Design of Cellulosic Ethanol Supply Chains with Regional Depots

Rex T. L. Ng^{1,2}, Christos T. Maravelias^{*,1,2}

¹Department of Chemical and Biological Engineering and ²DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA

SUPPORTING INFORMATION

Big-M reformulation in Section 4. Remarks.

We first calculate lower and upper bounds, x^L/y^L and x^U/y^U , based on maximum and minimum values of the Cartesian coordinates of farms and biorefineries. The Cartesian coordinates of depots are then bounded as follows:

$$x^{\mathrm{L}} \le x_k^* \le x^{\mathrm{U}} \tag{S1}$$

$$y^{\mathrm{L}} \le y_k^* \le y^{\mathrm{U}} \tag{S2}$$

Equations (55) – (57) can be replaced by the following equations:

$$\Delta x_{j,k} \le (\Delta x_{j,l} + \epsilon) Z_{j,k} , \quad j,k,l$$
(S3)

$$\Delta y_{j,k} \le (\Delta y_{j,l} + \epsilon) Z_{j,k}, \quad j,k,l \tag{S4}$$

$$D_{j,k} \le \tau_{j,l} Z_{j,k} , \quad j,k,l \tag{S5}$$

where $\epsilon = 5$ km. Note that the minimum value of $\Delta x_{j,l}$ will be essentially used as a big-M value when more than one biorefineries are considered.

The distance between the depot and the biorefinery must be less than the distance between the farthest farm and the biorefinery, which are given:

$$\Delta x_{k,l} \le \max\{|x^{U} - x_{l}|, |x_{l} - x^{L}|\}Z_{k,l}, \quad k,l$$
(S6)

$$\Delta y_{k,l} \le \max\{|y^{U} - y_{l}|, |y_{l} - y^{L}|\}Z_{k,l}, \quad k,l$$
(S7)

$$D_{k,l} \le \left(\max\{ |x^{U} - x_{l}|, |x_{l} - x^{L}|\} + \max\{ |y^{U} - y_{l}|, |y_{l} - y^{L}|\} \right) Z_{k,l}, \quad k,l$$
(S8)

Data for case study in Section 5. Application.

Table S1 gives the coordinates of farms and biorefineries, as extracted from Google Maps¹. Biomass availability²⁻⁴ for each time period is tabulated in **Table S2**. The biomass acquisition cost and CO₂ emissions during biomass collection are summarized in **Table S3**. Note that the biomass acquisition cost includes labor, fuel use, equipment, nutrient replacement and handling costs at farms^{5,6}. CO₂ emissions during biomass collection includes shredding, baling and stacking^{7,8}. **Table S4** summarizes the conversion rates of all technologies which are obtained from previous works⁹⁻¹². The production cost, capital cost and CO₂ emissions for each technology are given in **Table S5**⁹⁻¹⁴. Production cost is directly proportional to the consumption level of input materials. Capital cost of each technology is calculated based on n-th plant cost analysis and linearized it with the piecewise linearization approximation presented in Appendix A. Finally, the traveling cost and CO₂ emissions due to transportation are given in **Table S6**¹⁵. Note that all costs are indexed to 2014 dollars and calculated based on dry mass basis.

Node	County	Latitude	Longitude
0	Origin Point	42.505721	-89.837117
Farm			
F1	Dane	43.182533	-89.219957
F2	Dane	43.182533	-89.632322
F3	Dane	42.960038	-89.219957
F4	Dane	42.960038	-89.632322
F5	Dodge	43.523213	-88.552815
F6	Dodge	43.523213	-88.856985
F7	Dodge	43.306746	-88.552815
F8	Dodge	43.306746	-88.856985
F9	Rock	42.580298	-88.925036
F10	Rock	42.580298	-89.221768
F11	Rock	42.756749	-88.925036
F12	Rock	42.756749	-89.221768
F13	Columbia	43.553870	-89.188120
F14	Columbia	43.553870	-89.543115
F15	Columbia	43.374457	-89.188120
F16	Columbia	43.374457	-89.543115
F17	Green	42.769265	-89.486714
F18	Green	42.769265	-89.720316
F19	Green	42.593569	-89.486714
F20	Green	42.593569	-89.720316
F21	Jefferson	43.109021	-88.659310
F22	Jefferson	43.109021	-88.892769
F23	Jefferson	42.932062	-88.659310
F24	Jefferson	42.932062	-88.892769
Biorefinery			
BA	Dane	42.902712	-89.434257
BB	Columbia	43.319661	-89.042714

Table S1: Latitude and longitude of farms and biorefineries¹

(a) Corn stover			(b) Switchgrass						
Period			Nada	Period					
Node	Spring	Summer	Fall	Winter	Noue	Spring	Summer	Fall	Winter
F1	0	24,220	10,380	0	F1	0	7,712	3,305	0
F2	0	24,220	10,380	0	F2	0	7,712	3,305	0
F3	0	24,220	10,380	0	F3	0	7,712	3,305	0
F4	0	24,220	10,380	0	F4	0	7,712	3,305	0
F5	0	23,468	10,058	0	F5	0	2,927	1,254	0
F6	0	23,468	10,058	0	F6	0	2,927	1,254	0
F7	0	23,468	10,058	0	F7	0	2,927	1,254	0
F8	0	23,468	10,058	0	F8	0	2,927	1,254	0
F9	0	20,808	8,918	0	F9	0	5,142	2,204	0
F10	0	20,808	8,918	0	F10	0	5,142	2,204	0
F11	0	20,808	8,918	0	F11	0	5,142	2,204	0
F12	0	20,808	8,918	0	F12	0	5,142	2,204	0
F13	0	19,513	8,363	0	F13	0	2,527	1,083	0
F14	0	19,513	8,363	0	F14	0	2,527	1,083	0
F15	0	19,513	8,363	0	F15	0	2,527	1,083	0
F16	0	19,513	8,363	0	F16	0	2,527	1,083	0
F17	0	8,416	3,607	0	F17	0	5,020	2,151	0
F18	0	8,416	3,607	0	F18	0	5,020	2,151	0
F19	0	8,416	3,607	0	F19	0	5,020	2,151	0
F20	0	8,416	3,607	0	F20	0	5,020	2,151	0
F21	0	10,974	4,703	0	F21	0	1,595	683	0
F22	0	10,974	4,703	0	F22	0	1,595	683	0
F23	0	10,974	4,703	0	F23	0	1,595	683	0
F24	0	10,974	4,703	0	F24	0	1,595	683	0

Table S2: Biomass availability for each time period²⁻⁴

Table S3: Cost and CO₂ emissions during biomass collection at farms⁵⁻⁸

	Total Cost	CO ₂ Emission
Compound	(\$/dry t)	(kg CO ₂ eq/dry t)
CS	33.9	27.0
SG	55.4	16.0

Compound	1		Conversion		
Input	Output	Technology	(t output/t input or L output/t input*)		
CS	CS-AP	AFEX-DD	0.99		
SG	SG-AP	AFEX-DD	0.99		
CS	CS-P	AFEX	0.99		
SG	SG-P	AFEX	0.99		
CS	CS-A	AFEX	0.99		
SG	SG-A	AFEX	0.99		
CS-AP/CS-P/CS-A	Ethanol	SSCF	280/280/278*		
SG-AP/SG-P/SG-A	Ethanol	SSCF	283/283/281*		
CS-AP/CS-P/CS-A	Ethanol	SHCF	280/280/278*		
SG-AP/SG-P/SG-A	Ethanol	SHCF	283/283/281*		
Table S5: Production cost, capacity cost and CO ₂ emission for each technolog					
	Unit	Canital	Canital Cost		

Table S4: Conversion for each technology⁹⁻¹²

V⁹⁻¹⁴

	Unit	Capitai	Capital Cost	
Technology	Production	Cost	Reference	CO ₂ Emission
	Cost	Reference	Capacity	
	(\$/dry t)	(106 \$)	(dry t/d)	(kg CO ₂ eq/dry t)
AFEX-DD	30.8	8.1	200	0.1
DD	15.2	3.0	200	0
AFEX	12.2	34.0	2,000	0.1
SSCF	67.7	381.3	2,000	288
SHCF	67.7	378.0	2,000	288

Table S6: Cost and CO₂ emission due to transportation¹⁵

		Cost		CO ₂ Emission		
Arc	Compound	Constant	Variable	Constant	Variable	
		(\$/dry t)	(\$/dry t-km)	(kg CO ₂ eq/dry t)	(kg CO ₂ eq/dry t-km)	
$j \rightarrow k/j \rightarrow l$	CS/SG	10.7	0.19	115.9	1.2	
$k \rightarrow l$	CS-P/SG-P	4.5	0.06	62.7	0.7	
	CS-AP/SG-AP	3.6	0.06	28.2	0.7	

References

- (1) Google Inc. Google Maps https://www.google.com/maps (accessed Aug 31, 2015).
- (2) USDA Census Of Agriculture. 2012 Census Publications http://www.agcensus.usda.gov/Publications/2012/ (accessed Nov 12, 2015).
- (3) Energy Biosciences Institute. Biofuel Ecophysiological Traits and Yields Database https://www.betydb.org/ (accessed Nov 12, 2015).
- (4) Laboratory National Renewable Energy. BioFuels Atlas https://maps.nrel.gov/biofuels-atlas (accessed Jul 31, 2015).
- (5) Brechbill, S.; Tyner, W. E. The Economics of Renewable Energy: Corn Stover and Switchgrass https://www.extension.purdue.edu/extmedia/EC/RE-3-W.pdf (accessed Jul 6, 2015).
- (6) Sokhansanj, S.; Mani, S.; Turhollow, A.; Kumar, A.; Bransby, D.; Lynd, L.; Laser, M. Large-Scale Production, Harvest and Logistics of Switchgrass (Panicum Virgatum L.) – Current Technology and Envisioning a Mature Technology. *Biofuels, Bioprod. Biorefining* **2009**, *3* (2), 124.
- (7) Sokhansanj, S.; Kumar, A.; Turhollow, A. Development and Implementation of Integrated Biomass Supply Analysis and Logistics Model (IBSAL). *Biomass and Bioenergy* 2006, *30* (10), 838.
- Kumar, A.; Sokhansanj, S. Switchgrass (Panicum Vigratum, L.) Delivery to a Biorefinery Using Integrated Biomass Supply Analysis and Logistics (IBSAL) Model. *Bioresour. Technol.* 2007, 98 (5), 1033.
- (9) Kim, S.; Dale, B. E. Comparing Alternative Cellulosic Biomass Biorefining Systems: Centralized versus Distributed Processing Systems. *Biomass and Bioenergy* **2015**, *74*, 135.
- (10) Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover; National Renewable Energy Laboratory (NREL), Golden, CO, 2011.
- (11) Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, B.; Montague, L.; Slayton, A.; Lukas, J. *Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover*; National Renewable Energy Laboratory (NREL), Golden, CO, 2002.
- (12) Bals, B.; Wedding, C.; Balan, V.; Sendich, E.; Dale, B. Evaluating the Impact of Ammonia Fiber Expansion (AFEX) Pretreatment Conditions on the Cost of Ethanol Production. *Bioresour. Technol.* **2011**, *102* (2), 1277.
- (13) Lamers, P.; Roni, M. S.; Tumuluru, J. S.; Jacobson, J. J.; Cafferty, K.; Hansen, J. K.; Kenney, K.; Teymouri, F.; Bals, B. Techno-Economic Analysis of Decentralized Biomass Processing Depots. *Bioresour. Technol.* **2015**, *194*, 205.
- (14) Eranki, P. L.; Dale, B. E. Comparative Life Cycle Assessment of Centralized and Distributed Biomass Processing Systems Combined with Mixed Feedstock Landscapes. *GCB Bioenergy* **2011**, *3* (6), 427.
- (15) Ileleji, K. E.; Sokhansanj, S.; Cundiff, J. S. Farm-Gate to Plant-Gate Delivery of Lignocellulosic Feedstocks from Plant Biomass for Biofuel Production. In *Biofuels from Agricultural Wastes and Byproducts*; Wiley-Blackwell, 2010; pp 117–159.