Fragment Parameters for the Calibration of Molecular Weights of Rod-Like Oligomers/Polymers by Gel Permeation Chromatography Chih-Chun Chen, Chih-Wei Chen, Kamani Satyanarayana, and Tien-Yau Luh* Department of Chemistry, National Taiwan University, Taipei, Taiwan 106

Supporting Information

1. Experimental details for the synthesis of $\mathbf{1 a}, \mathbf{1 b}$, and $\mathbf{1 c}$.
2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all new compounds shown in Scheme S1.
3. GPC profiles for $\mathbf{1 a}, \mathbf{1 b}$, and $\mathbf{1 c}$.
4. Plots of M_{n}, and M_{c} against M_{r} values for 1-15.

Scheme S1 Synthetic scheme

$\mathbf{1 b}_{\mathbf{0}} \quad \mathrm{n}=0, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$
$\mathbf{1 b}_{1} \mathrm{n}=1, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

$1 \mathrm{a}_{\mathbf{0}} \mathrm{n}=0, \mathrm{X}=\mathrm{OSi}\left(t \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$ $1 \mathrm{a}_{1} \mathrm{n}=1, \mathrm{X}=\mathrm{OSi}\left(t \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$ $1 \mathbf{a}_{\mathbf{2}} \mathrm{n}=2, \mathrm{X}=\mathrm{OSi}\left(t \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

$1 a_{0} \quad n=0, X=O S i\left(t C_{4} H_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$
$1 \mathbf{a}_{1} \quad \mathrm{n}=1, \mathrm{X}=\mathrm{OSi}\left(t \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

$15 \mathrm{n}=0, \mathrm{X}=\mathrm{OSi}\left(t \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$
$16 \mathrm{n}=1, \mathrm{X}=\mathrm{OSi}\left(t \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$ $17 \mathrm{n}=2, \mathrm{X}=\mathrm{OSi}\left(t \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

$1 \mathbf{a}_{\mathbf{2}} \mathrm{n}=2, \mathrm{X}=\mathrm{OSi}\left(t \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$
$1 \mathrm{a}_{4} \mathrm{n}=4, \mathrm{X}=\mathrm{OSi}\left(t \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$
$1 \mathrm{a}_{6} \mathrm{n}=6, \mathrm{X}=\mathrm{OSi}\left(t \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

$\mathbf{1 b}_{2} \quad \mathrm{n}=2, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$
$\mathbf{1 b}_{\mathbf{4}} \mathrm{n}=4, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$
$\mathbf{1 b}_{6} \mathrm{n}=6, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

General. All melting points were recorded on a Fargo MP-ID equipment and were uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra were recorded on a Varian 400 Unity plus (400 MHz) at ambient temperature. Chemical shifts (δ) and coupling constants (J) were expressed in unit of ppm and Hz , respectively. Samples for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR measurements were dissolved in CDCl_{3}. Infrared Spectra were taken on a Bio-Rad FTS-40 infrared spectrophotometer using KBr palate for solid samples. MALDI-mass spectra were conducted on an Applied Biosystem 4800 Proteomics Analyzer equipped with an Nd/YAG laser (335 nm) operating at repetition rate of 200 Hz . EI and Fab-mass spectra were collected on a JMS-700 double focusing mass spectrometer. Electrospray ionization (ESI) mass spectra were measured on a Waters LCT premier/XE mass spectrometer analyzer.

3,4-Didodecyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolanyl)thiophene (17)

Under N_{2}, to a THF solution (180 mL) of $\mathbf{1 6}^{\mathrm{S} 1}(11.1 \mathrm{~g}, 26.4 \mathrm{mmol})$ was added dropwise ${ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $12.7 \mathrm{~mL}, 31.7 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. After stirring at rt for $3 \mathrm{~h}, 2$-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($4.9 \mathrm{~g}, 26.2 \mathrm{mmol}$) was added dropwise at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at rt overnight. Water (10 mL) was added, and the mixture was extracted with EA $(30 \mathrm{~mL})$. The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL} \times 3)$, brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was chromatographed on silica gel (hexane) to afford 17 as a colorless oil (12 g, 83\%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.26-1.36(\mathrm{~m}, 48 \mathrm{H}), 1.46$ (quint, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.60$ (quint, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,22.7,24.8,28.6,29.37,29.47,29.54,29.62$, $29.68,29.72,30.1,32.0,83.4,127.0,143.9,153.4 ; \mathrm{IR}(\mathrm{KBr}) \vee 2976,2924,2853$,

1541, 1457, 1378, 1371, 1339, 1305, 1145, 856, 758, $659 \mathrm{~cm}^{-1}$; HRMS (ESI) (M + Na) calcd for $\mathrm{C}_{34} \mathrm{H}_{63} \mathrm{BNaO}_{2} \mathrm{~S}$: 569.4540; found: 569.4537.

3,4-Didodecyl-2,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolanyl)thiophene (21)

In a manner similar to that described for the synthesis of $\mathbf{1 7}$, a mixture of $\mathbf{2 0}^{\text {S1 }}(3.4 \mathrm{~g}$, $5.9 \mathrm{mmol}),{ }^{n} \operatorname{BuLi}(2.5 \mathrm{M}$ in hexane, $9.4 \mathrm{~mL}, 23.5 \mathrm{mmol})$, and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($3.3 \mathrm{~g}, \quad 17.6 \mathrm{mmol}$) was transformed into 21 as a colorless oil ($1.7 \mathrm{~g}, 44 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.26-1.36(\mathrm{~m}, 60 \mathrm{H}), 1.46$ (quint, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.78$ (t, J $=7.5 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,22.7,24.8,28.5,29.38,29.48$, 29.68, 29.73, 29.8, 31.9, 32.5, 83.4, 154.0; IR (KBr) v 2924, 2853, 1527, 1467, 1371, 1341, 1305, 1270, 1167, 1136, 1104, 857, $684 \mathrm{~cm}^{-1}$; HRMS (MALDI) ($\mathrm{M}+\mathrm{Na}$) calcd for $\mathrm{C}_{40} \mathrm{H}_{74} \mathrm{~B}_{2} \mathrm{NaO}_{4} \mathrm{~S}: 695.5392$; found: 695.5386.

Hydroxymethyl-substituted 2-(3,4-didodecyl-2-thienyl)-5-bromo-3,4-dioxythiophene (19)

19
A mixture of $\mathbf{1 8}^{\mathrm{S} 2}(6.4 \mathrm{~g}, 17.9 \mathrm{mmol}), 17(9.4 \mathrm{~g}, 17.2 \mathrm{mmol})$, aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 34$ $\mathrm{mL})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(990 \mathrm{mg}, 0.86 \mathrm{mmol})$ in THF (170 mL) was degassed with freeze-pump-thaw method and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 days. Water (10 mL) was added, and the mixture was extracted with EA (30 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL} x 3)$, brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$,
filtered and the filtrate was concentrated in vacuo. The residue was chromatographed on silica gel $(E A / h e x a n e=8 / 92)$ to afford $\mathbf{1 b}_{\mathbf{0}}(1.12 \mathrm{~g}, 9 \%)$ and $\mathbf{1 9}$ as a white solid (4.23 g, 35\%): mp 59-60 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), $0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.50(\mathrm{~m}, 38 \mathrm{H}), 1.55-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.64$ (quint, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.50(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71-3.77$ (m, 2 H) 3.78 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.84(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1$ H), $4.19(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1$, $17.0,22.7,27.80,29.2,29.36,29.54,29.62,29.66,29.7,29.8,30.3,31.2,44.0,65.5$, 76.6, 109.0, 120.7, 126.2, 141.0, 142.7, 144.8, 145.3; IR (KBr) v 3335, 2954, 2920, $2849,1546,1502,1468,1434,1389,1370,1052,1024,873,762,734,720 \mathrm{~cm}^{-1}$; HRMS (EI) (M) calcd for $\mathrm{C}_{37} \mathrm{H}_{61} \mathrm{BrO}_{3} \mathrm{~S}_{2}$: 696.3245; found: 696.3256 .

Hydroxymethyl-substituted 2,5-[bis(3,4-didodecyl-2-thienyl)]-3,4-dioxythiophene

 ($\mathbf{1 b}_{0}$)

In a manner similar to that described for the synthesis of $\mathbf{1 9}$, a mixture of $\mathbf{1 8}^{\mathrm{S} 2}(1.8 \mathrm{~g}$, $5.0 \mathrm{mmol})$, $17(6.0 \mathrm{~g}, 10.9 \mathrm{mmol})$, aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 20 \mathrm{~mL})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(287$ $\mathrm{mg}, 0.25 \mathrm{mmol}$) was transformed into $\mathbf{1 b}_{\mathbf{0}}$ as a pale yellow solid ($3.7 \mathrm{~g}, 72 \%$): mp $56-57{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}$, 6 H), 0.97 (s, 3 H), $1.24-1.44(\mathrm{~m}, 72 \mathrm{H}), 1.50$ (quint, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.59(\mathrm{t}, J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.65 (quint, $J=7.7 \mathrm{~Hz}, 4 \mathrm{H}$), $2.51(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4$ H), 3.78 (d, $J=5.8 .0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.80(\mathrm{~d}, ~ J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.93 ($\mathrm{s}, 2 \mathrm{H}$) ${ }^{13}{ }^{1} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.4,16.9,22.7,28.0,29.2,29.37,29.46$, 29.4, 29.55, 29.69, 29.73, 29.94, 30.4, 32.0, 43.9, 65.6, 76.5, 115.0, 120.3, 127.3, 140.1, 142.7, 145.7; IR (KBr) v 3345, 2954, 2920, 2850, 1544, 1530, 1494, 1468,

1427, 1392, 1366, 1210, 1081, 1043, 964, 878, $721 \mathrm{~cm}^{-1}$; HRMS (MALDI) (M) calcd for $\mathrm{C}_{65} \mathrm{H}_{112} \mathrm{O}_{3} \mathrm{~S}_{3}: 1036.7768$; found: 1036.7774; GPC (THF): $M_{n}=1733$, $\mathrm{PDI}=1.01$.

TBS-protected hydroxymethyl-substituted 2,5-[bis(3,4-didodecyl-2-thienyl)]-3,4dioxythiophene ($1 \mathrm{a}_{0}$)

1a $\mathbf{a}_{0} \quad X=O S i\left({ }^{(t} C_{4} H_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, R=C_{12} \mathrm{H}_{25}$
Under N_{2}, a DCM solution (10 mL) of $\mathbf{1 b}_{\mathbf{0}}(1.0 \mathrm{~g}, 1.0 \mathrm{mmol})$, imidazole ($203 \mathrm{mg}, 3.0$ mmol), and tert-butyldimethylsilyl chloride ($195 \mathrm{mg}, 1.3 \mathrm{mmol}$) was stirred at rt overnight. Water (10 mL) was added, and the mixture was extracted with DCM (20 $\mathrm{mL})$. The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL} \mathrm{x} 3)$, brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was chromatographed on silica gel $(\mathrm{DCM} /$ hexane $=10 / 90)$ to afford $\mathbf{1} \mathbf{a}_{0}$ as a yellow oil $(1.05 \mathrm{~g}, 92 \%):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$, $0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.44$ (m, 72 H), 1.51 (quint, $J=7.7 \mathrm{~Hz}, 4 \mathrm{H}$), 1.65 (quint, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}$), $2.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.67(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 4 \mathrm{H}$), 3.67 ($\mathrm{s}, 2 \mathrm{H}$), 3.81 (d, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.06 (d, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (s, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.5,14.1,17.1,18.3,22.7,25.9,28.0,29.2$, 29.20, 29.39, 29.47, 29.57, 29.67, 29.70, 29.74, 30.0, 30.3, 32.0, 44.2, 65.8, 76.5, 114.6, 120.2, 127.6, 140.0, 142.6, 145.9; IR (KBr) v2957, 2925, 2853, 1496, 1464, 1426, 1391, 1373, 1256, 1102, 1075, 1006, 837, 775, $721 \mathrm{~cm}^{-1}$; HRMS (MALDI) (M) calcd for $\mathrm{C}_{71} \mathrm{H}_{126} \mathrm{O}_{3} \mathrm{~S}_{3} \mathrm{Si}$: 1150.8638 ; found: 1150.8654; GPC (THF): $M_{n}=1816$, PDI $=1.01$.

4,4,5,5-Tetramethyl-1,3,2-dioxaborolanyl-substituted 1a \mathbf{a}_{0} (22)

$22 \mathrm{X}=\mathrm{OSi}\left({ }^{\mathrm{t}} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$
In a manner similar to that described for the synthesis of $\mathbf{1 7}$, a mixture of $\mathbf{1} \mathbf{a}_{\mathbf{0}}(6.4 \mathrm{~g}$, $5.6 \mathrm{mmol}),{ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, 2.6 mL , 6.5 mmol$)$, and 2-isopropoxy-4,4,5,5-tetramethyl- 1,3,2-dioxaborolane ($1.0 \mathrm{~g}, 5.4 \mathrm{mmol}$) was transformed into 22 as a yellow oil ($3.7 \mathrm{~g}, 50 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.11$ (s, 6 H), $0.93(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.94(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H})$, $1.25-1.49(\mathrm{~m}, 84 \mathrm{H}), 1.52-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.70$ (quint, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.73 (t, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.69(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.06 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.07 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) 6.67(\mathrm{~s}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.6,14.1,17.1,22.7,24.8,25.9,28.0,29.2,29.4$, 29.48, 29.57, 29.71, 29.74, 30.0, 30.3, 30.7, 31.9, 32.5, 44.2, 65.9, 76.4, 83.4, 114.5, 114.9, 120.2, 127.7, 140.0, 141.4, 142.6, 145.9, 154.0; IR (KBr) v 2955, 2922, 2853, $1495,1465,1390,1371,1339,1305,1271,1257,1144,1077,776,721,670 \mathrm{~cm}^{-1}$; HRMS (FAB) (M) calcd for $\mathrm{C}_{77} \mathrm{H}_{137} \mathrm{BO}_{5} \mathrm{~S}_{3} \mathrm{Si}$: 1276.9491; found: 1276.9510 .

Alternating tris-(3,4-didodecylthiophene)-bis-(hydroxymethyl-substituted-3,4dioxythiophene) pentamer ($\mathbf{1 b}_{1}$)

In a manner similar to that described for the synthesis of 19, a mixture of $19(3.2 \mathrm{~g}$, $4.6 \mathrm{mmol}), \mathbf{2 1}(1.4 \mathrm{~g}, 2.1 \mathrm{mmol})$, aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 4.8 \mathrm{~mL})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(120$ $\mathrm{mg}, 0.1 \mathrm{mmol}$) was transformed into $\mathbf{1 b}_{\mathbf{1}}$ as a yellow solid ($2.34 \mathrm{~g}, 69 \%$): mp $96-98{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.88$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.45(\mathrm{~m}, 108 \mathrm{H}), 1.47-1.58(\mathrm{~m}, 8$ H), 1.59-1.70 (m, 6 H), $2.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.62-2.71(\mathrm{~m}, 8 \mathrm{H}), 3.79(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 4 \mathrm{H}), 3.81(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2$ H), $4.19(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,16.9$, 22.7, 28.2, 28.4, 28.5, 28.6, 29.2, 29.38, 29.45, 29.51, 29.57, 29.66, 29.70, 29.74, 30.0, $30.1,30.4,30.7,31.9,43.9,65.7,76.5,114.5,115.2,120.3,127.3,127.7,140.1,140.6$, 142.7, 145.7, 145.8; IR (KBr) v 3421, 2955, 2920, 2850, 1496, 1467, 1457, 1429, 1364, 1051, 897, $721 \mathrm{~cm}^{-1}$; MS (MALDI) (M) calcd for $\mathrm{C}_{102} \mathrm{H}_{172} \mathrm{O}_{6} \mathrm{~S}_{5}: 1653.1757$; found: 1653.1692; GPC (THF): $M_{n}=2668, \mathrm{PDI}=1.01$.

TBS-protected $\mathbf{1 b}_{1}\left(\mathbf{1 a}_{1}\right)$

In a manner similar to that described for the synthesis of $\mathbf{1} \mathbf{a}_{\mathbf{0}}$, a mixture of $\mathbf{1 b}_{\mathbf{1}}$ (309 $\mathrm{mg}, 0.2 \mathrm{mmol}$), imidazole ($76 \mathrm{mg}, 1.1 \mathrm{mmol}$), and tert-butyldimethylsilyl chloride (73 $\mathrm{mg}, 0.5 \mathrm{mmol}$) was transformed into $\mathbf{1} \mathbf{a}_{\mathbf{1}}$ as a yellow solid ($282 \mathrm{mg}, 83 \%$): mp 37-39 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.10(\mathrm{~s}, 12 \mathrm{H}), 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 18 \mathrm{H}) 1.03(\mathrm{~s}, 6 \mathrm{H}), 1.20-1.49(\mathrm{~m}, 108$ H), 1.52-1.63 (m, 8 H), 1.69 (quint, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}$), 2.56 (t, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}$), 2.67-2.79 (m, 8 H$), 3.72(\mathrm{~s}, 4 \mathrm{H}), 3.85(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2$ H), $4.10(\mathrm{~d}, ~ J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-5.55,-5.52,14.1,17.1,18.3,22.7,25.9,28.0,28.3,29.2,29.39$,
29.46, 29.51, 29.58, 29.65, 29.68, 29.72, 29.76, 30.0, 30.1, 30.3, 30.6, 31.9, 44.2, 65.9, $76.6,114.3,114.8,120.2,127.7,127.8,139.9,140.4,142.6,145.8,145.9$; $\operatorname{IR}(\mathrm{KBr}) v$ 2957, 2922, 2851, 1494, 1469, 1427, 1374, 1363, 1258, 1104, 1077, 1030, 837, 774, $720 \mathrm{~cm}^{-1}$; HRMS (MALDI) (M) calcd for $\mathrm{C}_{114} \mathrm{H}_{200} \mathrm{O}_{6} \mathrm{~S}_{5} \mathrm{Si}_{2}$: 1881.3487; found: 1881.3459; GPC (THF): $M_{n}=2755$, PDI $=1.01$.

4,4,5,5-Tetramethyl-1,3,2-dioxaborolanyl-substituted 1a 1_{1} (23)

$23 \mathrm{X}=\mathrm{OSi}\left({ }^{\mathrm{t}} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$
In a manner similar to that described for the synthesis of $\mathbf{1 7}$, a mixture of $\mathbf{1 a}_{1}(2.28 \mathrm{~g}$, $1.2 \mathrm{mmol}),{ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $0.58 \mathrm{~mL}, 1.5 \mathrm{mmol})$, and 2-isopropoxy-4,4,5,5-tetramethyl- 1,3,2-dioxaborolane ($225 \mathrm{mg}, 1.2 \mathrm{mmol}$) was transformed into 23 as a yellow oil ($1 \mathrm{~g}, 41 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09$ (s, $12 \mathrm{H}), 0.87-0.95(\mathrm{~m}, 36 \mathrm{H}), 1.02(\mathrm{~s}, 6 \mathrm{H}), 1.22-1.48(\mathrm{~m}, 120 \mathrm{H}), 1.50-1.61(\mathrm{~m}, 10 \mathrm{H})$, 1.68 (quint, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.55 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.66-2.76$ (m, 8 H), $2.82(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.63-3.78 (m, 4 H), 3.79-3.92 (m, 4 H), 4.04-4.16 (m, 4 H), 6.95 ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.56,-5.53,14.1,17.1,18.3,22.7,24.8,25.9,28.0$, 28.3, 29.2, 29.39, 29.48, 29.57, 29.70, 29.76, 29.95, 30.0, 30.1, 30.3, 30.6, 30.7, 31.9, $44.2,66.0,76.5,83.4,114.33,114.34,114.64,114.65,114.69,114.74,120.2,127.7$, 127.8, 127.9, 134.3, 139.9, 140.4, 140.5, 141.4, 142.6, 145.9, 154.1; IR (KBr) v 2953, 2924, 2853, 1467, 1427, 1390, 1371, 1338, 1257, 1144, 1076, 838, 776, $671 \mathrm{~cm}^{-1}$; HRMS (MALDI) $(\mathrm{M}+\mathrm{H})$ calcd for $\mathrm{C}_{120} \mathrm{H}_{212} \mathrm{BO}_{8} \mathrm{~S}_{5} \mathrm{Si}_{2}$: 2008.4417; found: 2008.4391.

Bis-TBS-protected alternating tetrakis-(3,4-didodecylthiophene)-tris-(hydroxy-methyl-substituted-3,4- dioxythiophene) heptamer ($1 \mathrm{c}_{1}$)

1c $\mathbf{c}_{1} \quad \mathrm{X}=\mathrm{OSi}\left({ }^{t} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$
In a manner similar to that described for the synthesis of $\mathbf{1 9}$, a mixture of $\mathbf{1 8}^{\mathrm{S} 2}(0.4 \mathrm{~g}$, $1.17 \mathrm{mmol})$, $22(4.5 \mathrm{~g}, 3.52 \mathrm{mmol})$, aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 4.5 \mathrm{~mL})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(70$ $\mathrm{mg}, 0.06 \mathrm{mmol}$) was transformed into $\mathbf{1} \mathbf{c}_{1}$ as a red solid ($2.1 \mathrm{~g}, 72 \%$): mp $67-68{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.11(\mathrm{~s}, 12 \mathrm{H}), 0.89-0.96(\mathrm{~m}, 24 \mathrm{H}), 0.95(\mathrm{~s}, 18 \mathrm{H}) 1.02$ $(\mathrm{s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H}) 1.25-1.49(\mathrm{~m}, 144 \mathrm{H}), 1.52-1.65(\mathrm{~m}, 12 \mathrm{H}), 1.70$ (quint, $J=7.7$ $\mathrm{Hz}, 4 \mathrm{H}), 1.76(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) 2.57(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.68-2.80(\mathrm{~m}, 12 \mathrm{H}), 3.73$ (s, 4 H), 3.84-3.89 (m, 8 H$), 4.12(\mathrm{~d}, ~ J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.24(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.57,-5.54$, 14.1, 19.2, 17.0, 18.2, 22.7, 25.9, 28.0, 28.3, 29.2, 29.39, 29.44, 29.50, 29.56, 29.64, $29.70,29.75,29.99,30.1,30.3,30.6,30.7,31.9,43.9,44.2,65.6,65.9,76.5,114.2$, 114.7, 114.8, 114.9, 120.2, 127.6, 127.7, 128.0, 140.0, 140.4, 140.5, 142.6, 145.7, 145.8, 145.9; IR (KBr) v 3440, 2954, 2919, 2850, 1494, 1469, 1426, 1375, 1256, 1075, 838, $775 \mathrm{~cm}^{-1}$; HRMS (MALDI) (M) calcd for $\mathrm{C}_{151} \mathrm{H}_{260} \mathrm{O}_{9} \mathrm{~S}_{7} \mathrm{Si}_{2}$: 2497.7471; found: 2497.7513; GPC (THF): $M_{n}=3710, \mathrm{PDI}=1.01$.

TBS-protected 1b $\mathbf{1 b}_{\mathbf{2}}\left(\mathbf{1 a}_{2}\right)$

$$
\mathbf{1 a} \mathbf{a}_{\mathbf{2}} \quad \mathrm{X}=\mathrm{OSi}\left({ }^{(t} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}
$$

In a manner similar to that described for the synthesis of $\mathbf{1 a}_{0}$, a mixture of $\mathbf{1}_{\mathbf{1}}(2.1 \mathrm{~g}$, 0.8 mmol), imidazole ($170 \mathrm{mg}, 2.5 \mathrm{mmol}$), and tert-butyldimethylsilyl chloride (190
$\mathrm{mg}, 1.3 \mathrm{mmol}$) was transformed into $\mathbf{1 a}_{2}$ as a red solid ($2.1 \mathrm{~g}, 95 \%$): mp $48-50{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.05-0.13(\mathrm{~ms}, 18 \mathrm{H}), 0.93-0.92(\mathrm{~m}, 51 \mathrm{H}), 1.00-1.05(\mathrm{~ms}$, 9 H), 1.20-1.45 (m, 144 H), 1.49-1.60 (m, 12 H), 1.66 (quint, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}$), 2.52 (t, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.62-2.76(\mathrm{~m}, 12 \mathrm{H}), 3.66-3.70(\mathrm{~m}, 6 \mathrm{H}), 3.78-3.87(\mathrm{~m}, 6 \mathrm{H})$, 4.04-4.12 (m, 6 H). $6.93(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-5.55, $-5.52,14.1$, 17.1, 18.3, 22.7, 25.9, 28.0, 28.4, 29.2, 29.40, 29.47, 29.51, 29.57, 29.67, 29.71, 29.77, $30.0,30.1,30.2,30.3,30.6,31.9,44.2,65.9,76.5,114.3,114.5,114.8,120.2,127.7$, $127.8,139.9,140.41,140.44,142.6,145.88,145.91$; IR (KBr) v 2955, 2924, 2853, 1467, 1373, 1256, 1103, 1074, 838, $776 \mathrm{~cm}^{-1}$; HRMS (MALDI) (M + H) calcd for $\mathrm{C}_{157} \mathrm{H}_{275} \mathrm{O}_{9} \mathrm{~S}_{7} \mathrm{Si}_{3}: 2612.8414$; found: 2612.8359; GPC (THF): $M_{n}=3589$, PDI $=1.01$.

Alternating tetrakis-(3,4-didodecylthiophene)-tris-(hydroxy-methyl-substituted-

 3,4-dioxythiophene) heptamer ($1 \mathrm{~b}_{2}$)
$\mathbf{1 b}_{\mathbf{2}} \quad R=\mathrm{C}_{12} \mathrm{H}_{25}$
Under N_{2}, a THF solution (5 mL) of $\mathbf{1 a}_{2}(170 \mathrm{mg}, 0.07 \mathrm{mmol})$, and tetra-n-butylammonium fluoride (1 M in THF, $0.39 \mathrm{~mL}, 0.39 \mathrm{mmol}$) was stirred at rt for 3 h . Water (5 mL) was added, and the mixture was extracted with DCM (10 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL} x 3)$, brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was recrystallized with ethanol/chloroform to afford $\mathbf{1 b}_{\mathbf{2}}$ as a red solid ($154 \mathrm{mg}, 90 \%$): mp $117-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.82-0.92(\mathrm{~m}, 24 \mathrm{H}), 0.94-1.03(\mathrm{~ms}, 9 \mathrm{H})$, $1.12-1.46(\mathrm{~m}, 144 \mathrm{H}), 1.48-1.61(\mathrm{~m}, 12 \mathrm{H}), 1.66$ (quint, $J=7.7 \mathrm{~Hz}, 4 \mathrm{H}$), 1.76-1.92 (ms, 3 H), 2.53 (t, $J=7.7 \mathrm{~Hz}, 4 \mathrm{H}$), 2.62-2.80 (m, 12 H), 3.75-3.89 (m, 12 H), 4.16-4.26 (m, 6 H), $6.95(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 14.1, 16.9, 22.7, $28.0,28.3,29.2,29.38,29.45,29.45,29.56,29.70,29.75,29.98,30.0,30.1,30.4,30.7$,
31.9, 43.9, 65.6, 76.5, 114.5, 114.7, 115.2, 120.3, 127.3, 127.7, 127.7, 140.1, 140.58, $140.59,142.7,145.66,145.72,145.8$; $\mathrm{IR}(\mathrm{KBr})$ v 3428, 2957, 2919, 2850, 1493, 1469, 1421, 1364, 1050, 949, 875, $720 \mathrm{~cm}^{-1}$; HRMS (MALDI) (M) calcd for $\mathrm{C}_{139} \mathrm{H}_{232} \mathrm{O}_{9} \mathrm{~S}_{7}$: 2269.5714; found: 2269.5724; GPC (THF): $M_{n}=3461, \mathrm{PDI}=1.01$.

4,4,5,5-Tetramethyl-1,3,2-dioxaborolanyl-substituted 1a a_{2} (24)

$24 X=O S i\left({ }^{t} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$
In a manner similar to that described for the synthesis of $\mathbf{1 7}$, a mixture of $\mathbf{1} \mathbf{a}_{\mathbf{2}}(2.1 \mathrm{~g}$, $0.8 \mathrm{mmol}),{ }^{n} \operatorname{BuLi}(2.5 \mathrm{M}$ in hexane, $0.39 \mathrm{~mL}, 0.98 \mathrm{mmol})$, and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($150 \mathrm{mg}, 0.8 \mathrm{mmol}$) was transformed into 24 as an orange oil ($0.86 \mathrm{~g}, 39 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.03-0.13(\mathrm{~ms}, 18 \mathrm{H}), 0.87-0.94(\mathrm{~m}, 51 \mathrm{H}), 0.98-1.05(\mathrm{~ms}, 9 \mathrm{H}), 1.20-1.48(\mathrm{~m}, 156 \mathrm{H})$, 1.49-1.63 (m, 14 H), 1.68 (quint, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.62-2.77$ (m, 12 H), 2.78-2.86 (m, 2 H), 3.63-3.75 (m, 6 H), 3.80-3.92 (m, 6 H), 4.05-4.18 (m, 6 H), $6.95(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.55,-5.52,14.1,17.1,18.3,22.7$, 24.8, 25.9, 28.0, 28.3, 29.2, 29.39, 29.48, 29.57, 29.65, 29.67, 29.71, 29.76, 29.95, $30.0,30.1,30.2,30.3,30.6,31.9,44.2,65.9,76.6,114.3,114.5,114.66,114.71,114.8$, 120.2, 127.7, 127.8, 139.9, 140.40, 140.44, 142.6, 145.9, 154.1; IR (KBr) v 2953, 2924, 2853, 1466, 1426, 1390, 1372, 1339, 1256, 1101, 1074, 837, 775, $671 \mathrm{~cm}^{-1}$; HRMS (MALDI) (M) calcd for $\mathrm{C}_{163} \mathrm{H}_{288} \mathrm{BO}_{11} \mathrm{~S}_{7} \mathrm{Si}_{3}$: 2737.9188; found: 2737.9226 .

Tetrakis-TBS-protected alternating hexakis-(3,4-didodecylthiophene)-pentakis-(hydroxy-methyl-substituted-3,4-dioxythiophene) undecamer (1 \mathbf{c}_{2})

1c $\mathbf{c}_{2} \quad \mathrm{X}=\mathrm{OSi}\left({ }^{t} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$
In a manner similar to that described for the synthesis of $\mathbf{1 9}$, a mixture of $\mathbf{1 8}^{\mathrm{S} 2}(53 \mathrm{mg}$, $0.15 \mathrm{mmol}), \mathbf{2 3}(900 \mathrm{mg}, 0.45 \mathrm{mmol})$, aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 0.6 \mathrm{~mL})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{mg}, 0.01 \mathrm{mmol}$) was transformed into $\mathbf{1} \mathbf{c}_{2}$ as a red solid ($363 \mathrm{mg}, 62 \%$): $\mathrm{mp} 65-66$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.10(\mathrm{~s}, 12 \mathrm{H}), 0.11(\mathrm{~s}, 12 \mathrm{H}), 0.86-0.96(\mathrm{~m}, 72 \mathrm{H})$, $0.98-1.07(\mathrm{~ms}, 15 \mathrm{H}), 1.21-1.50(\mathrm{~m}, 216 \mathrm{H}), 1.50-1.75(\mathrm{~m}, 25 \mathrm{H}), 2.51-2.60(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 4 \mathrm{H}$), 2.65-2.85 (m, 20 H), 3.67-3.78 (m, 8 H), 3.80-3.94 (m, 12 H), 4.07-4.18 (m, $8 \mathrm{H}), 4.24(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.56$, $-5.53,14.1,16.9,17.1,18.3,22.7,25.9,28.0,28.4,29.2,29.3,29.39,29.46,29.50$, 29.56, 29.64, 29.67, 29.71, 29.76, 30.0, 30.1, 30.3, 30.6, 31.9, 44.2, 65.9, 76.6, 114.3, 114.37, 114.41, 114.6, 114.79, 114.83, 120.18, 120.19, 127.7, 127.8, 139.93, 139.96, 140.4, 140.6, 142.66, 145.7, 145.8, 145.87, 145.95; IR (KBr) v 3428, 2957, 2919, $2849,1492,1469,1421,1392,1374,1256,1068,837,815,774,720 \mathrm{~cm}^{-1}$; HRMS (MALDI) $(\mathrm{M}+\mathrm{H})$ calcd for $\mathrm{C}_{237} \mathrm{H}_{409} \mathrm{O}_{15} \mathrm{~S}_{11} \mathrm{Si}_{4}: 3959.7246$; found: 3959.7152 ; GPC (THF): $M_{n}=5231, \mathrm{PDI}=1.01$

TBS-protected $\mathbf{1 b}_{4}\left(1 a_{4}\right)$

$\mathbf{1 a}_{4} \quad \mathrm{X}=\mathrm{OSi}\left({ }^{\left({ }^{(} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}, ~}\right.$

In a manner similar to that described for the synthesis of $\mathbf{1} \mathbf{a}_{0}$, a mixture of $\mathbf{1} \mathbf{c}_{\mathbf{2}}(250$ $\mathrm{mg}, 0.06 \mathrm{mmol}$), imidazole ($13 \mathrm{mg}, 0.19 \mathrm{mmol}$), and tert-butyldimethylsilyl chloride
($14 \mathrm{mg}, 0.09 \mathrm{mmol}$) was transformed into $\mathbf{1 a}_{4}$ as a red solid ($244 \mathrm{mg}, 95 \%$): $\mathrm{mp} 59-60$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03-0.12(\mathrm{~ms}, 30 \mathrm{H}), 0.84-0.97(\mathrm{~m}, 81 \mathrm{H})$, $0.97-1.06$ (ms, 15 H), $1.17-1.48(\mathrm{~m}, 216 \mathrm{H}), 1.48-1.63(\mathrm{~m}, 20 \mathrm{H}), 1.67$ (quint, $J=7.5$ Hz, 4 H), 2.54 (t, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}$), 2.60-2.84 (m, 20 H), 3.64-3.75 (m, 10 H), 3.77-3.92 (m, 10 H), 4.03-4.18 (m, 10 H), $6.94(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.54,-5.51,14.1,17.1,18.3,22.7,25.9,27.2,28.0,28.4,29.2,29.4,29.47,29.51$, 29.57, 29.65, 29.67, 29.78, 30.1, 30.3, 30.7, 32.0, 44.2, 65.9, 76.6, 114.3, 114.5, 114.8, 120.2, 127.7, 127.9, 140.4, 142.6, 145.9; IR (KBr) v 2954, 2920, 2851, 1492, 1468, 1422, 1391, 1374, 1258, 1102, 1067, 838, 775, $720 \mathrm{~cm}^{-1}$; HRMS (MALDI) ($\mathrm{M}+\mathrm{H}$) calcd for $\mathrm{C}_{243} \mathrm{H}_{423} \mathrm{O}_{15} \mathrm{~S}_{11} \mathrm{Si}_{5}: 4073.8111$; found: 4073.8056; GPC (THF): $M_{n}=5460$, $\mathrm{PDI}=1.01$.

Alternating hexakis-(3,4-didodecylthiophene)-pentakis- (hydroxymethyl-substi-tuted-3,4-dioxythiophene) undecamer ($\mathbf{1 b}_{4}$)

In a manner similar to that described for the synthesis of $\mathbf{1 b}_{\mathbf{2}}$, a mixture of $\mathbf{1 a}_{\mathbf{4}}(240$ $\mathrm{mg}, 0.06 \mathrm{mmol}$), and tetra-n-butylammonium fluoride (1 M in THF, $0.59 \mathrm{~mL}, 0.59$ mmol) was transformed into $\mathbf{1 b}_{\mathbf{4}}$ as a red solid ($152 \mathrm{mg}, 73 \%$): mp $147-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 0.81-0.93 (m, 36 H), 0.95-1.04 (ms, 15 H), 1.17-1.47 (m, $216 \mathrm{H}), 1.48-1.61(\mathrm{~m}, 20 \mathrm{H}), 1.66$ (quint, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.76-1.95(\mathrm{~ms}, 5 \mathrm{H}), 2.53(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.58-2.82(\mathrm{~m}, 20 \mathrm{H}), 3.75-3.90(\mathrm{~m}, 20 \mathrm{H}), 4.13-4.27(\mathrm{~m}, 10 \mathrm{H}), 6.95$ (s, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,16.9,22.7,28.0,28.4,29.2,29.38$, $29.45,29.49,29.55,29.69,29.75,30.0,30.1,30.4,30.7,31.9,43.9,65.7,76.5,114.5$, 114.7, 115.2, 120.3, 127.3, 127.7, 140.1, 140.6, 142.7, 145.7; IR (KBr) v 3421, 2955, 2920, 2850, 1494, 1468, 1420, 1364, 1263, 1049, 955, $720 \mathrm{~cm}^{-1} ;$ HRMS (MALDI) (M)
calcd for $\mathrm{C}_{213} \mathrm{H}_{352} \mathrm{O}_{15} \mathrm{~S}_{11}: 3502.3709$; found: 3502.3747 ; GPC (THF): $M_{n}=4931$, PDI $=1.01$.

Hexakis-TBS-protected alternating octakis-(3,4-didodecylthiophene)-heptakis-

 (hydroxy-methyl-substituted-3,4-dioxythiophene) pentadecamer (1c \mathbf{c}_{3})
$1 c_{3} \quad X=O S i\left({ }^{t} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$
In a manner similar to that described for the synthesis of $\mathbf{1 9}$, a mixture of $\mathbf{1 8}^{\mathrm{S} 2}$ (270 $\mathrm{mg}, 0.08 \mathrm{mmol}), 24(480 \mathrm{mg}, 0.18 \mathrm{mmol})$, aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 0.3 \mathrm{~mL})$, and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{mg}, 0.004 \mathrm{mmol})$ was transformed into $\mathbf{1} \mathbf{c}_{3}$ as a red solid ($246 \mathrm{mg}, 60 \%$): mp 71-72 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.08(\mathrm{~s}, 12 \mathrm{H}), 0.09(\mathrm{~s}, 12 \mathrm{H}), 0.10(\mathrm{~s}, 12$ H), $0.82-0.97(\mathrm{~m}, 102 \mathrm{H}), 0.98-1.07(\mathrm{~ms}, 21 \mathrm{H}), 1.19-1.49(\mathrm{~m}, 288 \mathrm{H}), 1.51-1.75(\mathrm{~m}$, $33 \mathrm{H}), 2.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.63-2.84(\mathrm{~m}, 28 \mathrm{H}), 3.67-3.77(\mathrm{~m}, 12 \mathrm{H}), 3.80-3.93$ $(\mathrm{m}, 16 \mathrm{H}), 4.06-4.17(\mathrm{~m}, 12 \mathrm{H}), 4.23(\mathrm{t}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.5,14.1,16.9,17.1,18.3,22.7,25.9,28.0,28.4,29.2,29.4$, 29.50, 29.56, 29.64, 29.71, 29.77, 30.0, 30.1, 30.3, 30.6, 32.0, 43.9, 44.2, 65.7, 65.9, $76.6,114.32,114.34,114.39,114.50,114.53,114.60,114.77,114.85,120.2,127.6$, 127.7, 127.8, 127.9, 128.0, 139.9,140.5, 140.61, 140.64, 142.6, 145.7, 145.90, 145.96; IR (KBr) v 3445, 2955, 2920, 2850, 1467, 1255, 1068, 837, 775, $720 \mathrm{~cm}^{-1}$; HRMS (MALDI) (M) calcd for $\mathrm{C}_{323} \mathrm{H}_{556} \mathrm{O}_{21} \mathrm{~S}_{15} \mathrm{Si}_{6}$: 5419.6865 ; found: 5419.7009; GPC (THF): $M_{n}=6840, \mathrm{PDI}=1.01$.

TBS-protected $\mathbf{1 b}_{\mathbf{6}}\left(\mathbf{1 a}_{6}\right)$

In a manner similar to that described for the synthesis of $\mathbf{1} \mathbf{a}_{0}$, a mixture of $\mathbf{1} \mathbf{c}_{\mathbf{3}}$ (246 $\mathrm{mg}, 0.05 \mathrm{mmol}$), imidazole ($12 \mathrm{mg}, 0.18 \mathrm{mmol}$), and tert-butyldimethylsilyl chloride ($13 \mathrm{mg}, 0.09 \mathrm{mmol}$) was transformed into $\mathbf{1 a}_{6}$ as a red solid (224 mg, 89%): mp 78-80 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.02-0.18(\mathrm{~ms}, 42 \mathrm{H}), 0.82-1.00(\mathrm{~m}, 111 \mathrm{H})$, $0.99-1.09(\mathrm{~ms}, 21 \mathrm{H}), 1.20-1.50(\mathrm{~m}, 288 \mathrm{H}), 1.50-1.65(\mathrm{~m}, 28 \mathrm{H}), 1.68$ (quint, $J=7.5$ $\mathrm{Hz}, 4 \mathrm{H}), 2.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.63-2.95(\mathrm{~m}, 28 \mathrm{H}), 3.65-3.79(\mathrm{~m}, 14 \mathrm{H})$, 3.80-3.96 (m, 14 H$), 4.05-4.24(\mathrm{~m}, 14 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.5,14.1,17.0,18.1,18.3,25.6,26.7,25.9,28.0,28.4,29.2,29.4,29.5,29.6,29.67$, $29.71,29.8,30.0,30.1,30.4,30.6,32.0,44.2,65.9,76.6,114.3,114.5,114.8,120.2$, 127.7, 127.9, 139.9, 140.0, 142.6, 145.9; IR (KBr) v 2957, 2920, 2851, 1467, 1340, 1378, 1257, 1197, 1183, 1047, 957, 850, $721 \mathrm{~cm}^{-1}$; HRMS (MALDI) (M) calcd for $\mathrm{C}_{329} \mathrm{H}_{570} \mathrm{O}_{21} \mathrm{~S}_{15} \mathrm{Si}_{7}: 5533.7730$; found: 5533.7913; GPC (THF): $M_{n}=6635, \mathrm{PDI}=$ 1.01 .

Alternating octakis-(3,4-didodecylthiophene)-heptakis- (hydroxymethyl-substi-tuted-3,4-dioxythiophene) pentadecamer ($\mathbf{1 b}_{6}$)

In a manner similar to that described for the synthesis of $\mathbf{1 b}_{\mathbf{2}}$, a mixture of $\mathbf{1 a}_{\mathbf{6}}$ (224 $\mathrm{mg}, 0.04 \mathrm{mmol}$), and tetra-n-butylammonium fluoride (1 M in THF, $0.56 \mathrm{~mL}, 0.56$
mmol) was transformed into $\mathbf{1} \mathbf{b}_{6}$ as a red solid ($170 \mathrm{mg}, 89 \%$): mp $158-159{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.82-0.93(\mathrm{~m}, 48 \mathrm{H}), 0.89-0.95(\mathrm{~ms}, 21 \mathrm{H}), 1.17-1.46(\mathrm{~m}$, $288 \mathrm{H}), 1.48-17.5(\mathrm{~m}, 39 \mathrm{H}), 2.45(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.59-2.80(\mathrm{~m}, 28 \mathrm{H}), 3.74-3.91$ (m, 28 H), 4.14-4.29 (m, 14 H$), 6.94(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1$, 17.0, 22.7, 28.0, 28.4, 29.2, 29.4, 29.49, 29.55, 29.69, 29.75, 30.0, 30.1, 30.4, 30.7, $31.9,43.9,65.7,76.5,114.5,114.8,115.2,120.3,127.3,127.7,140.2,140.6,140.7$, 142.7, 145.67, 145.75; IR (KBr) v 3424, 2955, 2920, 2849, 1493, 1468, 1421, 1378, 1364, 1261, 1157, 1047, 954, 926, 876, $720 \mathrm{~cm}^{-1}$; HRMS (MALDI) (M + H) calcd for $\mathrm{C}_{287} \mathrm{H}_{473} \mathrm{O}_{21} \mathrm{~S}_{15}$: 4736.1755; found: 4736.1749; GPC (THF): $M_{n}=6356, \mathrm{PDI}=1.01$.

References

S1. Ko, S.; Verploegen, E.; Hong, S.; Mondal, R.; Hoke, E. T.; Toney, M. F.; McGehee, M. D.; Bao, Z. J. Am. Chem. Soc. 2011, 133, 16722-16725.

S2. Nantalaksakul, A.; Krishnamoorthy, K.; Thayumanavan, S. Macromolecules 2010, 43, 37-43.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all new compounds

1a $\mathbf{a}_{\mathbf{0}} \quad \mathrm{X}=\mathrm{OSi}\left({ }^{t} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

$22 \mathrm{X}=\mathrm{OSi}\left({ }^{t} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

$\mathbf{1 a}_{\mathbf{1}} \quad \mathrm{X}=\mathrm{OSi}\left({ }^{t} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

$23 X=\mathrm{OSi}\left({ }^{t} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

$\mathbf{1 a}_{2} \quad \mathrm{X}=\mathrm{OSi}\left({ }^{(t} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

 r._
$24 \mathrm{X}=\mathrm{OSi}\left({ }^{t} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

$1 \mathbf{a}_{6} \quad \mathrm{X}=\mathrm{OSi}\left({ }^{t} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

$\mathbf{1 c}_{3} \quad \mathrm{X}=\mathrm{OSi}\left({ }^{(} \mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{C}_{12} \mathrm{H}_{25}$

GPC profiles for $\mathbf{1 a}, \mathbf{1 b}$, and $\mathbf{1 c}$.
Auto-Scaled Chromatogram

GPC Results

	Dist Name	Mn	Mv	MP	Mz	Mz+1	Mv	Polydispersity	MW Marker 1	MW Marker 2
1		1816	1838	1796	1863	1888		1.012570		

Auto-Scaled Chromatogram

GPC Results

	Dist Name	Mn	Mw	MP	Mz	Mz+1	Mv	Polydispersity	MW Marker 1	MW Marker 2
1		1733	1756	1716	1779	1804		1.012802		

Auto-Scaled Chromatogram

	Dist Name	Mn	Mv	MP	Mz	Mz+1	Mv	Polydispersity	MW Marker 1	MW Marker 2
1		2755	2778	2717	2802	2827		1.008368		

Auto-Scaled Chromatogram

GPC Results

	Dist Name	Mn	Mv	MP	Mz	Mz +1	Mv	Polydispersity	MW Marker 1	MW Marker 2
1		2668	2688	2629	2731	2768		1.011284		

Auto-Scaled Chromatogram

GPC Results

	Dist Name	Mn	Mv	MP	Mz	Mz +	Mv	Polydispersity	MW Marker 1	MW Marker 2
1		3589	3621	3587	3654	3687		1.008947		

Auto-Scaled Chromatogram

GPC Results

	Dist Name	Mn	Mv	MP	Mz	Mz+1	Mv	Polydispersity	MW Marker 1	MW Marker 2
1		3710	3743	3671	3778	3815		1.009086		

Auto-Scaled Chromatogram

Auto-Scaled Chromatogram

Auto-Scaled Chromatogram

Auto-Scaled Chromatogram

Plots of M_{n}, and M_{c} against M_{r} values for 1-15.

Figure S1. M_{r} vs M_{n} and M_{r} vs M_{c} for $\mathbf{1 b}_{\mathbf{n}}\left(\operatorname{SLOPE}\left(M_{n}\right)=1.39, \mathrm{R}^{2}=0.99\right.$; SLOPE $\left.\left(M_{c}\right)=1.00, \mathrm{R}^{2}=0.99\right)$.

Figure S2. M_{r} vs M_{n} and M_{r} vs M_{c} for $\mathbf{2}_{\mathbf{n}}\left(\operatorname{SLOPE}\left(M_{n}\right)=1.98, \mathrm{R}^{2}=0.94 ; \operatorname{SLOPE}\left(M_{c}\right)\right.$ $\left.=1.00, \mathrm{R}^{2}=0.94\right)$.

Figure S3. M_{r} vs M_{n} and M_{r} vs M_{c} for $\mathbf{3}_{\mathbf{n}}\left(\operatorname{SLOPE}\left(M_{n}\right)=1.87, \mathrm{R}^{2}=0.96 ; \operatorname{SLOPE}\left(M_{c}\right)\right.$ $=1.00, \mathrm{R}^{2}=0.96$).

Figure S4. M_{r} vs M_{n} and M_{r} vs M_{c} for $\mathbf{4}_{\mathbf{n}}\left(\operatorname{SLOPE}\left(M_{n}\right)=2.47, \mathrm{R}^{2}=0.98 ; \operatorname{SLOPE}\left(M_{c}\right)\right.$ $\left.=1.00, R^{2}=0.98\right)$.

Figure S5. M_{r} vs M_{n} and M_{r} vs M_{c} for $\mathbf{5}_{\mathbf{n}}\left(\operatorname{SLOPE}\left(M_{n}\right)=1.77, \mathrm{R}^{2}=1.00 ; \operatorname{SLOPE}\left(M_{c}\right)\right.$ $=1.00, \mathrm{R}^{2}=1.00$).

Figure S6a. M_{r} vs M_{n} and M_{r} vs M_{c} for $\mathbf{6}_{4}$ to $\mathbf{6}_{36}$ (SLOPE $\left(M_{n}\right)=1.27, \mathrm{R}^{2}=0.99$; $\left.\operatorname{SLOPE}\left(M_{c}\right)=1.00, \mathrm{R}^{2}=0.99\right)$.

Figure S6b. M_{r} vs M_{n} and M_{r} vs M_{c} for $\mathbf{6}_{48}$ to $\mathbf{6}_{96}\left(\operatorname{SLOPE}\left(M_{n}\right)=1.56, \mathrm{R}^{2}=0.95\right.$; $\left.\operatorname{SLOPE}\left(M_{c}\right)=1.00, \mathrm{R}^{2}=0.95\right)$.

Figure S7. M_{r} vs M_{n} and M_{r} vs M_{c} for $\mathbf{7}_{5}$ and $\mathbf{8}_{\mathbf{6}}\left(\operatorname{SLOPE}\left(M_{n}\right)=1.65, \mathrm{R}^{2}=0.99\right.$; $\left.\operatorname{SLOPE}\left(M_{c}\right)=1.00, \mathrm{R}^{2}=0.99\right)$.

Figure S8. M_{r} vs M_{n} and M_{r} vs M_{c} for $\mathbf{9}_{\mathbf{n}}\left(\operatorname{SLOPE}\left(M_{n}\right)=2.28, \mathrm{R}^{2}=0.83 ; \operatorname{SLOPE}\left(M_{c}\right)\right.$ $=1.00, \mathrm{R}^{2}=0.83$).

Figure S9. M_{r} vs M_{n} and M_{r} vs M_{c} for $\mathbf{1 1}_{\mathbf{n}}\left(\operatorname{SLOPE}\left(M_{n}\right)=1.72, \mathrm{R}^{2}=0.99 ; \operatorname{SLOPE}\right.$ $\left.\left(M_{c}\right)=1.00, \mathrm{R}^{2}=0.99\right)$.

Figure S10. M_{r} vs M_{n} and M_{r} vs M_{c} for $\mathbf{1 3}_{\mathbf{n}}\left(\operatorname{SLOPE}\left(M_{n}\right)=1.68, \mathrm{R}^{2}=0.95\right.$; SLOPE $\left.\left(M_{c}\right)=1.00, \mathrm{R}^{2}=0.95\right)$.

Figure S11. M_{r} vs M_{n} and M_{r} vs M_{c} for $\mathbf{1 4}_{\mathbf{n}}\left(\operatorname{SLOPE}\left(M_{n}\right)=1.59, \mathrm{R}^{2}=0.97\right.$; SLOPE $\left.\left(M_{c}\right)=1.00, \mathrm{R}^{2}=0.97\right)$.

Figure S12. M_{r} vs M_{n} and M_{r} vs M_{c} for $\mathbf{1 5}_{\mathbf{n}}\left(\operatorname{SLOPE}\left(M_{n}\right)=3.51, \mathrm{R}^{2}=0.87\right.$; SLOPE $\left(M_{c}\right)=1.01, \mathrm{R}^{2}=0.87$).

