65 (m, 12 H), 1.70 (quint, *J* = 7.7 Hz, 4 H), 1.76 (t, *J* = 6.8 Hz, 1 H) 2.57 (t, *J* = 7.7 Hz, 4 H), 2.68-2.80 (m, 12 H), 3.73 (s, 4 H), 3.84-3.89 (m, 8 H), 4.12 (d, *J* = 12.0 Hz, 2 H), 4.14 (d, *J* = 12.0 Hz, 2 H), 4.24 (d, *J* = 12.0 Hz, 2 H), 6.97 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ -5.57, -5.54, 14.1, 19.2, 17.0, 18.2, 22.7, 25.9, 28.0, 28.3, 29.2, 29.39, 29.44, 29.50, 29.56, 29.64, 29.70, 29.75, 29.99, 30.1, 30.3, 30.6, 30.7, 31.9, 43.9, 44.2, 65.6, 65.9, 76.5, 114.2, 114.7, 114.8, 114.9, 120.2, 127.6, 127.7, 128.0, 140.0, 140.4, 140.5, 142.6, 145.7, 145.8, 145.9; IR (KBr) v 3440, 2954, 2919, 2850, 1494, 1469, 1426, 1375, 1256, 1075, 838, 775 cm⁻¹; HRMS (MALDI) (M) calcd for C₁₅₁H₂₆₀O₉S₇Si₂: 2497.7471; found: 2497.7513; GPC (THF): *M_n* = 3710, PDI = 1.01.

TBS-protected 1b₂ (1a₂)

1a₂ X = OSi(${}^{t}C_{4}H_{9}$)(CH₃)₂, R = C₁₂H₂₅

In a manner similar to that described for the synthesis of $1a_0$, a mixture of $1c_1$ (2.1 g, 0.8 mmol), imidazole (170 mg, 2.5 mmol), and tert-butyldimethylsilyl chloride (190

mg, 1.3 mmol) was transformed into $1a_2$ as a red solid (2.1 g, 95%): mp 48-50 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.05-0.13 (ms, 18 H), 0.93-0.92 (m, 51 H), 1.00-1.05 (ms, 9 H), 1.20-1.45 (m, 144 H), 1.49-1.60 (m, 12 H), 1.66 (quint, J = 7.5 Hz, 4 H), 2.52 (t, J = 7.5 Hz, 4 H), 2.62-2.76 (m, 12 H), 3.66-3.70 (m, 6 H), 3.78-3.87 (m, 6 H), 4.04-4.12 (m, 6 H). 6.93 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ -5.55, -5.52, 14.1, 17.1, 18.3, 22.7, 25.9, 28.0, 28.4, 29.2, 29.40, 29.47, 29.51, 29.57, 29.67, 29.71, 29.77, 30.0, 30.1, 30.2, 30.3, 30.6, 31.9, 44.2, 65.9, 76.5, 114.3, 114.5, 114.8, 120.2, 127.7, 127.8, 139.9, 140.41, 140.44, 142.6, 145.88, 145.91; IR (KBr) v 2955, 2924, 2853, 1467, 1373, 1256, 1103, 1074, 838, 776 cm⁻¹; HRMS (MALDI) (M + H) calcd for C₁₅₇H₂₇₅O₉S₇Si₃: 2612.8414; found: 2612.8359; GPC (THF): $M_n = 3589$, PDI = 1.01. Alternating tetrakis-(3,4-didodecylthiophene)-tris-(hydroxy-methyl-substituted-

3,4-dioxythiophene) heptamer (1b₂)

1b₂ R = C₁₂H₂₅

Under N₂, a THF solution (5 mL) of **1a**₂ (170 mg, 0.07 mmol), and tetra-n-butylammonium fluoride (1 M in THF, 0.39 mL, 0.39 mmol) was stirred at rt for 3 h. Water (5 mL) was added, and the mixture was extracted with DCM (10 mL). The organic layer was washed with saturated NH₄Cl (10 mL x 3), brine (10 mL), dried (MgSO₄), filtered and the filtrate was concentrated in vacuo. The residue was recrystallized with ethanol/chloroform to afford **1b**₂ as a red solid (154 mg, 90%): mp 117-118 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.82-0.92 (m, 24 H), 0.94-1.03 (ms, 9 H), 1.12-1.46 (m, 144 H), 1.48-1.61 (m, 12 H), 1.66 (quint, *J* = 7.7 Hz, 4 H), 1.76-1.92 (ms, 3 H), 2.53 (t, *J* = 7.7 Hz, 4 H), 2.62-2.80 (m, 12 H), 3.75-3.89 (m, 12 H), 4.16-4.26 (m, 6 H), 6.95 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 16.9, 22.7, 28.0, 28.3, 29.2, 29.38, 29.45, 29.45, 29.56, 29.70, 29.75, 29.98, 30.0, 30.1, 30.4, 30.7,

31.9, 43.9, 65.6, 76.5, 114.5, 114.7, 115.2, 120.3, 127.3, 127.7, 127.7, 140.1, 140.58, 140.59, 142.7, 145.66, 145.72, 145.8; IR (KBr) v 3428, 2957, 2919, 2850, 1493, 1469, 1421, 1364, 1050, 949, 875, 720 cm⁻¹; HRMS (MALDI) (M) calcd for $C_{139}H_{232}O_9S_7$: 2269.5714; found: 2269.5724; GPC (THF): $M_n = 3461$, PDI = 1.01.

4,4,5,5-Tetramethyl-1,3,2-dioxaborolanyl-substituted 1a₂ (24)

24 X = OSi(${}^{t}C_{4}H_{9}$)(CH₃)₂, R = C₁₂H₂₅

In a manner similar to that described for the synthesis of 17, a mixture of $1a_2$ (2.1 g, ⁿBuLi (2.5 M in hexane, 0.39 mL, 0.98 0.8 mmol), mmol), and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (150 mg, 0.8 mmol) was transformed into 24 as an orange oil (0.86 g, 39%): ¹H NMR (400 MHz, CDCl₃) δ 0.03-0.13 (ms, 18 H), 0.87-0.94 (m, 51 H), 0.98-1.05 (ms, 9 H), 1.20-1.48 (m, 156 H), 1.49-1.63 (m, 14 H), 1.68 (quint, J = 7.7 Hz, 2 H), 2.54 (t, J = 7.7 Hz, 2 H), 2.62-2.77 (m, 12 H), 2.78-2.86 (m, 2 H), 3.63-3.75 (m, 6 H), 3.80-3.92 (m, 6 H), 4.05-4.18 (m, 6 H), 6.95 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ -5.55, -5.52, 14.1, 17.1, 18.3, 22.7, 24.8, 25.9, 28.0, 28.3, 29.2, 29.39, 29.48, 29.57, 29.65, 29.67, 29.71, 29.76, 29.95, 30.0, 30.1, 30.2, 30.3, 30.6, 31.9, 44.2, 65.9, 76.6, 114.3, 114.5, 114.66, 114.71, 114.8, 120.2, 127.7, 127.8, 139.9, 140.40, 140.44, 142.6, 145.9, 154.1; IR (KBr) v 2953, 2924, 2853, 1466, 1426, 1390, 1372, 1339, 1256, 1101, 1074, 837, 775, 671 cm⁻¹; HRMS (MALDI) (M) calcd for C₁₆₃H₂₈₅BO₁₁S₇Si₃: 2737.9188; found: 2737.9226. Tetrakis-TBS-protected alternating hexakis-(3,4-didodecylthiophene)-pentakis-(hydroxy-methyl-substituted-3,4-dioxythiophene) undecamer (1c₂)

1c₂ X = OSi(${}^{t}C_{4}H_{9}$)(CH₃)₂, R = C₁₂H₂₅

In a manner similar to that described for the synthesis of **19**, a mixture of **18**^{S2} (53 mg, 0.15 mmol), **23** (900 mg, 0.45 mmol), aqueous K₂CO₃ (2 M, 0.6 mL), and Pd(PPh₃)₄ (10 mg, 0.01 mmol) was transformed into **1c**₂ as a red solid (363 mg, 62%): mp 65-66 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.10 (s, 12 H), 0.11 (s, 12 H), 0.86-0.96 (m, 72 H), 0.98-1.07 (ms, 15H), 1.21-1.50 (m, 216 H), 1.50-1.75 (m, 25 H), 2.51-2.60 (t, *J* = 7.6 Hz, 4 H), 2.65-2.85 (m, 20 H), 3.67-3.78 (m, 8 H), 3.80-3.94 (m, 12 H), 4.07-4.18 (m, 8 H), 4.24 (d, *J* = 12.0 Hz, 2 H), 6.96 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ -5.56, -5.53, 14.1, 16.9, 17.1, 18.3, 22.7, 25.9, 28.0, 28.4, 29.2, 29.3, 29.39, 29.46, 29.50, 29.56, 29.64, 29.67, 29.71, 29.76, 30.0, 30.1, 30.3, 30.6, 31.9, 44.2, 65.9, 76.6, 114.3, 114.37, 114.41, 114.6, 114.79, 114.83, 120.18, 120.19, 127.7, 127.8, 139.93, 139.96, 140.4, 140.6, 142.66, 145.7, 145.8, 145.87, 145.95; IR (KBr) v 3428, 2957, 2919, 2849, 1492, 1469, 1421, 1392, 1374, 1256, 1068, 837, 815, 774, 720 cm⁻¹; HRMS (MALDI) (M + H) calcd for C₂₃₇H₄₀₉O₁₅S₁₁Si₄: 3959.7246; found: 3959.7152 ; GPC (THF): *M_n* = 5231, PDI = 1.01

TBS-protected 1b₄ (1a₄)

1a₄ X = OSi(${}^{t}C_{4}H_{9}$)(CH₃)₂, R = C₁₂H₂₅

In a manner similar to that described for the synthesis of $1a_0$, a mixture of $1c_2$ (250 mg, 0.06 mmol), imidazole (13 mg, 0.19 mmol), and tert-butyldimethylsilyl chloride

(14 mg, 0.09 mmol) was transformed into **1a**₄ as a red solid (244 mg, 95%): mp 59-60 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 0.03-0.12 (ms, 30 H), 0.84-0.97 (m, 81 H), 0.97-1.06 (ms, 15 H), 1.17-1.48 (m, 216 H), 1.48-1.63 (m, 20 H), 1.67 (quint, *J* = 7.5 Hz, 4 H), 2.54 (t, *J* = 7.5 Hz, 4 H), 2.60-2.84 (m, 20 H), 3.64-3.75 (m, 10 H), 3.77-3.92 (m, 10 H), 4.03-4.18 (m, 10 H), 6.94 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ -5.54, -5.51, 14.1, 17.1, 18.3, 22.7, 25.9, 27.2, 28.0, 28.4, 29.2, 29.4, 29.47, 29.51, 29.57, 29.65, 29.67, 29.78, 30.1, 30.3, 30.7, 32.0, 44.2, 65.9, 76.6, 114.3, 114.5, 114.8, 120.2, 127.7, 127.9, 140.4, 142.6, 145.9; IR (KBr) v 2954, 2920, 2851, 1492, 1468, 1422, 1391, 1374, 1258, 1102, 1067, 838, 775, 720 cm⁻¹; HRMS (MALDI) (M + H) calcd for C₂₄₃H₄₂₃O₁₅S₁₁Si₅: 4073.8111; found: 4073.8056; GPC (THF): *M_n* = 5460, PDI = 1.01.

1b₄ R = C₁₂H₂₅

In a manner similar to that described for the synthesis of $1b_2$, a mixture of $1a_4$ (240 mg, 0.06 mmol), and tetra-n-butylammonium fluoride (1 M in THF, 0.59 mL, 0.59 mmol) was transformed into $1b_4$ as a red solid (152 mg, 73%): mp 147-148 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.81-0.93 (m, 36 H), 0.95-1.04 (ms, 15 H), 1.17-1.47 (m, 216 H), 1.48-1.61 (m, 20 H), 1.66 (quint, J = 7.6 Hz, 4 H), 1.76-1.95 (ms, 5H), 2.53 (t, J = 7.6 Hz, 4 H), 2.58-2.82 (m, 20 H), 3.75-3.90 (m, 20 H), 4.13-4.27 (m, 10 H), 6.95 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 16.9, 22.7, 28.0, 28.4, 29.2, 29.38, 29.45, 29.49, 29.55, 29.69, 29.75, 30.0, 30.1, 30.4, 30.7, 31.9, 43.9, 65.7, 76.5, 114.5, 114.7, 115.2, 120.3, 127.3, 127.7, 140.1, 140.6, 142.7, 145.7; IR (KBr) v 3421, 2955, 2920, 2850, 1494, 1468, 1420, 1364, 1263, 1049, 955, 720 cm⁻¹; HRMS (MALDI) (M)

calcd for $C_{213}H_{352}O_{15}S_{11}$: 3502.3709; found: 3502.3747; GPC (THF): $M_n = 4931$, PDI = 1.01.

Hexakis-TBS-protected alternating octakis-(3,4-didodecylthiophene)-heptakis-(hydroxy-methyl-substituted-3,4-dioxythiophene) pentadecamer (1c₃)

1c₃ X = OSi(${}^{t}C_{4}H_{9}$)(CH₃)₂, R = C₁₂H₂₅

In a manner similar to that described for the synthesis of **19**, a mixture of **18**⁸² (270 mg, 0.08 mmol), **24** (480 mg, 0.18 mmol), aqueous K₂CO₃ (2 M, 0.3 mL), and Pd(PPh₃)₄ (5 mg, 0.004 mmol) was transformed into **1c**₃ as a red solid (246 mg, 60%): mp 71-72 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.08 (s, 12 H), 0.09 (s, 12 H), 0.10 (s, 12 H), 0.82-0.97 (m, 102 H), 0.98-1.07 (ms, 21 H), 1.19-1.49 (m, 288 H), 1.51-1.75 (m, 33 H), 2.55 (t, *J* = 7.6 Hz, 4 H), 2.63-2.84 (m, 28 H), 3.67-3.77 (m, 12 H), 3.80-3.93 (m, 16 H), 4.06-4.17 (m, 12 H), 4.23 (t, *J* = 12.0 Hz, 2 H), 6.95 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ -5.5, 14.1, 16.9, 17.1, 18.3, 22.7, 25.9, 28.0, 28.4, 29.2, 29.4, 29.50, 29.56, 29.64, 29.71, 29.77, 30.0, 30.1, 30.3, 30.6, 32.0, 43.9, 44.2, 65.7, 65.9, 76.6, 114.32, 114.34, 114.39, 114.50, 114.53, 114.60, 114.77, 114.85, 120.2, 127.6, 127.7, 127.8, 127.9, 128.0, 139.9,140.5, 140.61, 140.64, 142.6, 145.7, 145.90, 145.96; IR (KBr) v 3445, 2955, 2920, 2850, 1467, 1255, 1068, 837, 775, 720 cm⁻¹; HRMS (MALDI) (M) calcd for C₃₂₃H₅₅₆O₂₁S₁₅Si₆: 5419.6865; found: 5419.7009; GPC (THF): *M_n* = 6840, PDI = 1.01.

TBS-protected 1b₆ (1a₆)

1a₆ X = OSi(${}^{t}C_{4}H_{9}$)(CH₃)₂, R = C₁₂H₂₅

In a manner similar to that described for the synthesis of $1a_0$, a mixture of $1c_3$ (246 mg, 0.05 mmol), imidazole (12 mg, 0.18 mmol), and tert-butyldimethylsilyl chloride (13 mg, 0.09 mmol) was transformed into $1a_6$ as a red solid (224 mg, 89%): mp 78-80 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.02-0.18 (ms, 42 H), 0.82-1.00 (m, 111 H), 0.99-1.09 (ms, 21 H), 1.20-1.50 (m, 288 H), 1.50-1.65 (m, 28 H), 1.68 (quint, J = 7.5 Hz, 4 H), 2.55 (t, J = 7.5 Hz, 4 H), 2.63-2.95 (m, 28 H), 3.65-3.79 (m, 14 H), 3.80-3.96 (m, 14 H), 4.05-4.24 (m, 14 H), 6.97 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ -5.5, 14.1, 17.0, 18.1, 18.3, 25.6, 26.7, 25.9, 28.0, 28.4, 29.2, 29.4, 29.5, 29.6, 29.67, 29.71, 29.8, 30.0, 30.1, 30.4, 30.6, 32.0, 44.2, 65.9, 76.6, 114.3, 114.5, 114.8, 120.2, 127.7, 127.9, 139.9, 140.0, 142.6, 145.9; IR (KBr) v 2957, 2920, 2851, 1467, 1340, 1378, 1257, 1197, 1183, 1047, 957, 850, 721 cm⁻¹; HRMS (MALDI) (M) calcd for C₃₂₉H₅₇₀O₂₁S₁₅Si₇: 5533.7730; found: 5533.7913; GPC (THF): $M_n = 6635$, PDI = 1.01.

Alternating octakis-(3,4-didodecylthiophene)-heptakis- (hydroxymethyl-substituted-3,4-dioxythiophene) pentadecamer (1b₆)

In a manner similar to that described for the synthesis of $1b_2$, a mixture of $1a_6$ (224 mg, 0.04 mmol), and tetra-n-butylammonium fluoride (1 M in THF, 0.56 mL, 0.56

mmol) was transformed into **1b**₆ as a red solid (170 mg, 89%): mp 158-159 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.82-0.93 (m, 48 H), 0.89-0.95 (ms, 21 H), 1.17-1.46 (m, 288 H), 1.48-17.5 (m, 39 H), 2.45 (t, *J* = 7.8 Hz, 4 H), 2.59-2.80 (m, 28 H), 3.74-3.91 (m, 28 H), 4.14-4.29 (m, 14 H), 6.94 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 17.0, 22.7, 28.0, 28.4, 29.2, 29.4, 29.49, 29.55, 29.69, 29.75, 30.0, 30.1, 30.4, 30.7, 31.9, 43.9, 65.7, 76.5, 114.5, 114.8, 115.2, 120.3, 127.3, 127.7, 140.2, 140.6, 140.7, 142.7, 145.67, 145.75; IR (KBr) v 3424, 2955, 2920, 2849, 1493, 1468, 1421, 1378, 1364, 1261, 1157, 1047, 954, 926, 876, 720 cm⁻¹; HRMS (MALDI) (M + H) calcd for C₂₈₇H₄₇₃O₂₁S₁₅: 4736.1755; found: 4736.1749; GPC (THF): *M*_n = 6356, PDI = 1.01.

References

- S1. Ko, S.; Verploegen, E.; Hong, S.; Mondal, R.; Hoke, E. T.; Toney, M. F.; McGehee, M. D.; Bao, Z. J. Am. Chem. Soc. 2011, 133, 16722–16725.
- S2. Nantalaksakul, A.; Krishnamoorthy, K.; Thayumanavan, S. *Macromolecules* 2010, 43, 37–43.

GPC profiles for 1a, 1b, and 1c.

Plots of M_n , and M_c against M_r values for 1-15.

Figure S1. M_r vs M_n and M_r vs M_c for $\mathbf{1b_n}$ (SLOPE $(M_n) = 1.39$, $R^2 = 0.99$; SLOPE $(M_c) = 1.00$, $R^2 = 0.99$).

Figure S2. M_r vs M_n and M_r vs M_c for $\mathbf{2_n}$ (SLOPE $(M_n) = 1.98$, $\mathbb{R}^2 = 0.94$; SLOPE $(M_c) = 1.00$, $\mathbb{R}^2 = 0.94$).

Figure S3. M_r vs M_n and M_r vs M_c for **3**_n (SLOPE (M_n) = 1.87, R² = 0.96; SLOPE (M_c) = 1.00, R² = 0.96).

Figure S4. M_r vs M_n and M_r vs M_c for $\mathbf{4_n}$ (SLOPE $(M_n) = 2.47$, $\mathbb{R}^2 = 0.98$; SLOPE $(M_c) = 1.00$, $\mathbb{R}^2 = 0.98$).

Figure S5. M_r vs M_n and M_r vs M_c for $\mathbf{5_n}$ (SLOPE (M_n) = 1.77, R² = 1.00; SLOPE (M_c) = 1.00, R² = 1.00).

Figure S6a. M_r vs M_n and M_r vs M_c for **6**₄ to **6**₃₆ (SLOPE (M_n) = 1.27, R² = 0.99; SLOPE (M_c) = 1.00, R² = 0.99).

Figure S6b. M_r vs M_n and M_r vs M_c for **6**₄₈ to **6**₉₆ (SLOPE (M_n) = 1.56, R² = 0.95; SLOPE (M_c) = 1.00, R² = 0.95).

Figure S7. M_r vs M_n and M_r vs M_c for **7**₅ and **8**₆ (SLOPE (M_n) = 1.65, R² = 0.99; SLOPE (M_c) = 1.00, R² = 0.99).

Figure S8. M_r vs M_n and M_r vs M_c for $\mathbf{9_n}$ (SLOPE (M_n) = 2.28, $\mathbb{R}^2 = 0.83$; SLOPE (M_c) = 1.00, $\mathbb{R}^2 = 0.83$).

Figure S9. M_r vs M_n and M_r vs M_c for $\mathbf{11}_n$ (SLOPE (M_n) = 1.72, R² = 0.99; SLOPE (M_c) = 1.00, R² = 0.99).

Figure S10. M_r vs M_n and M_r vs M_c for **13**_n (SLOPE (M_n) = 1.68, R² = 0.95; SLOPE (M_c) = 1.00, R² = 0.95).

Figure S11. M_r vs M_n and M_r vs M_c for **14**_n (SLOPE (M_n) = 1.59, R² = 0.97; SLOPE (M_c) = 1.00, R² = 0.97).

Figure S12. M_r vs M_n and M_r vs M_c for **15**_n (SLOPE (M_n) = 3.51, R² = 0.87; SLOPE (M_c) = 1.01, R² = 0.87).