Pd@Pt Core-shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability

Xue Wang, ${ }^{\dagger, \#}$ Madeline Vara, ${ }^{\ddagger}$ Ming Luo, ${ }^{\dagger}$ Hongwen Huang, ${ }^{\dagger}$ Aleksey Ruditskiy, ${ }^{\ddagger}$ Jinho Park, ${ }^{\ddagger}$ Shixiong Bao, ${ }^{\dagger, \#}$ Jingyue Liu, ${ }^{\S}$ Jane Howe, ${ }^{\|}$Miaofang Chi, ${ }^{\perp}$ Zhaoxiong Xie, ${ }^{\#}$ and Younan Xia*, \dagger, \hbar
${ }^{\dagger}$ The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
\#State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, P. R. China
${ }^{\dagger}$ School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
${ }^{\S}$ Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
${ }^{\|}$Hitachi High-Technologies Canada, Toronto, Ontario M9W6A4, Canada
${ }^{\perp}$ Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
*Correspondence to: younan.xia@bme.gatech.edu

Figure S1. (a) TEM image and (b) size distribution of the Pd decahedral seeds. The size of a decahedron is defined in the inset of (b). (c, d) TEM images of the Pd@Pt concave decahedra with (c) $29.6 \mathrm{wt} \% \mathrm{Pt}$ and (d) $47.5 \mathrm{wt} \% \mathrm{Pt}$, respectively.

Figure S2. SEM images of the $\mathrm{Pd} @ \mathrm{Pt}$ concave decahedra with (a) $29.6 \mathrm{wt} \% \mathrm{Pt}$ and (b) 47.5 $\mathrm{wt} \% \mathrm{Pt}$, respectively. The higher-magnification SEM images in the insets highlight a concave structure on the surface of a particle from each sample.

Figure S3. (a) Atomic-resolution HAADF-STEM image of a Pd@Pt core-shell concave decahedron with $29.6 \mathrm{wt} \% \mathrm{Pt}$ viewed along its 5 -fold axis (the same particle as imaged in Figure 1b). (b) Atomic-resolution HAADF-STEM image at a higher magnification, which was taken from the left side of the decahedron as marked by a box in (a). The angles between the facets on the edge and the $\{100\}$ facet are 8° and 5°, which could be further used to identify the high-index facets on the edge, as summarized in Table S1. However, it is very difficult (or impossible) to identify the high-index facets on the faces as the geometry of the decahedron interferes with our ability to obtain a vertical projection of the high-index facet.

Figure S4. HAADF-STEM images of the Pd@Pt concave decahedra with $47.5 \mathrm{wt} \% \mathrm{Pt}$ taken at different tilting angles: (a) 60 , (b) 35 , (c) 15 , (d) 0 , (e) -15 , (f) -25 , (g) -40 , and (h) -55 degrees.

- 20 nm

Figure S5. (a) TEM image of nanocrystals synthesized using the standard procedure for the concave decahedra with $47.5 \mathrm{wt} \% \mathrm{Pt}$, except for the use of a faster injection rate ($4 \mathrm{~mL} / \mathrm{h} v s$. $1.5 \mathrm{~mL} / \mathrm{h}$) for the Pt precursor solution. The product contained both concave decahedra and multipods. (b) TEM image of the $\mathrm{Pd} @ \mathrm{Pt}$ concave decahedra with $47.5 \mathrm{wt} \% \mathrm{Pt}$, which was prepared using the standard protocol. (c, d) TEM images of nanocrystals prepared using the standard protocol for the concave decahedra with $47.5 \mathrm{wt} \% \mathrm{Pt}$, except that the reaction temperature was decreased from $200^{\circ} \mathrm{C}$ to (c) $140^{\circ} \mathrm{C}$ and (d) $110^{\circ} \mathrm{C}$, respectively. The scale bars in the insets are 10 nm .

Figure S6. (a) Mass and (b) specific activities of the catalysts presented as the kinetic current density $\left(j_{\mathrm{k}}\right)$ normalized to the corresponding mass of Pt and ECSA, respectively.

Figure S7. TEM images of the carbon-supported Pd@Pt concave decahedra with $29.6 \mathrm{wt} \%$ Pt (a) before and (b) after 10,000 cycles of the accelerated durability test. The scale bar in the inset of (b) is 10 nm .

Table S1. Calculated angles between high-index $\{h k k\}$ facets and $\{100\}$ edge facets.

h	k	Angle with $\{100\}$
9	1	8.93°
10	1	8.05°
15	1	5.39°
16	1	5.05°
20	1	4.04°

Table S2. Specific ECSAs of the Pt/C catalyst from TKK and two other catalysts based on the $\mathrm{Pd} @ \mathrm{Pt}$ concave decahedra.

	TKK Pt/C	Pd@Pt with $29.6 \mathrm{wt} \% \mathrm{Pt}$	$\mathrm{Pd} @ \mathrm{Pt}$ with $47.5 \mathrm{wt} \% \mathrm{Pt}$
Specific ECSA $\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$	88.9	95.9	59.4

Supporting Movie Legend
Movie S1. Video of HAADF-STEM images taken at different tilt angles for the $\mathrm{Pd} @ \mathrm{Pt}$ concave decahedra with $47.5 \mathrm{wt} \% \mathrm{Pt}$.

