Supporting Information

Synthesis of Highly Substituted Racemic and
 Enantioenriched Allenylsilanes via Copper-Catalyzed Hydrosilylation of (Z)-2-Alken-4-ynoates with

 SilylboronateMin Wang, ${ }^{\text {ª }}$ Zheng-Li Liu, ${ }^{\dagger \text { a }}$ Xiang Zhang, ${ }^{\text {a }}$ Pan-Pan Tian, ${ }^{\text {a }}$Yun-He Xu ${ }^{\text {a }}$ and Teck-Peng Loh ${ }^{\text {a,b* }}$
${ }^{a}$ Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
${ }^{b}$ Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
General information S-2
Synthesis of the enynoates S-2
Synthesis of the enynoates S-6
Synthesis of racemic allenylsilanes. S-9
Synthesis of enantioenriched allenylsilanes. S-30
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HPLC spectra of the enynoates and products. S-48
Determination of the absolute configuration of compound $3 \mathrm{~s}^{*}$ S-96

General Information:

Experiments involving moisture and/or air sensitive components were performed in oven-dried glassware under a positive pressure of argon using dry solvents. $\mathrm{Et}_{3} \mathrm{~N}$ was fractionally distilled. Other reagents were commercially purchased and were used as received without further purification for the reactions
Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectroscopy were performed on a Bruker Advance 400 M NMR spectrometers. Chemical shifts ${ }^{1} \mathrm{H}$ NMR spectra are reported as in units of parts per million (ppm) downfield from SiMe_{4} (0.0) and relative to the signal of chloroform- d ($J=7.264$, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); dt (doublet of triplets); m (multiplets) and etc. The number of protons (n) for a given resonance is indicated by nH . Coupling constants are reported as a J value in Hz . Carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C} N \mathrm{NR}$) are reported as d in units of parts per million (ppm) downfield from SiMe_{4} (0.0) and relative to the signal of chloroform- d ($J=77.03$, triplet).
High resolution mass spectral analysis (HRMS) was performed on Water XEVO G2 Q-TOF (Waters Corporation).The enantiomeric excesses were determined by HPLC analysis on Chiral Daicel Chiralpak OD-H, IC, columns.

1. Experimental Procedure:

1.1 Procedures for synthesis of the enynoates.

All (Z)-2-alken-4-ynoates were prepared according to the reported literatures. ${ }^{1-3}$

$\mathbf{1 b}$ was synthesized according to the reported procedures: ${ }^{2}$ To a mixture of (Z)-ethyl 3-iodoacrylate $\mathbf{6 a}$ ($1.13 \mathrm{~g}, 5 \mathrm{mmol}, 1.0$ equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(35.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ mol\%), CuI ($4.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$) and TEA (20 mL) were added the corresponding alkyne $5 \mathbf{b}$ ($639 \mathrm{mg}, 5.5 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ until the starting material 6a was completely consumed (monitored by TLC). Then the mixture was cooled to room temperature and diluted with diethyl ether (15 mL). Then the solution was washed with saturated ammonium chloride twice (10 $\mathrm{mL} \times 2$). The aqueous layer was extracted with diethyl ether (10 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo, the residue was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=97: 3)$ to afford the product $\mathbf{1 b}(921 \mathrm{mg}, 86 \%)$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.27-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 164.87, 138.08, 132.58, 130.11, 129.16, 128.26, 128.03, 122.95, 122.44, 101.52, 86.04, 60.43, 21.17, 14.31 .

HRMS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 237.0891$, found: 237.0896 .

1e: To a mixture of (Z)-ethyl 3-iodoacrylate $\mathbf{6 a}(1.13 \mathrm{~g}, 5 \mathrm{mmol}, 1.0$ equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(35.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{~mol} \%), \mathrm{CuI}(4.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{~mol} \%)$ and TEA $(20 \mathrm{~mL})$ were added the corresponding alkyne $5 \mathbf{e}(871 \mathrm{mg}, 5.5 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ and dealt with according to the similar procedures as $\mathbf{1 b}$ to give the product $\mathbf{1 e}(1.06 \mathrm{~g}, 83 \%)$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.10(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.54$ (m, 2H), 1.39-1.30(m,5H), $0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $164.93,144.53,132.02,128.52,127.70,123.05,119.78,101.73,85.99,60.40,35.67$, 33.31, 22.30, 14.32 , 13.91.

HRMS (ESI): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 279.1361$, found: 279.1364.

$\mathbf{1 g}: T o$ a mixture of (Z)-ethyl 3-iodoacrylate $\mathbf{6 a}(1.13 \mathrm{~g}, 5 \mathrm{mmol}, 1.0$ equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(35.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{~mol} \%), \mathrm{CuI}(4.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{~mol} \%)$ and TEA (20 mL) were added the corresponding alkyne $5 \mathrm{~g}(810 \mathrm{mg}, 5.5 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ and dealt with according to the similar procedures as $\mathbf{1 b}$ to give the product $\mathbf{1 g}(932 \mathrm{mg}, 76 \%)$ as light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41-8.33(\mathrm{~m}, 1 \mathrm{H}), 8.21(\mathrm{ddd}, J=8.3,2.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-$ $7.82(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $164.47,148.11,137.59,130.03,129.45,126.62,124.46,123.68,121.78,97.67,88.24$, 60.66, 14.26.

HRMS (ESI): m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 286.0586$, found: 286.0582 .

11: To a mixture of (Z)-ethyl 3-iodoacrylate $\mathbf{6 a}(1.13 \mathrm{~g}, 5 \mathrm{mmol}, 1.0$ equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(35.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{~mol} \%)$, $\mathrm{CuI}(4.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{~mol} \%)$ and TEA (20 mL) were added the corresponding alkyne $5 \mathbf{5 l}(958 \mathrm{mg}, 5.5 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ and dealt with according to the similar procedures as $\mathbf{1 b}$ to give the product $\mathbf{1 l}(1.02 \mathrm{~g}, 75 \%)$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.07-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.53(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.19(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.91$, 164.64, 131.84, 130.62, 129.45, 129.25, 127.09, 122.28, 99.81, 88.63, 61.20, 60.56, 14.29, 14.27.

HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 295.0546$, found: 295.0954.

$\mathbf{1 p}$: To a mixture of (Z)-ethyl 3-iodoacrylate $\mathbf{6 a}(1.13 \mathrm{~g}, 5 \mathrm{mmol}, 1.0$ equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($35.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{~mol} \%$), $\mathrm{CuI}(4.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$) and TEA (20 mL) were added the corresponding alkyne $\mathbf{5 p}(550 \mathrm{mg}, 5.5 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ and dalt with according to the similar procedures as $\mathbf{1 b}$ to give the product $\mathbf{1 p}(865 \mathrm{mg}, 80 \%)$ as a brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.19-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=2.5,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86$ (ddd, $J=8.1,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.58($ broad, 1 H$), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 165.36,155.95,129.60,127.97,124.25,123.51,123.31$, 118.72, 117.02, 101.45, 85.99, 60.77, 14.25.

HRMS (ESI): m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 239.0684, found:239.0681.

$\mathbf{1 r}$: To a mixture of (Z)-ethyl 3-iodoacrylate 6a ($1.13 \mathrm{~g}, 5 \mathrm{mmol}, 1.0$ equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($35.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{~mol} \%$), $\mathrm{CuI}(4.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$) and TEA (20 mL) were added the corresponding alkyne $5 \mathbf{r}(980 \mathrm{mg}, 5.5 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ and dealt with according the similar procedures as $\mathbf{1 b}$ to give the product $\mathbf{1 r}(1.16 \mathrm{~g}, 84 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66-7.54(\mathrm{~m}, 6 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~d}$, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.88,141.91,140.17,132.52,128.87$, 128.16, 127.80, 127.11, 127.05, 122.85, 121.52, 101.17, 87.10, 60.47, 14.34.

HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 299.1048$, found:299.1054.

1s: To a mixture of (Z)-ethyl 3-iodoacrylate 6a ($1.13 \mathrm{~g}, 5 \mathrm{mmol}, 1.0$ equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($35.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{~mol} \%$), $\mathrm{CuI}(4.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{~mol} \%)$ and TEA (20 mL) were added the corresponding alkyne $5 \mathrm{~s}(1.05 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ and dealt with according to the similar procedures as $\mathbf{1 b}$ to give product $\mathbf{1 s}(1.04 \mathrm{~g} 72 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{~d}$, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H})$, $1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 164.96, 143.73, 143.18, $142.87,140.91,131.11,128.73,127.73,127.42,126.96,125.12,123.10,120.61$, $120.35,119.83,102.34,86.67,60.43,36.71,14.35$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 311.1048$, found:311.1054.

1ad: To a mixture of (Z)-iPr-3-iodoacrylate $\mathbf{6 c}(1.2 \mathrm{~g}, 5 \mathrm{mmol}, 1.0$ equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(35.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{~mol} \%)$, $\mathrm{CuI}(4.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{~mol} \%)$ and TEA (20 mL) were added the corresponding alkyne $\mathbf{5 a}(566 \mathrm{mg}, 5.5 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred at $50^{\circ} \mathrm{C}$ and dealt with the similar procedures as $\mathbf{1 b}$ to give the product 1ad ($804 \mathrm{mg}, 75 \%$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8 7.59-7.51 (m, 2H), 7.41-7.31 (m, 3H), $6.34(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.15(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 164.39, 131.99, 129.11, 128.79, 128.37, 122.71, 122.44, 100.94, 86.37, 67.91, 21.97. HRMS (ESI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 237.0891$, found:237.0896.

1.2 The results of reactions between different silylboronates with 1a.

Procedures for the reaction between 1a and silylboronate B:

In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}, 0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$, were dissolved in 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then 0.2 mmol 1 ($40.4 \mathrm{mg}, 1.0$ equiv) enyens, 0.4 mmol (2.0 equiv, 146.7 mg) ${ }^{t} \mathrm{BuPh}_{2} \mathrm{Si}-\mathrm{Bpin}$ was added to the tube under Ar atmosphere. The final solution was continued to stir for 24 h at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3(64.1 \mathrm{mg}$, 73%) as colorless oil.
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72$ (dd, $\left.J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.67$ (dd, $J=8.0,1.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.43-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.00(\mathrm{~m}, 3 \mathrm{H}), 5.39(\mathrm{t}, J=7.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.26-3.01(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}$, $9 \mathrm{H} \cdot{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.8,171.2,137.3,136.3,136.2,134.1,134.0$, 129.3, 129.2, 128.7, 127.9, 127.6, 127.5, 126.2, 96.9, 81.4, 60.8, 34.2, 28.05, 19.3, 14.2.

HRMS (ESI): m/z calculated for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 441.2250$ found: 441.2248 .

Procedures for the reaction between 1a and silylboronate C:

In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9 \mathrm{mg}$, $10 \mathrm{~mol} \%) \mathrm{CuBr}, 0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$, were dissolved in 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} 1 \mathbf{1 a}(40.4 \mathrm{mg}, 1.0$ equiv), $0.4 \mathrm{mmol} \mathbf{C}$ ($105 \mathrm{mg}, 2.0$ equiv) was added to the tube under Ar atmosphere. The final solution was continued to stir for 24 h at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=$ $97: 3$) to furnish the related product ($50.1 \mathrm{mg}, 74 \%$ yield) as colorless oil.

1.3 Procedures for synthesis of allenylsilanes:

3a: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} 1 \mathrm{1a}(40.4 \mathrm{mg}, 1.0$ equiv) and $0.4 \mathrm{mmol}(2.0$ equiv, 105 $\mathrm{mg}) \mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube in sequence under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was purified through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product 3a ($62.0 \mathrm{mg}, 92 \%$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-7.55(\mathrm{~m}$, 2H), 7.36-7.32 (m, 3H), 7.24-7.17 (m, 4H), 7.16-7.10 (m, 1H), 5.37 (t, J=7.4 Hz, $1 \mathrm{H}), 4.15(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.15 (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (dd, $J=16.2,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 211.53,173.26,139.94,138.32,135.72,131.03,130.18,129.78,129.71$, $128.24,101.61,82.96,62.64,36.08,16.02,0.00,-0.06$.

HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 359.1443, found: 359.1443.

3b: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$, and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under Ar atmosphere. The solution was stirred for 5 min at room temperature. Then 0.2 mmol 1 c ($42.9 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{SiMe}_{2} \mathrm{Ph}$-Bpin was added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to
afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 b}(64.1 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.98$ (m, 2H), $6.91-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.04$ (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (dd, $J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.17 (s, 3H), 1.17 (t, $J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 211.47, $173.36,140.10,139.79,138.26,135.79,131.07,130.58,130.10,129.75,129.13$, 126.92, 101.66, 82.89, 62.68, 36.18, 23.30, 16.09, 0.09, 0.00.

HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 373.1600$ found: 373.1612.

3c: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} 1 \mathrm{c}(42.9 \mathrm{mg}, 1.0$ equiv) and $0.4 \mathrm{mmol}(105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathrm{c}(57.5 \mathrm{mg}$, 92%) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13$ $(\mathrm{m}, 3 \mathrm{H}), 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.96(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.38,173.37,140.13,138.00,135.77,135.23,131.03,130.97$, 129.74,129.70, 101.31, 82.96, 62.65, 22.96, 15.97,0.08, 0.00.

HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 373.1600$ found: 373.1604.

3d: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} 1 \mathbf{d}(46.1 \mathrm{mg}, 1.0$ equiv) and $0.4 \mathrm{mmol}(105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 d}(63.2 \mathrm{mg}$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}$, $3 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.66(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.66 ($\mathrm{s}, 3 \mathrm{H}$), 3.04 (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $211.11,173.39,160.15,140.10,135.75,131.04,130.86,130.34,129.75,115.72$, $100.88,83.04,62.63,57.06,36.26,16.13,0.07,0.00$.
HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 385.1549, found: 385.1542 .

3e: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} \mathbf{1 e}(51.3 \mathrm{mg}, 1.0$ equiv) and $0.4 \mathrm{mmol}(105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated
under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathbf{e}(63.1 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}$, $3 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.13 (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (dd, $J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.58-2.51$ (m, 2H), $1.58-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) 0.90(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.33,173.29$, 142.97, 140.07, 135.68, 135.26, 130.92, 130.22, 129.64, 129.57, 101.23, 82.87, 62.56, 37.00, 36.12, 35.30, 24.11, 15.97, 15.71, 0.00. -0.07.

HRMS (ESI): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 415.2069$, found: 415.2079.

3f: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.02 mmol ($2.9 \mathrm{mg}, 10 \mathrm{~mol} \%$) CuBr and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} \mathbf{1 f}(51.3 \mathrm{mg}, 1.0$ equiv) and $0.4 \mathrm{mmol}(105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 f}(63.8 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}$, 3H), $7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.11(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.23$ $(\mathrm{m}, 12 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.52,173.30$, $151.19,140.16,135.73,135.07,130.97,129.69,129.40,127.14,101.14,82.95,62.60$, 36.23, 36.17, 33.10, 16.02, 0.07, 0.00.

HRMS (ESI): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 415.2069$, found: 415.2074.

3g: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} \mathbf{1 g}(49.1 \mathrm{mg}, 1.0$ equiv) and $0.4 \mathrm{mmol}(2.0$ equiv, 105 mg) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathrm{~g}(43.1 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 4 \mathrm{H}), 5.40(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=16.2,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 212.43,173.10,150.48,140.96,139.05,135.93,135.86,131.73,131.21$, $130.23,124.73,123.31,101.11,84.39,63.10,36.00,16.29,0.02,0.01$.
HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 404.1294$, found: 404.1298.

3h: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} \mathbf{1 h}(48.5 \mathrm{mg}, 1.0$ equiv) and 0.4 mmol (2.0 equiv, 105
mg) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 h}(48.1 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.55(\mathrm{~m}, 2 \mathrm{H})$, $7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.14(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H})$, $1.25(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $212.58,199.57,173.17,144.06,139.55,137.11,135.84,135.50,131.43,130.50$, 130.01, 101.73, 83.84, 62.97, 36.14, 28.13, 16.46, 0.08, 0.00 .

HRMS (ESI): m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 401.1549$, found: 401.1551.

3i: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room tem. Then 0.2 mmol 1 i ($54.5 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 i}(64.1 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34$ (m, 3H), $7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.16$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
(100 MHz, CDCl_{3}): $\delta 212.35,173.12,168.38,143.61,139.52,135.77,131.55,131.32$, $130.29,129.92,129.73,101.64,83.51,62.82,62.71,35.92,16.24,16.13,0.00,-0.08$. HRMS (ESI): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 431.1655$, found: 431.1655.

3j: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} \mathbf{1 j}$ ($51.7 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 j}(72.8 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 7.82-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.47$ (m, 2H), $7.28(\mathrm{dd}, J=5.1,1.9 \mathrm{~Hz}, 5 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=$ $16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.79,173.24,168.96,139.60,139.12,135.88,134.29,132.28$, $131.32,131.02,130.36,129.93,129.52,101.49,83.51,62.85,54.02,36.11,16.18$, -0.00, -0.12.

HRMS (ESI): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 417.1498, found: 417.1504.

3k: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} \mathbf{1 k}$ ($42.7 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. The final solution was continued to stir for 48 h at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\left.\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3\right)$ to furnish the related product $3 \mathbf{k}(60.8 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.12$ (m, 1H), 6.97-6.93 (m, 2H), 6.86-6.81 (m, 1H), 5.41 (t, J=7.4 Hz, 1H), $4.17(\mathrm{q}, ~ J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}) 1.27(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.92$, 173.21, $164.80(\mathrm{~d}, J=245.4 \mathrm{~Hz}), 141.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 139.62,135.83,131.61(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}), 131.35,129.96,125.60(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 116.65(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 115.29(\mathrm{~d}$, $J=21.3 \mathrm{~Hz}), 101.32,83.56,62.89,36.07,16.16,0.06,0.00$.
HRMS (ESI): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \quad \mathrm{FO}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 377.1349$, found: 377.1341

31: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} 1 \mathbf{1 1}$ ($42.7 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 48 h at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $31(60.1 \mathrm{mg})$ as colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.14$ (m, 2H), $6.92-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.12$ (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.45(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.57,173.36,163.58(\mathrm{~d}, \mathrm{~J}$ $=245.6 \mathrm{~Hz}), 139.82,135.85,134.36(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 131.41,131.33$, 129.96, 117.23 (d, $J=21.4 \mathrm{~Hz}$), 100.94, 83.32, 62.84, 36.21, 16.18, 0.06, 0.00.
HRMS (ESI): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \quad \mathrm{FO}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 377.1349$, found: 377.1355.

3m: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.02 mmol ($2.9 \mathrm{mg}, 10 \mathrm{~mol} \%$) CuBr and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then 0.2 mmol 1 m ($47.0 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. The final solution was continued to stir for 48 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathrm{~m}(60.4 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 7.12-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.15$ (m, 2H), $3.14(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.48(\mathrm{~s}, 3 \mathrm{H}), 0.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.83$, $173.15,140.57,139.51,136.16,135.78,131.41,131.33,129.92,129.87,128.43$, $127.94,101.13,83.56,62.86,36.03,16.14,0.00,-0.07$.
HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \quad \mathrm{ClO}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 393.1053$, found: 393.1054.

3n: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} 1 \mathrm{n}(47.0 \mathrm{mg}, 1.0$ equiv) and $0.4 \mathrm{mmol}(2.0$ equiv, 105 mg) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 n}(68.6 \mathrm{mg})$ as colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49-7.47(\mathrm{~m} \mathrm{2H}), 7.30-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.04$ $(\mathrm{m}, 4 \mathrm{H}), 5.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.00(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.70,173.21,139.63,136.99,135.78,134.12$, $131.30,131.10,130.43,129.92,100.96,83.44,62.87,36.04,16.06,0.00,-0.08$.
HRMS (ESI): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \quad \mathrm{ClO}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 393.1053$, found: 393.1048.

3o: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then 0.2 mmol 1 lo ($55.9 \mathrm{mg}, 1.0$ equiv) and $0.4 \mathrm{mmol}(105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 48 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated
under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 o}(70.1 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}$, 3H), $7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.2,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 211.75,173.27,139.68,137.58,135.85,133.45,131.54,131.39,130.00$, 122.32, 101.11, 83.56, 62.89, 36.09, 16.22, 0.08, 0.00.

HRMS (ESI): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BrO}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 437.0548$, found: 437.0550 .

3p: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} \mathbf{1 p}(43.3 \mathrm{mg}, 1.0$ equiv) and $0.4 \mathrm{mmol}(105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. The final solution was continued to stir for 48 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 p}(59.9 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}$, $3 \mathrm{H}), 7.08-7.04 \mathrm{~m}, 1 \mathrm{H}), 6.80-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.64(\mathrm{~m}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J$ $=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.64,173.80,157.62,139.88,135.73,131.31,131.07,129.74$, $129.59,122.23,116.55,115.55,101.53,82.93,62.91,36.07,15.98,0.00$.
HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 375.1392$, found: 375.1401 .

3q: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} 1 \mathbf{q}$ ($50.1 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 q}(72.9 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-$ $7.52(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}$, $5 \mathrm{H}), 5.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.03 (dd, $J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.00,173.23,139.93,135.76,135.72,135.26$, $133.98,131.10,129.76,129.72,129.63,129.31,128.36,128.29,127.74,127.36$, $101.84,83.29,62.65,36.10,16.03,0.09,0.00$.
HRMS (ESI): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 409.1600, found: 409.1602.

3r: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$, were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} \mathbf{1 r}(55.3 \mathrm{mg}, 1.0$ equiv) and 0.4 mmol (2.0 equiv, 105 $\mathrm{mg}) \mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 48 hours at room temperature. Then the solution
was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathbf{r}(69.5 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.51(\mathrm{~m}$, 2H), $7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.40(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.14 (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (dd, $J=16.2,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.49(\mathrm{~s}, 3 \mathrm{H}), 0.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 211.73,173.23,142.58,141.06,139.92,137.32,135.75,131.10,130.54$, 130.18, 129.77, 128.96, 128.91, 128.70, 101.29, 83.19, 62.67, 36.09, 16.05, 0.08, 0.00 .

HRMS (ESI): m/z calculated for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 435.1756, found: 435.1765.

3s: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.02 mmol (2.9 $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then 0.2 mmol 1 s ($58.0 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 48 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathrm{~s}(64.7 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.20-3.06(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$), 0.49 (s, 6H), 0.49 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.38,173.14$, 145.17, 144.96, 143.13, 141.86, 139.88, 136.67, 135.61, 130.90, 129.59, 128.38,
128.37, 128.17, 126.61, 126.24, 121.39, 121.35, 101.81, 82.90, 62.49, 38.53, 36.02, 15.91, 0.00, -0.08.

HRMS (ESI): m/z calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 447.1756$, found:447.1773.

3t: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} 1 \mathbf{t}$ ($41.3 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ was added to the tube under argon atmosphere. The final solution was continued to stir for 72 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathbf{t}(42 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.10(\mathrm{~m}$, $1 \mathrm{H}), 6.83(\mathrm{dd}, J=5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.68(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H})$ $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.52(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.13,173.28$, $142.19,139.47,136.07,131.50,130.01,129.35,127.24,126.52,96.80,84.22,62.95$, 36.33, 16.32, 0.09, 0.00.

HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 387.1756, found:387.1747.

3u: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} 1 \mathbf{u}$ ($32.8 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was
continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathbf{u}(52.8 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.06(\mathrm{td}, \mathrm{J}=$ $7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J$ $=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.07-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.64-0.60(\mathrm{~m}, 2 \mathrm{H})$, 0.46-0.34 (m, 8H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.78,171.75,138.00,133.89$, 129.08, 127.71, 101.14, 81.45, 60.63, 34.79, 14.21, 9.56, 8.22, 7.82, -2.83, -2.89.

HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 323.1443$, found:323.1442.

3v: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} \mathbf{1 v}$ ($45.6 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. The final solution was continued to stir for 24 h at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathbf{v}(64.4 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.20$ (m, 2H), $7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.06-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{q}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-$ $2.67(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.86,171.86,142.12,137.75,133.84,129.18$, 128.47, 128.20, 127.82, 125.73, $96.31,80.26,60.64,35.14,34.61,30.89,14.26$, -3.08, -3.16.

HRMS (ESI): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 387.1756$, found: 387.1747.

3w: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.02 mmol ($2.9 \mathrm{mg}, 10 \mathrm{~mol} \%$) CuBr and $0.02 \mathrm{mmol}\left(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%\right.$) $\mathrm{Et}_{3} \mathrm{~N}$ were dissolved in 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} \mathbf{1 w}(51.7 \mathrm{mg}, 1.0$ equiv) and $0.4 \mathrm{mmol}(105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathrm{w}(72.8 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.23(\mathrm{~m}$, 8H), $5.08-4.97$ (m, 1H), 4.42 (s, 2H), 4.12 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.51$ (t, $J=7.2 \mathrm{~Hz}$, 2H), 2.95 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{td}, J=7.3,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.36(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.89,171.77,138.50,137.62,133.83$, 129.19, 128.32, 127.81, 127.64, 127.48, 93.23, 79.71, 72.86, 69.75, 60.65, 34.56, 29.31, 14.24, -3.13, -3.02.

HRMS (ESI): m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 417.1862, found: 417.1858.

3x: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ and were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} \mathbf{1 x}(40.2 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was
continued to stir for 24 h at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathbf{x}(55.7 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.35(\mathrm{~m}, 3 \mathrm{H}), 5.08-5.02(\mathrm{~m}$, $1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{dd}, J=7.4,2.1 \mathrm{~Hz}, 2 \mathrm{H})$, 2.08-2.04 (m, 2H), $1.91-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.49,171.69,137.51,133.75,129.23,127.83,95.66$, 80.36, 60.70, 44.51, 34.59, 31.58, 26.20, 14.22, -3.15, -3.21.

HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClO}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 359.1210$, found: 359.1203

3y: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} \mathbf{1 y}(44.9 \mathrm{mg}, 1.0$ equiv), $0.4 \mathrm{mmol}(105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathrm{y}(66.2 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.12-5.01$ (m, 1H), 4.21-4.04 (m, 4H), $2.95(\mathrm{dd}, J=7.3,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.44-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.26$ - $2.17(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.38(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 206.19, 173.21, 171.65, 137.44, 133.80, 129.23, 127.83, 96.03, 81.13, 60.67, 60.23, $34.58,33.28,24.02,14.20,14.13,-3.19,-3.25$.

HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 383.1655$, found: 383.1651.

3z: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.02 \mathrm{mmol}(2.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} \mathbf{1 z}$ ($24.9 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathrm{z}(43.0 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.17-$ $5.14(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-2.97(\mathrm{~m}, 2 \mathrm{H})$, $1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.47,174.09$, $140.60,136.04,131.60,130.22,84.69,79.91,63.13,36.33,16.64,0.02,0.00$.
HRMS (ESI): m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 283.1130$, found: 283.1129.

3aa: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.02 mmol ($2.9 \mathrm{mg}, 10 \mathrm{~mol} \%$) CuBr and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then 0.2 mmol 1aa ($55.3 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 a a}(71.7 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.28(\mathrm{~m}, 9 \mathrm{H}), 7.24-7.12$
(m, 4H), $4.11(\mathrm{qd}, J=7.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.45(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.52(\mathrm{~s}, 3 \mathrm{H}), 0.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.71,172.87,139.63$, $137.53,137.14,135.62,130.97,130.28,130.14,129.86,129.63,128.41,128.26$, $126.92,104.82,99.12,62.62,38.51,15.76,0.00,-0.07$.
HRMS (ESI): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 435.1756, found: 435.1762.

3ab: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.02 mmol ($2.9 \mathrm{mg}, 10 \mathrm{~mol} \%$) CuBr and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then 0.2 mmol 1ab ($42.9 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 a b}(49.5 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.17$ (m, 4H), 7.13-7.09 (m, 1H), $4.13(\mathrm{qd}, J=7.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H})$, $1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.453(\mathrm{~s}, 3 \mathrm{H}), 0.448(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $210.98,173.04,140.47,139.23,135.77,130.99,130.19,129.91,129.75,128.09$, $100.69,92.45,62.61,41.70,20.12,16.09,0.22,0.00$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 373.1600$, found:373.1605.

3ac: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.02 mmol ($2.9 \mathrm{mg}, 10 \mathrm{~mol} \%$) CuBr and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room
temperature. Then 0.2 mmol 1ac ($37.2 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathrm{ac}(61.8 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.21$ $(\mathrm{m}, 4 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=16.2$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.473(\mathrm{~s}, 3 \mathrm{H}), 0.468(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.56,173.77,139.99,138.37,135.81,131.13,130.29,129.86$, 129.80, 128.35, 101.83, 82.88, 53.81, 35.85, 0.06, 0.00.

HRMS (ESI): m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 345.1287$, found:345.1289.

3ad: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.02 mmol $(2.9 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{CuBr}$ and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added in 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then $0.2 \mathrm{mmol} \mathbf{1 a d}$ ($42.9 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 48 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 a d}(55.5 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.18$ (m, 4H), $7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.00(\mathrm{~m}$, 2H), 1.24-1.22 (m, 7H), $0.47(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 211.54, 172.73, 139.94, 138.33, 135.69, 131.00, 130.14, 129.76, 129.69, 128.19, $101.47,83.07,70.02,36.41,23.62,0.00,-0.05$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 373.1600$, found:373.1607.

3ae: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.02 mmol ($2.9 \mathrm{mg}, 10 \mathrm{~mol} \%$) CuBr and $0.02 \mathrm{mmol}(2.1 \mathrm{mg}, 10 \mathrm{~mol} \%) \mathrm{Et}_{3} \mathrm{~N}$ were added into 1 mL of dry MeOH under argon atmosphere. The solution was stirred for 5 min at room temperature. Then 0.2 mmol 1ae ($45.7 \mathrm{mg}, 1.0$ equiv), 0.4 mmol ($105 \mathrm{mg}, 2.0$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. The final solution was continued to stir for 24 hours at room temperature. Then the solution was diluted with DCM and filtered through Celite. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 a e}(68.3 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.17$ (m, 4H), 7.14-7.10 (m, 1H), $5.36(t, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.13$ (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.37$ (dq, $J=14.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.463(\mathrm{~s}, 3 \mathrm{H}), 0.457(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.50,173.32,139.92,138.31,135.70,131.02,130.17$, $129.77,129.70,128.22,101.60,82.98,66.55,36.08,32.45,20.94,15.52,0.00,-0.08$. HRMS (ESI): m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 387.1756$, found:387.1765.

1.4 Procedure for synthesis of enantioenriched allenylsilanes.

3a*: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.01 \mathrm{mmol}(1.9$ $\mathrm{mg}, 5 \mathrm{~mol} \%) \mathrm{CuTC}$ and $0.012 \mathrm{mmol}(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%)$ ligand L_{5} were added into 1 mL of dry ${ }^{\mathrm{t}} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for 1 hour at room temperature to form a light green solution. Then the tube was cooled to $0{ }^{\circ} \mathrm{C}$, and 0.2 mmol 1 a (40.4 mg 1.0 equiv,) and $0.3 \mathrm{mmol}(79 \mathrm{mg}, 1.5$ equiv) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to
stir for 48 hours at $0{ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathbf{a}^{*}(54.1 \mathrm{mg}$, 80%) as colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25}+42.3^{\circ}\left(\mathrm{c}=1.59, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.17$ (m, 4H), $7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.15$ (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (dd, $J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.463(\mathrm{~s}, 3 \mathrm{H}), 0.458(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.53,173.26,139.94$, 138.32, 135.72, 131.03, 130.18, 129.78, 129.71, 128.24, 101.61, 82.96, 62.64, 36.08, 16.02, 0.00, -0.06.
92% ee, HPLC, IC, Hexane: ${ }^{i} \operatorname{PrOH}=200: 1,0.6 \mathrm{~mL} / \mathrm{min}: 22.4 \mathrm{~min}($ major $), 21.4 \mathrm{~min}$ (minor).

HRMS (ESI): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 359.1443$, found: 359.1443 .

$\mathbf{3 b}^{*}$: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol ($1.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC and $0.012 \mathrm{mmol}(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%)$ ligand L_{5} were added into 1 mL of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for 1 hour at room temperature to form a light green solution. Then the tube was cooled to $-5^{\circ} \mathrm{C}$, and $0.2 \mathrm{mmol} \mathbf{1 b}$ (1.0 equiv, 42.9 mg) and $0.3 \mathrm{mmol}(1.5$ equiv, 79 mg) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 72 h at $-5^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 b}^{*}(61.6 \mathrm{mg}$, 87\%) as colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25}+60.5^{\circ}\left(\mathrm{c}=2.35, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $87.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.98$ (m, 2H), 6.91-6.86(m, 2H), $5.27(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.04$
(dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.384(\mathrm{~s}, 3 \mathrm{H}), 0.378(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 211.47, 173.36, 140.10, 139.79, 138.26, 135.79, 131.07, 130.58, 130.10, 129.75, 129.13, 126.92, 101.66, 82.89, 62.68, 36.18, 23.30, 16.09, 0.09, 0.00.
92% ee, HPLC, OD-H, Hexane: ${ }^{i} \operatorname{PrOH}=250: 1,0.7 \mathrm{~mL} / \mathrm{min}: 27.2 \mathrm{~min}$ (major), 21.7 \min (minor).
HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 373.1600$, found: 373.1612.

3c*: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol (1.9 $\mathrm{mg}, 5 \mathrm{~mol} \%) \mathrm{CuTC}$ and $0.012 \mathrm{mmol}(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%)$ ligand L_{5} were added into 1 mL of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for 1 hour at room temperature to form a light green solution. Then the tube was cooled to $0{ }^{\circ} \mathrm{C}$, and 0.2 mmol 1c (1.0 equiv, 42.9 mg) and $0.3 \mathrm{mmol}(1.5$ equiv, 79 mg) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 48 hours at $0{ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathbf{c}^{*}(58.1 \mathrm{mg}$, 87%) as colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25}+39.4^{\circ}\left(\mathrm{c}=2.36, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{q}, J=7.1 \mathrm{~Hz}$, 2H), 2.92 (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87 (dd, $J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$, $1.06(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 211.38, 173.37, 140.13, 138.00, 135.77, 135.23, 131.03,130.97, 129.74,129.70, 101.31, 82.96, 62.65, 22.96, 15.97,0.08, 0.00 .
91% ee, HPLC, OD-H, Hexane: ${ }^{\text {' }}$ ($\mathrm{OHH}=300: 1,0.6 \mathrm{~mL} / \mathrm{min}: 21.8 \mathrm{~min}$ (major), 21.6 min (minor).

HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 373.1600$, found: 373.1604.

3d ${ }^{*}$: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol ($1.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC and $0.012 \mathrm{mmol}(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%)$ ligand L_{5} were added into 1 mL of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for 1 hour at room temperature to form a light green solution. Then the tube was cooled to $0{ }^{\circ} \mathrm{C}$, and $0.2 \mathrm{mmol} 1 \mathbf{d}$ (1.0 equiv, 46.1 mg), $0.3 \mathrm{mmol}\left(1.5\right.$ equiv, 79 mg) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 48 hours at $0{ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 d}^{*}(52.9 \mathrm{mg}, 72 \%)$ as colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}+42.3^{\circ}\left(\mathrm{c}=1.58, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.06$ (m, 2H), 6.69-6.66 (m, 2H), $5.27(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.66$ (s, 3H), 3.04 (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (dd, $J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.17 (t, $J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.11$, $173.39,160.15,140.10,135.75,131.04,130.86,130.34,129.75,115.72,100.88,83.04$, 62.63, 57.06, 36.26, 16.13, 0.07, 0.00 .
90% ee, HPLC, OD-H, Hexane: ${ }^{i} \mathrm{PrOH}=250: 1,0.7 \mathrm{~mL} / \mathrm{min}, 60.1 \mathrm{~min}$ (major), 55.7 \min (minor).

HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 385.1549$, found: 385.1512.

3e*: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol ($1.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC, $0.012 \mathrm{mmol}\left(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%\right.$) ligand L_{5} were added into 1 mL of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for 1 hour at room temperature to form a light green solution. Then the tube was cooled to $-5^{\circ} \mathrm{C}$,
and $0.2 \mathrm{mmol} 1 \mathbf{1 e}(1.0$ equiv, 51.3 mg$), 0.3 \mathrm{mmol}(1.5$ equiv, 79 mg$) \mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 48 hours at $-5{ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathbf{e}^{*}(57.1 \mathrm{mg}, 73 \%)$ as colorless oil. $[\alpha]_{D}{ }^{25}+36.7^{\circ}\left(c=2.59, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.13$ (m, 2H), $7.04-7.00(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.13$ (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.51(\mathrm{~m}, 2 \mathrm{H}), 1.58-$ $1.51(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $0.47(\mathrm{~s}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.33$, 173.29, 142.97, 140.07, 135.68, 135.26, 130.92, 130.22, 129.64, 129.57, 101.23, 82.87, 62.56, 37.00, 36.12, 35.30, 24.11, 15.97, 15.71, 0.00. -0.07.
93% ee, HPLC, OD-H, Hexane: ${ }^{i} \operatorname{PrOH}=250: 1,0.7 \mathrm{~mL} / \mathrm{min}: 23.0 \mathrm{~min}$ (major), 25.1 \min (minor).

HRMS (ESI): m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 415.2069$, found: 415.2079.

3f*: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.01 \mathrm{mmol}(1.9$ $\mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC, $0.012 \mathrm{mmol}(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%)$ ligand L_{5} were added into 1 mL of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for 1 hour at room temperature to form a light green solution. Then the tube was cooled to $0{ }^{\circ} \mathrm{C}$, and 0.2 mmol $\mathbf{1 f}(1.0$ equiv, 51.3 mg$), 0.3 \mathrm{mmol}(1.5$ equiv, 79 mg$) \mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 48 hours at 0 ${ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\left.\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3\right)$ to furnish the related product $3 \mathbf{e}^{*}(55.9 \mathrm{mg}, 71 \%)$ as colorless oil. $[\alpha]_{D}{ }^{25}+39.4^{\circ}\left(\mathrm{c}=2.36, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.20$ $(\mathrm{m}, 2 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.11(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 12 \mathrm{H})$, $0.46(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.52,173.30,151.19$, 140.16, 135.73, 135.07, 130.97, 129.69, 129.40, 127.14, 101.14, 82.95, 62.60, 36.23, 36.17, 33.10, 16.02, 0.07, 0.00 .
91% ee, HPLC, OD-H, Hexane: ${ }^{i} \mathrm{PrOH}=300: 1,0.6 \mathrm{~mL} / \mathrm{min}: 12.0 \mathrm{~min}$ (major), 13.1 \min (minor).
HRMS (ESI): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 415.2069$, found: 415.2074.

$\mathbf{3 h}^{*}$: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol ($1.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC, $0.012 \mathrm{mmol}(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%)$ ligand L_{5} were added into 1 mL of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was continued to stir for 1 hour at room temperature to form a light green solution. Then the tube was cooled to $0{ }^{\circ} \mathrm{C}$, and $0.2 \mathrm{mmol} \mathbf{1 h}$ (1.0 equiv, 48.5 mg), 0.3 mmol (1.5 equiv, 79 mg) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. It was continued to stir for 72 hours at $0{ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3} \mathbf{h}^{*}(48.3 \mathrm{mg}$, 64%) as colorless oil.
$[\alpha]_{D}{ }^{25}+61.5^{\circ}\left(\mathrm{c}=1.53, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34$ (m, 3H), $7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.14$ (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.58$, 199.57, 173.17, 144.06, 139.55, 137.11, 135.84, 135.50, 131.43, 130.50, 130.01, 101.73, 83.84, 62.97, 36.14, 28.13, 16.46, 0.08, 0.00.
93% ee, HPLC, IC, Hexane: ${ }^{i} \operatorname{PrOH}=99: 1,0.6 \mathrm{~mL} / \mathrm{min}: 42.4 \mathrm{~min}$ (major), 38.9 min (minor).
HRMS (ESI): m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 401.1549, found: 401.1551 .

$3 \mathbf{i}^{*}$: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.01 \mathrm{mmol}(1.9$ $\mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC, $0.012 \mathrm{mmol}\left(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%\right.$) ligand L_{5} were added into 1 mL of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for 1 hour at room temperature to form a light green solution. Then the tube was cooled to $-5^{\circ} \mathrm{C}$, and 0.2 mmol 1i (1.0 equiv, 54.5 mg), $0.3 \mathrm{mmol}\left(1.5\right.$ equiv, 79 mg) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. It was continued to stir for 72 hours at -5 ${ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 i}^{*}(59.8 \mathrm{mg}, 74 \%)$ as colorless oil. $[\alpha]_{D}{ }^{25}+58.2^{\circ}\left(\mathrm{c}=2.22, \mathrm{CHCl}_{3}\right)$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34$ (m, 3H), $7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.16$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 212.35,173.12,168.38,143.61,139.52,135.77,131.55$, $131.32,130.29,129.92,129.73,101.64,83.51,62.82,62.71,35.92,16.24,16.13,0.00$, -0.08.
90% ee, HPLC, OD-H, Hexane: ${ }^{i} \operatorname{PrOH}=250: 1,0.7 \mathrm{~mL} / \mathrm{min}, 34.2 \mathrm{~min}$ (major), 31.9 \min (minor).
HRMS (ESI): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 431.1655, found: 431.1655.

$3 \mathbf{k}^{*}$: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol ($1.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC, $0.012 \mathrm{mmol}\left(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%\right.$) ligand L_{5} were added into 1 mL of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for 1 hour at room temperature to form a light green solution. Then the tube was cooled to $-5^{\circ} \mathrm{C}$, and $0.2 \mathrm{mmol} \mathbf{1 k}$ (1.0 equiv 43.7 mg), $0.3 \mathrm{mmol}\left(1.5\right.$ equiv, 79 mg) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 72 hours at $-5^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathbf{k}^{*}(54.1 \mathrm{mg}, 76 \%)$ as colorless oil. $[\alpha]_{D}{ }^{25}+43.9^{\circ}\left(\mathrm{c}=2.02, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.12$ $(\mathrm{m}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.14 (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (dd, $J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.27(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.92$, $173.21,164.80(\mathrm{~d}, J=245.4 \mathrm{~Hz}), 141.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 139.62,135.83,131.61(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}), 131.35,129.96,125.60(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 116.65(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 115.29(\mathrm{~d}$, $J=21.3 \mathrm{~Hz}), 101.32,83.56,62.89,36.07,16.16,0.06,0.00$.
91% ee, HPLC, OD-H, Hexane: ${ }^{i} \mathrm{PrOH}=250: 1,0.7 \mathrm{~mL} / \mathrm{min}, 37.0 \mathrm{~min}$ (major), 32.3 \min (minor).
HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{FO}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 377.1349$, found: 377.1341.

31*: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.01 \mathrm{mmol}(1.9$ $\mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC, $0.012 \mathrm{mmol}(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%)$ ligand L_{5} were added into 1 mL of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for 1 hour at room
temperature to form a light green solution. Then the tube was cooled to $-5^{\circ} \mathrm{C}$, and 0.2 mmol 11 (1.0 equiv, 43.7 mg), 0.3 mmol (1.5 equiv, 79 mg) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. It was continued to stir for 96 hours at -5 ${ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 I}^{*}(64.1 \mathrm{mg}, 90 \%)$ as colorless oil. $[\alpha]_{D}{ }^{25}+47.2^{\circ}\left(\mathrm{c}=2.20, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.14$ (m, 2H), $6.92-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.12$ (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.45(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.57,173.36,163.58(\mathrm{~d}, \mathrm{~J}$ $=245.6 \mathrm{~Hz}), 139.82,135.85,134.36(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 131.41,131.33,129.96,117.23$ (d, $J=21.4 \mathrm{~Hz}$), 100.94, 83.32, 62.84, 36.21, 16.18, 0.06, 0.00.
90% ee, HPLC, OD-H, Hexane: ${ }^{i} \mathrm{PrOH}=250: 1,0.6 \mathrm{~mL} / \mathrm{min}, 18.1 \mathrm{~min}$ (major), 18.7 \min (minor).
HRMS (ESI): m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{FO}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 377.1349, found: 377.1355.

3m*: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol ($1.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC, $0.012 \mathrm{mmol}\left(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%\right.$) ligand L_{5} were added into 1 mL of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for 1 hour at room temperature to form a light green solution. Then the tube was cooled to $-5^{\circ} \mathrm{C}$, and 0.2 mmol 1 m (1.0 equiv, 47.0 mg), $0.3 \mathrm{mmol}(1.5$ equiv, 79 mg$) \mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 72 hours at $-5^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathrm{~m}^{*}(62.9 \mathrm{mg}, 85 \%)$ as colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}+54.7^{\circ}\left(\mathrm{c}=2.04, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 7.12-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.15$ (m, 2H), $3.14(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.48(\mathrm{~s}, 3 \mathrm{H}), 0.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.83$, $173.15,140.57,139.51,136.16,135.78,131.41,131.33,129.92,129.87,128.43$, $127.94,101.13,83.56,62.86,36.03,16.14,0.00,-0.07$.
92% ee, HPLC, OD-H, Hexane: ${ }^{i} \operatorname{PrOH}=250: 1,0.7 \mathrm{~mL} / \mathrm{min}, 41.4 \mathrm{~min}$ (major), 30.6 \min (minor).
HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClO}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 393.1053, found: 393.1054.

$3 \mathbf{n}^{*}$: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol ($1.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC, $0.012 \mathrm{mmol}\left(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%\right.$) ligand L_{5} were added into 1 mL of dry ${ }^{\mathrm{t}} \mathrm{AmOH}$ under argon atmosphere. The mixture was continued to stir for 1 hour at room temperature to form a light green solution. Then the tube was cooled to $-5{ }^{\circ} \mathrm{C}$, and 0.2 mmol 1 n (1.0 equiv, 47.0 mg), $0.3 \mathrm{mmol}(1.5$ equiv, 79 mg) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 96 hours at $-5^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 n}^{*}(61.6 \mathrm{mg}$, 83%) as colorless oil.
$[\alpha]_{D}{ }^{25}+53.7^{\circ}\left(\mathrm{c}=2.40, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49-7.47(\mathrm{~m} 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.04(\mathrm{~m}$, $4 \mathrm{H}), 5.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.00(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 211.70,173.21,139.63,136.99,135.78,134.12,131.30$, 131.10, 130.43, 129.92, 100.96, 83.44, 62.87, 36.04, 16.06, 0.00, -0.08.
90% ee, HPLC, OD-H, Hexane: $:^{i} \operatorname{PrOH}=550: 1,0.5 \mathrm{~mL} / \mathrm{min}, 36.7 \mathrm{~min}$ (major), 40.1 \min (minor).
HRMS (ESI): m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClO}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 393.1053 , found: 393.1048.

$3 \mathbf{q}^{*}$: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol ($1.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC, $0.012 \mathrm{mmol}\left(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%\right.$) ligand L_{5} were added into 1 mL of dry ${ }^{\mathrm{t}} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for one hour at room temperature to form a light green solution. Then the tube was cooled to $0{ }^{\circ} \mathrm{C}$, and $0.2 \mathrm{mmol} 1 \mathbf{q}(1.0$ equiv 50.1 mg$), 0.3 \mathrm{mmol}(1.5$ equiv, 79 mg$) \mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 48 hours at $0{ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\left.\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3\right)$ to furnish the related product $3 \mathbf{q}^{*}(54.6 \mathrm{mg}, 71 \%)$ as colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}+50^{\circ}\left(\mathrm{c}=0.55, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-$ $7.52(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}$, $5 \mathrm{H}), 5.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.03(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.00,173.23,139.93,135.76,135.72,135.26$, $133.98,131.10,129.76,129.72,129.63,129.31,128.36,128.29,127.74,127.36$, $101.84,83.29,62.65,36.10,16.03,0.09,0.00$.
93% ee, HPLC, IC, Hexane: $\mathrm{EA}=200: 1,0.6 \mathrm{~mL} / \mathrm{min}, 18.2 \mathrm{~min}$ (major), 20.2 min (minor).

HRMS (ESI): m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 409.1600$, found:409.1602.

$3 \mathbf{r}^{*}$: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.01 \mathrm{mmol}(1.9$ $\mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC, $0.012 \mathrm{mmol}(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%)$ ligand L_{5} were added into 1 mL of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for one hour at room temperature to form a light green solution. Then the tube was cooled to $-5^{\circ} \mathrm{C}$, and 0.2 mmol $1 \mathbf{r}$ (1.0 equiv, 55.3 mg), $0.3 \mathrm{mmol}(1.5$ equiv, 79 mg$) \mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 72 hours at -5 ${ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\left.\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3\right)$ to furnish the related product $3 \mathbf{r}^{*}(61.9,75 \%)$ as colorless oil.
$[\alpha]_{D}{ }^{25}+66.3^{\circ}\left(\mathrm{c}=2.32, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.43$ (m, 2H), $7.41-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.49(\mathrm{~s}, 3 \mathrm{H}), 0.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.73$, $173.23,142.58,141.06,139.92,137.32,135.75,131.10,130.54,130.18,129.77$, 128.96, 128.91, 128.70, 101.29, 83.19, 62.67, 36.09, 16.05, 0.08, 0.00.
90% ee, HPLC, OD-H, Hexane: ${ }^{i} \mathrm{PrOH}=200: 1,0.6 \mathrm{~mL} / \mathrm{min}, 15.2 \mathrm{~min}$ (major), 16.5 \min (minor).

HRMS (ESI): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 435.1756, found: 435.1765 .

$3 s^{*}$: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.01 \mathrm{mmol}(1.9$ $\mathrm{mg}, 5 \mathrm{~mol} \%$) $\mathrm{CuTC}, 0.012 \mathrm{mmol}(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%)$ ligand L_{5} were added into 1 mL
of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for one hour at room temperature to form a light green solution. Then the tube was cooled to $-5^{\circ} \mathrm{C}$, and 0.2 mmol 1 s (1.0 equiv, 58.0 mg), 0.3 mmol (1.5 equiv, 79 mg) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 72 hours at -5 ${ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathrm{~s}^{*}(53.5 \mathrm{mg}, 63 \%)$ as colorless oil. $[\alpha]_{D}^{25}+59.6^{\circ}\left(c=1.90, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.20-3.06(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 0.49(\mathrm{~s}, 6 \mathrm{H}), 0.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.38,173.14$, $145.17,144.96,143.13,141.86,139.88,136.67,135.61,130.90,129.59,128.38$, 128.37, 128.17, 126.61, 126.24, 121.39, 121.35, 101.81, 82.90, 62.49, 38.53, 36.02, 15.91, 0.00, -0.08.
91% ee, HPLC, AS-H , Hexane: ${ }^{l} \operatorname{PrOH}=330: 1,0.4 \mathrm{~mL} / \mathrm{min}, 20.9 \mathrm{~min}$ (major), 23.1 \min (minor).

HRMS (ESI): m/z calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 447.1756$, found:447.1773.

$3 \mathbf{t}^{*}$: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, $0.01 \mathrm{mmol}(1.9$ $\mathrm{mg}, 5 \mathrm{~mol} \%$) $\mathrm{CuTC}, 0.012 \mathrm{mmol}(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%)$ ligand L_{5} were added into 1 mL of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for one hour at room temperature to form a light green solution. Then the tube was cooled to $-5^{\circ} \mathrm{C}$, and 0.2 mmol 1t (1.0 equiv, 41.3 mg), $0.3 \mathrm{mmol}\left(1.5\right.$ equiv, 79 mg) $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin were added to the tube under argon atmosphere. It was continued to stir for 72 hours at -5 ${ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent:
$\left.\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3\right)$ to furnish the related product $3 \mathbf{t}^{*}(35.6 \mathrm{mg}, 52 \%)$ as colorless oil. $[\alpha]_{D}{ }^{25}+81.7^{\circ}\left(c=1.67, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.10$ $(\mathrm{m}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.68(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.18(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}$, 1H) $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.52(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.13$, 173.28, 142.19, 139.47, 136.07, 131.50, 130.01, 129.35, 127.24, 126.52, 96.80, 84.22, 62.95, 36.33, 16.32, 0.09, 0.00.
90% ee, HPLC, OD-H , Hexane: ${ }^{i} \operatorname{PrOH}=250: 1,0.6 \mathrm{~mL} / \mathrm{min}, 36.9 \mathrm{~min}$ (major), 32.0 \min (minor).
HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 387.1756, found: 387.1747.

$3 \mathbf{u}^{*}$: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol $(1.9 \mathrm{mg}, 5 \mathrm{~mol} \%) \mathrm{CuTC}, 0.012 \mathrm{mmol}(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%)$ ligand L_{5} were added into 1 mL of dry ${ }^{\mathrm{t}} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for one hour at room temperature to form a light green solution. Then the tube was cooled to $-5^{\circ} \mathrm{C}$, and $0.2 \mathrm{mmol} \mathbf{1 u}\left(1.0\right.$ equiv, 32.8 mg), $0.3 \mathrm{mmol}(1.5$ equiv, 79 mg$) \mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 72 hours at $-5{ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\left.\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3\right)$ to furnish the related product $3 \mathbf{u}^{*}(47.4 \mathrm{mg}, 75 \%)$ as colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}+4.2^{\circ}\left(\mathrm{c}=1.71, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.06(\mathrm{td}, J=$ $7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J$ $=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.07-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.64-0.60(\mathrm{~m}, 2 \mathrm{H})$, 0.46-0.34 (m, 8H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.78,171.75,138.00,133.89$, $129.08,127.71,101.14,81.45,60.63,34.79,14.21,9.56,8.22,7.82,-2.83,-2.89$.
73% ee, HPLC, IC, Hexane: ${ }^{i} \operatorname{PrOH}=300: 1,0.6 \mathrm{~mL} / \mathrm{min}, 18.8 \mathrm{~min}$ (major), 17.9 min (minor).
HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 323.1443, found: 323.1442.

$3 \mathbf{x}^{*}$: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol ($1.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC, $0.012 \mathrm{mmol}\left(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%\right.$) ligand L_{5} were added into 1 mL of dry ${ }^{\mathrm{t}} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for one hour at room temperature to form a light green solution. Then the tube was cooled to $-5^{\circ} \mathrm{C}$, and $0.2 \mathrm{mmol} 1 \mathbf{x}$ (1.0 equiv, 40.2 mg), $0.3 \mathrm{mmol}\left(1.5\right.$ equiv, 79 mg) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 72 hours at $-5{ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathbf{x}^{*}(51.0 \mathrm{mg}, 76 \%)$ as colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}-0.95^{\circ}\left(\mathrm{c}=2.33, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.35(\mathrm{~m}, 3 \mathrm{H}), 5.08-5.02(\mathrm{~m}$, $1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{dd}, J=7.4,2.1 \mathrm{~Hz}, 2 \mathrm{H})$, 2.08-2.04 (m, 2H), 1.91-1.84 (m, 2H), $1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.49,171.69,137.51,133.75,129.23,127.83,95.66$, $80.36,60.70,44.51,34.59,31.58,26.20,14.22,-3.15,-3.21$.
68% ee, HPLC, IC , Hexane: ${ }^{i} \mathrm{PrOH}=300: 1,0.6 \mathrm{~mL} / \mathrm{min}, 49.3 \mathrm{~min}$ (major), 50.5 min (minor).
HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClO}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 359.1210$, found: 359.1203.

3ab*: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol ($1.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC, $0.012 \mathrm{mmol}\left(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%\right.$) ligand L_{5} were added into 1 mL of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for one hour at room temperature to form a light green solution. Then the tube was cooled to $0{ }^{\circ} \mathrm{C}$, and 0.2 mmol 1ab (1.0 equiv 42.9 mg), 0.3 mmol (1.5 equiv, 79 mg) $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 48 hours at $0{ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $\mathbf{3 a b}^{*}(52.1 \mathrm{mg}, 74 \%)$ as colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}+6.2^{\circ}\left(\mathrm{c}=2.70, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.17$ $(\mathrm{m}, 4 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{qd}, J=7.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H})$, $1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.453(\mathrm{~s}, 3 \mathrm{H}), 0.448(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $210.98,173.04,140.47,139.23,135.77,130.99,130.19,129.91,129.75,128.09$, 100.69, 92.45, 62.61, 41.70, 20.12, 16.09, 0.22, 0.00.
36% ee, HPLC, AS-H , Hexane: ${ }^{i}$ PrOH $=99: 1,0.6 \mathrm{~mL} / \mathrm{min}, 13.0 \mathrm{~min}$ (major), 16.3 \min (minor).

HRMS (ESI): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 373.1600$, found:373.1605.

3ac*: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol ($1.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC, $0.012 \mathrm{mmol}\left(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%\right.$) ligand L_{5} were dissolved in 1 mL of dry ${ }^{t} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for one hour at room temperature to form a light green solution. Then the tube was cooled to $0^{\circ} \mathrm{C}$, and $0.2 \mathrm{mmol} 1 \mathrm{ac}\left(1.0\right.$ equiv, 37.2 mg), $0.3 \mathrm{mmol}(1.5$ equiv, 79 mg$) \mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 48 hours at $0{ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathbf{a c}^{*}(52.3 \mathrm{mg}, 81 \%)$ as colorless oil.
$[\alpha]_{D}^{25}+61.5^{\circ}\left(\mathrm{c}=2.14, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $87.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.21$ (m, 4H), 7.17-7.12 (m, 1H), $5.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=16.2$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.473(\mathrm{~s}, 3 \mathrm{H}), 0.468(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.56,173.77,139.99,138.37,135.81,131.13,130.29,129.86$, $129.80,128.35,101.83,82.88,53.81,35.85,0.06,0.00$.
94% ee, HPLC, IC , Hexane $: ~ i P r O H=300: 1,0.6 \mathrm{~mL} / \mathrm{min}, 15.1 \mathrm{~min}$ (major), 13.5 min (minor).
HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 345.1287$, found:345.1289.

3ad*: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol $(1.9 \mathrm{mg}, 5 \mathrm{~mol} \%) \mathrm{CuTC}, 0.012 \mathrm{mmol}(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%)$ ligand L_{5} were added in 1 mL of dry ${ }^{\mathrm{t}} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for one hour at room temperature to form a light green solution. Then the tube was cooled to $-5^{\circ} \mathrm{C}$, and 0.2 mmol 1ad (1.0 equiv, 42.9 mg), $0.3 \mathrm{mmol}(1.5$ equiv, 79 mg$) \mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 72 hours at $-5^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathbf{a d}^{*}(52 \mathrm{mg}, 74 \%)$ as colorless oil.
$[\alpha]_{D}^{25}+43.6^{\circ}\left(c=2.07, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.18$ (m, 4H), $7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{sep}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ $-3.00(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.22(\mathrm{~m}, 7 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 211.54,172.73,139.94,138.33,135.69,131.00,130.14,129.76,129.69$, $128.19,101.47,83.07,70.02,36.41,23.62,0.00,-0.05$.
91% ee, HPLC, OD-H, Hexane: $:^{i} \mathrm{PrOH}=250: 1,0.7 \mathrm{~mL} / \mathrm{min}, 26.6 \mathrm{~min}$ (major), 25.8 \min (minor).
HRMS (ESI): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 373.1600$, found:373.1607.

3ae*: In an oven dried 15 mL Schlenk tube equipped with a stirring bar, 0.01 mmol ($1.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) CuTC, $0.012 \mathrm{mmol}\left(3.6 \mathrm{mg}, 6 \mathrm{~mol} \%\right.$) ligand L_{5} were dissolved in 1 mL of dry ${ }^{\mathrm{t}} \mathrm{AmOH}$ under argon atmosphere. The mixture was stirred for one hour at room temperature to form a light green solution. Then the tube was cooled to $0{ }^{\circ} \mathrm{C}$, and $0.2 \mathrm{mmol} 1 \mathbf{1 a e}\left(1.0\right.$ equiv, 45.7 mg), $0.3 \mathrm{mmol}(1.5$ equiv, 79 mg$) \mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ were added to the tube under argon atmosphere. It was continued to stir for 48 hours at $0{ }^{\circ} \mathrm{C}$. Then the final deep green solution was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=97: 3$) to furnish the related product $3 \mathbf{a e}^{*}(54.7 \mathrm{mg}, 75 \%)$ as colorless oil. $[\alpha]_{D}{ }^{25}+24.0^{\circ}\left(\mathrm{c}=2.12, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.17$ (m, 4H), 7.14-7.10 (m, 1H), 5.36 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.13$ (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ (dd, $J=16.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.55$ (m, 2H), 1.37 (dq, $J=14.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.463(\mathrm{~s}, 3 \mathrm{H}), 0.457(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.50,173.32,139.92,138.31,135.70,131.02,130.17$, $129.77,129.70,128.22,101.60,82.98,66.55,36.08,32.45,20.94,15.52,0.00,-0.08$. 91% ee, HPLC, IC , Hexane: ${ }^{i} \operatorname{PrOH}=300: 1,0.6 \mathrm{~mL} / \mathrm{min}, 51.1 \mathrm{~min}$ (major), 49.6 min (minor).

HRMS (ESI): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 387.1756$, found:387.1765.

2. References

1. Takeuchi, R.; Tanabe,K.; Tanaka, S. J. Org. Chem. 2000, 65, 1558-1561.
2. Bates, C.G.; Saejueng, P.; Venkataraman. D. Org. Lett. 2004, 6, 1441-1444.
3. Tian, P.-P.; Cai, S.-H.; Liang, Q.-J.; Zhou, X.-Y.; Xu, Y.-H.; Loh. T. P. Org. Lett. 2015, 17, 1636-1639.
4. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HPLC Spectra of the Enynoates and Products

\qquad

$\begin{aligned} & \text { 刨 } \\ & \stackrel{\rightharpoonup}{I} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{N}{2} \\ & 1 \end{aligned}$	 	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{c} \\ & i \end{aligned}$		$\begin{aligned} & \text { 爰 } \\ & \text { in } \end{aligned}$		8	$\stackrel{\text { 畐 }}{\text { i }}$

$\begin{gathered} \stackrel{\circ}{N} \\ \stackrel{N}{1} \\ \\ \hline \end{gathered}$		$\stackrel{\stackrel{2}{\infty}}{\stackrel{\infty}{i}}$				$\begin{aligned} & \text { to } \\ & \text { or } \\ & \text { ó } \\ & \text { I } \end{aligned}$		$\begin{aligned} & \frac{\infty}{6} \\ & \stackrel{6}{\circ} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \text { not } \\ & 0.0 \\ & 0.0 \\ & \text { Yi } \end{aligned}$

[^0]

$1\rangle 41 \%$

[^1]

$\begin{gathered} \stackrel{\otimes}{\infty} \\ \stackrel{8}{-} \\ \stackrel{1}{\mid} \end{gathered}$		かom	-				$\begin{gathered} \infty \\ \vdots \\ \\ \\ \hline \end{gathered}$	$\begin{aligned} & \overline{\mathrm{n}} \\ & \stackrel{6}{\bar{\prime}} \end{aligned}$	

[^2]

			$\begin{gathered} \text { à } \\ \stackrel{c}{\square} \end{gathered}$		$\begin{gathered} \stackrel{8}{0} \\ \text { O } \\ \text { O } \\ \text { i } \end{gathered}$		

[^3]

PhMe Si_{2}

$$
\mathrm{PhMe}_{2} \mathrm{Si}=-\mathrm{CO}_{2} \mathrm{Et}
$$

[^4]

$\stackrel{\text { ®．}}{\stackrel{\circ}{\circ}} \stackrel{0}{\sim}$	$\stackrel{\tilde{\infty}}{\stackrel{\text { ®}}{\gtrless}}$	צipmoinionio \4n！	\％ en i	※్ఞe eof io ジN゚〈V	U		$\stackrel{\text { \％}}{\text { \％}}$

[^5]

BnO

	$\stackrel{\AA}{i}$	 －－－		のただNO〈以ノ！	$\begin{aligned} & \text { 峀 } \\ & \stackrel{0}{0} \\ & 1 \end{aligned}$	$\stackrel{8}{8}$	$\stackrel{\sim}{\underset{\sim}{\sim}}$	$\stackrel{\text { U }}{\substack{\text { ¢ }}}$

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

\xrightarrow{n}

$$
\mathrm{PhMe}_{2} \mathrm{Si}==_{\mathrm{H}}^{\mathrm{CO}_{2} \mathrm{Et}}
$$

[^6]

$\begin{aligned} & \stackrel{⿱ 士}{n} \\ & \stackrel{y}{n} \\ & \stackrel{1}{1} \end{aligned}$	$\frac{8}{9}$		$\frac{\text { N }}{2}$		$\begin{gathered} \text { 兴 } \\ \text { of } \\ i \end{gathered}$				

[^7]
HPLC for chiral allenylsilane

Signal 1: DAD1 $A, S i g=254,4 \quad$ Ref $=360,100$

Peak \#	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	21.354	BB	0.3129	1286.00977	65.55194	50.0475	1	21.442	BB	0. 2760	127.03123	7. 26643	4.2104
2	22.265	BB	0.2515	1283.56885	80.70587	49.9525	2	22.351		0.2980	2890.07813	156.09740	95.7896
Total	s :			2569.57861	146.25781		Total	ls :			3017.10936	163.36383	

Signal 2: DAD1 B, $\operatorname{Sig}=210,4$ Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	22.114	BV	1.8886	3.37817 e 4	265.12143	49.3282	1	21.654	BB	1.3490	959.69135	8.33680	3.9124
2	27.201	VB	1.4509	3.47018 e 4	371.13174	50.6718	2	27.211	BB	1.4685	2.35699 e 4	251.68980	96.0876
Total	s :			6.84834 e 4	636.25317		Total	s :			2.45296 e 4	260.02660	

PhMe

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	21.689	BB	0.3996	3566.28784	137.97507	49.5867
2	24.493	BB	0.4663	3625.74023	120.75926	50.4133
Totals :				7192.02808	258.73433	

Signal 2: DAD1 B, Sig $=210,4$ Ref $=360,100$

Peak \#	RetTime [min]		$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	55.916	BB	1.9766	2697.56128	21.22772	50.1588	1	55.741	MM	1.5056	1051.19055	8.46832	5.0606
2	60.566	BB	1.9772	2680.48242	19.87842	49.8412	2	60.065	BB	2.2519	1.97209 e 4	136.95995	94.9394
Total	1s :			5378.04370	41.10614		Total	s :			2.07721 e 4	145.42826	

${ }^{n} \mathrm{Bu}$

Signal 2: DAD1 B, Sig=210,4 $\operatorname{Ref}=360,100$

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	23.048	BB	0.4161	5250.86572	192.60344	51.4024	1	22.968	BB	0.4173	9341.26270	343.43756	96.3814
2	25.067	BB	0.4207	4964.34912	184.04930	48.5976	2	25.073	BB	0.4135	350.71884	13.22050	3.6186
Total	1s :			1.02152 e 4	376.65274		Total	1s :			9691.98154	356.65807	

Signal 2: DAD1 B, $\operatorname{Sig}=210,4 \quad \operatorname{Ref}=360,100$

Signal 2: DAD1 B, Sig $=210,4$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$	$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
						5457	1	32.324	MM R	1.5606	376.04007	4.01595	4.4190
1	32.385	BB	1.5615	6779.71533	68.09615	49.5457	2	37.027	BB	0.9282	8133.50684	135.90018	95.5810
2	37.126	BB	0.9229	6904.03955	115.25564	50.4543		37.027		0.9282			
Tota	:			1.36838e4	183.35178		Total	s :			8509.54691	139.91613	

Signal 2: DAD1 B, $\operatorname{Sig}=210,4$ Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$	Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	18.054	MM R	0.2714	1747.65857	107.30874	49.9679	1	18.077	V	0.2616	6420.84766	382.96121	94.7884
2	18.674	MM R	0.1738	1749.90588	167.82521	50.0321	2	18.727	VB	0.1662	353.02951	32.64647	5.2116
Total	s :			3497.56445	275.13395		Total	ls :			6773.87717	415.60769	

Signal 2: DAD1 B, Sig $=210,4$ Ref $=360,100$ 6773.87717 415.68769
Signal 2: DAD1 B, $\operatorname{Sig}=210,4$ Ref $=360,100$
Signal 2: DAD1 B, Sig=210,4 $\operatorname{Ref}=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	30.613	BB	1.0859	1.62941 e 4	234.71832	50.0661	1	30.574	BB	1.1348	1838.88354	24.80824	4.1294
2	41.663	BB	0.9388	1.62511 e 4	265.22906	49.9339	2	41.415	BB	0.9318	4.26925 e 4	705.71790	95.8706
Total	s :			3.25453e4	499.94739		Total	/s :			4.45314 e 4	730.52613	

Signal 2: DAD1 B, Sig $=210,4$ Ref $=360,100$

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	37.607	BB	0.6453	5181.97363	124.06824	49.4344	1	36.713	BB	0.7094	5003.88184	109.43909	95.1983
2	40.232	BB	0.6888	5300.54492	119.66532	50.5656	2	40.060	BB	0.6742	252.38898	5.74917	4.8017
Total	s :			1.04825 e 4	243.73356		Total	:			5256.27081	115.18826	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	17.597	BB	0.3498	6513.97119	288.04388	50.7785	1	18.169	BB	0.3641	4617.32471	195.09680	96.7236
2	19.515	VB	0.4190	6314.22412	230.92447	49.2215	2	20.231	BB	0.4146	156.40437	5.99048	3.2764
Total	s :			1.28282 e 4	518.96835		Tota	s :			4773.72908	201.08729	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	15.259	BV	0.3916	3243.51953	127.16936	49.7793	1	15.188	BV	0.3838	1.04129 e 4	416.37518	95.1790
2	16.465	VB	0.4824	3272.27466	103.05710	50.2207	2	16.505	VB	0.4990	527.43781	16.15190	4.8210
Total	ls :			6515.79419	230.22646		Total	1s :			1.09403 e 4	432.52708	

Signal 1: DAD1 A, Sig=254,4 Ref $=360,100$

Peak \#	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	23.427	MF R	1.4750	1229.45691	13.89245	48.8172							
2	26.349	FM R	1.6993	1289.03662	12.64289	51.1828	1	20.804	MF R	1.1117	1432.39026	21.47523	95.5894
Total] :			2518.49353	26.53534		Tota				1498.48202	22.45886	

Signal 2: DAD1 B, $\operatorname{Sig}=210,4 \quad \operatorname{Re} f=360,100$

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	31.471	BB	1.0533	7275.27393	107.53164	49.0921	1	32.013	BB	0.7401	203.99904	3.99288	5.1631
2	35.966	BB	0.8722	7544.35840	132.92227	50.9079	2	36.945	BB	0.8276	3747.11523	69.43748	94.8369
Total	/s :			1.48196 e 4	240.45391		Total	1s :			3951.11427	73.43035	

$\mathrm{PhMe}_{2} \mathrm{Si}=$

Signal 2: DAD1 B, $\operatorname{Sig}=210,4$ Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$	Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	17.426	BV	0.3050	1.17653 e 4	604.57373	49.6154	1	17.875	VB	0.2717	1245.76013	71.36281	13.3103
2	18.453	VB	0.3460	1.19477e4	540.25183	50.3846	2	18.771	BB	0.3186	8113.60693	396.76343	86.6897
Total	/s :			2.37130 e 4	1144.82556		Total	1s :			9359.36707	468.12624	

Signal 2: DAD1 $B, \operatorname{Sig}=210,4$ Ref $=360,100$
Signal 2: DAD1 $B, \operatorname{Sig}=210,4$ Ref $=360,100$

Peak	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	49.319		0.5236	2288.06104	69.23113	15.8424	1	49.319	BV	0.5236	2288.06104	69.23113	15.8424
2	50.531	VB	0.8941	1.21546e4	233.96143	84.1576	2	50.531	VB	0.8941	1.21546 e 4	233.96143	84.1576
Tota	s :			1.44427e4	303.19256		Total	s :			1.44427 e 4	303.19256	

$\mathrm{PhMe}_{2} \mathrm{Si}$

Signal 2: DAD1 B, Sig $=210,4$ Ref $=360,100$
Signal 2: DAD1 B, Sig=210,4 $\operatorname{Ref}=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	12.911	BB	0.2488	4.23571e4	2674.21411	48.8188	1	13.036	BV	0.2692	4.61007e4	2700.50464	67.7912
2	15.978	BV	0.2899	4.44068 e 4	2377.54517	51.1812	2	16.274	BV	0.2281	2.19033 e 4	1467.94019	32.2088
Total	s :			8.67639 e 4	5051.75928		Total	s :			6.80040 e 4	4168.44482	

PhMe ${ }_{2} \mathrm{Si}$

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	13.560	BV	0.2503	3006.10669	192.39133	50.6007	1	13.531	BB	0.3761	160.93994	6.56205	2.9567
2	14.443	MM R	0.5393	2934.72852	90.69703	49.3993	2	15.084	MM R	0.7455	5282.23047	118.09123	97.8433
Tota	5 :			5940.83521	283.08836		Total	s :			5443.17041	124.65328	

Signal 2: DAD1 B, Sig $=210,4$ Ref $=360,100$
Signal 2: DAD1 $B, \operatorname{Sig}=210,4$ Ref $=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	25.752		0.4149	6183.56494	229.09872	50.6115	1	25.837	BV	0.4212	489.96878	17.46968	4.4787
2	26.546		0.3241	6034.14160	293.16403	49.3885	2	26.567	VB	0.3226	1.04500 e 4	510.96277	95.5213
Total	s :			1.22177 e 4	522.26276		Total	s :			1.09400 e 4	528.43245	

Signal 1: DAD1 A, Sig $=254,4$ Ref $=360,100$

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$		$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s} \text {] }} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$	Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s} \text { s }} \end{gathered}$	Height [maU]	Area \%
1	49.074	BV	0.6235	2229.79028	56.62008	49.9018	1	49.545	BB	0.4655	302.33047	10.09297	4.6291
2	50.656	VB	0.5562	2238.56616	64.28928	50.0982	2	51.057	BB	1.0367	6228.77637	94.78144	95.3709

4. Determination of the Absolute Configuration of Compound 3s*.

In an oven dried 10 mL round bottom flask equipped with a stirring bar, 0.4 mmol ($175.8 \mathrm{mg}, 1$ equiv) was dissolved in 4 mL of dry THF under argon atmosphere. The solution was added LiAlH_{4} ($30.4 \mathrm{mg}, 2$ equiv) in four batches at $0^{\circ} \mathrm{C}$. The final solution was continued to stir for 5 hours at room temperature. Then the reaction was quenched with water and excess amount of saturated potassium sodium tartrate was introduced, and the solution was stirred for 30 minutes at room temperature. The final solution was extracted with ethyl acetate ($10 \mathrm{~mL} \times 2$), and the combined organic layer was washed with saturated brine (5 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The final filtrate was concentrated under vacuum to afford the crude product which was isolated through flash column chromatography (Eluent: $\mathrm{PE} / \mathrm{EA}=80: 20$) to furnish the related product 4 ($130.5 \mathrm{mg}, 82 \%$ yield) as yellow oil.

To a solution of 3,5-dinitrobenzoyl chloride ($79.5 \mathrm{mg}, 1.05$ equiv) and alcohol 4 ($130.5 \mathrm{mg}, 1$ equiv) with trace amount of DMAP in dichloromethane (2 mL) was added $\mathrm{Et}_{3} \mathrm{~N}$ ($66.5 \mathrm{mg}, 2$ equiv) dropwise. The resulting mixture was stirred for 1 hour at room temperature, the final solution was directly subjected to column chromatography on silica gel (elution with $\mathrm{PE}: \mathrm{EA}=90: 10$) for purification of the crude product. The compound 5 was isolated ($151.4 \mathrm{mg}, 78 \%$ yield) as a bright yellow solide. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.66(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.47(\mathrm{t}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.60-7.57 (m, 2H), 7.48-7.45 (m, 1H), 7.40-7.31 (m, 5H), 7.27 (dd, $J=7.4$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.27(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}) .4 .60-4.46(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=22 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=22$ $\mathrm{Hz}, 1 \mathrm{H}), 2.60(\mathrm{q}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.53(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 210.3,162.4,147.7,143.1,142.6,140.8,139.7,138.0,135.6 .134 .0,133.1$, $129.4,128.6,128.0,127.2,127.0,126.6,125.1,124.2,121.6,119.4,119.2,100.8$, 82.9, 65.0, 36.6, 27.6, -1.0, -1.7..
$[\alpha]_{\mathrm{D}}{ }^{25}+1.63^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.
96% ee, HPLC, IC, Hexane: ${ }^{\mathrm{i}} \mathrm{PrOH}=94: 6,0.6 \mathrm{~mL} / \mathrm{min}, 32.0 \mathrm{~min}$ (major), 34.6 min (minor).

HRMS (ESI): m/z calculated for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 599.1614 found: 599.1606.

Signal 2: DAD1 B, Sig=210,4 $\operatorname{Ref}=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$	Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	32.199	BB	0.6874	6706.54883	149.48610	50.6045	1	32.028	BB	0.6904	4.29782e4	959.82495	97.9911
2	34.874	BB	0.7529	6546.32178	133.30595	49.3955	2	34.687	BB	0.7160	881.06775	18.48867	2.0089
Total	s :			1.32529e4	282.79205		Total	1s :			4.38593e4	978.31362	

[^0]:

[^1]:

[^2]:

[^3]:

[^4]:

[^5]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{pmm})\end{array}$

[^6]:

[^7]:

