Supporting Information: ## γ-PARCEL: Control of Molecular Release Using γ-Rays. Shuhei Murayama,^a Jun-ichiro Jo, ^a Kazutaka Arai,^a Fumihiko Nishikido,^a Rumiana Bakalova,^a Taiga Yamaya,^a Tsuneo Saga,^a Masaru Kato,^b and Ichio Aoki,^{a*} ^a Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan ^b Graduate School of Pharmaceutical Sciences and GPLLI Program The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ## Figure S1 ¹H-NMR spectrum, integrated value of the nanoparticles The γ -ray-responsive nanoparticles by combining 16 mM PEG-SS-Ac (50 μ L), PEG-Ac (150 μ L), water (50 μ L), 0.1 M APS (50 μ L), and 0.1 M TEMED (50 μ L) in that order at room temperature and subsequently vortexing the mixture for 20 min to obtain a dispersion of nanoparticles. The 1 H NMR spectrum of the nanoparticle to calculate binding rate. Figure S2 Attenuation rate of γ-ray muscle tissue from swine γ -Ray attenuation rate was measured 3 minutes, to get average dose, Blue: background, Red: without tissue, Yellow: with tissue. Figure. S3 Calibration curve of the absorbance of Nile blue Nile blue (concentration 0.1, 0.05, 0.01, 0.005, 0 mg/mL) was poured into a 96-well plate. Then, the absorbance signal (638 nm) was measured with a multiplate reader.