Supporting Information

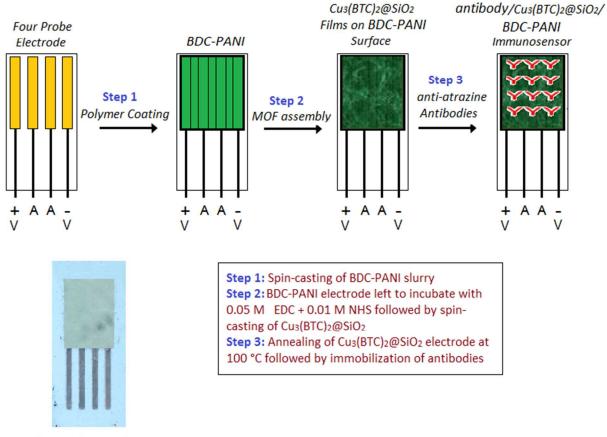
Immunosensing of Atrazine with Antibody-functionalized Cu-MOF Conducting Thin Films

Sanjeev K. Bhardwaj^{1,2}, Neha Bhardwaj^{1,2}, Girish C. Mohanta^{1,2}, Pawan Kumar³, Amit L. Sharma^{1,2}, Ki-Hyun Kim^{3*}, Akash Deep^{1,2*}

¹Central Scientific Instruments Organisation (CSIR-CSIO),

Sector 30 C, Chandigarh, 160030, India

²Academy of Scientific and Innovative Research,


CSIR-CSIO, Sector 30 C, Chandigarh, 160030, India

³Department of Civil & Environmental Engineering,

Hanyang University, 222 Wangsimni-Ro,

Seoul 133-791, Republic of Korea

Correspondence: *<u>kkim61@hanyang.ac.kr</u> (Tel.: +82 2220 2325; Fax: +82 2 2220 1945), and *<u>dr.akashdeep@gmail.com (</u>Tel.: +91 172 2657811 ext. 452)

Actual Photo of Sensor

Figure S1. Schematic of the formation of BDC-PANI films on a four-probe electrode device, assembly of $MOF@SiO_2$ thin films, and immobilization of anti-atrazine antibodies to construct the immunosensor for atrazine detection

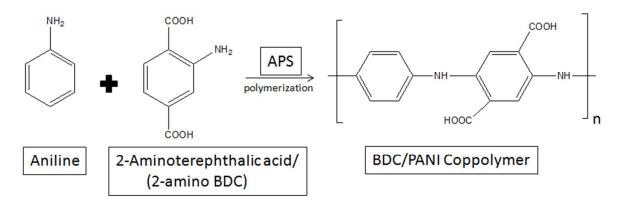


Figure S2. Schematic of the formation of BDC-PANI by the co-polymerization of aniline and NH₂-BDC

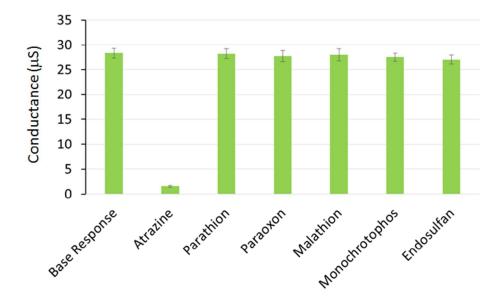


Figure S3. Evaluation of the response of the antibody/ $Cu_3(BTC)_2@SiO_2/BDC-PANI$ immunosensor to non-specific pesticides (atrazine and other pesticides = 1 μ M)



Figure S4. Evaluation of the response time of the antibody/ $Cu_3(BTC)_2@SiO_2/BDC-PANI$ immunosensor (atrazine = 1 μ M)

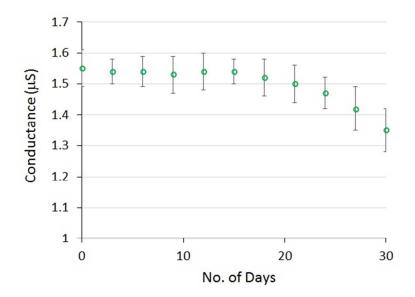


Figure S5. Evaluation of the response time stability of the antibody/Cu₃(BTC)₂@SiO₂/BDC-PANI immunosensor after prolonged storage (atrazine = 1 μ M)

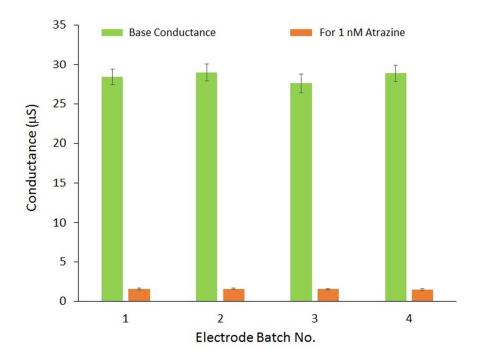


Figure S6. Performance evaluation of different prepared batches of the antibody/Cu₃(BTC)₂@SiO₂/BDC-PANI immunosensors (atrazine = $1 \mu M$)

Sample	Atrazine concentration	Analysis by the developed immunosensor	HPLC Analysis
1 – Purified water	0	Not detected	Not detected
2 – Spiked	0.01 nM (2.15 pg/mL)	$2.06 \pm 0.03 \text{ pg/mL}$	$2.15 \pm 0.02 \text{ pg/mL}$
3 – Spiked	0.1 nM (21.5 pg/mL)	$20.9 \pm 0.4 \text{ pg/mL}$	$21.6 \pm 0.02 \text{ pg/mL}$
4 – Spiked	0.5 nM (107.5 pg/mL)	110 ± 3.1 pg/mL	$106 \pm 2.3 \text{ pg/mL}$
5 – Spiked	1.0 nM (215 pg/mL)	225 ± 5.2 pg/mL	215 ± 4.5 pg/mL
6 – Spiked	10 nM (2.15 ng/mL)	2.18 ± 0.04 ng/mL	2.15 ± 0.02 ng/mL

 Table S1. Analysis of atrazine in spiked water samples and HPLC-based validation results