Visible Light-Driven Photocatalytic Initiation of Radical Thiol-Ene Reactions using Bismuth-oxide

Olugbeminiyi Fadeyi*, James J. Mousseau, Yiqing Feng, Christophe Allais, Philippe Nuhant, Ming Z. Chen, Betsy Pierce, Ralph Robinson.

Pfizer Worldwide MedChem
Pfizer, Inc.
445 Eastern point Road, Groton, CT 06340, USA
E-mail: olugbeminiyi.fadeyi@pfizer.com

\section*{SUPPORTING INFORMATION}

General Procedures and characterization of new compounds

Table of content

General information SI-3
General procedure for the thiol-ene reaction SI-5
Characterization of compounds 3, 6a-r, and 7-13 SI-5
Synthesis and characterization of novel intermediates SI-15

General information

General Methods

Dimethylformamide was purchased from EMD Chemicals Inc. (DriSolv) and used as received. Methanol, dichloromethane, diethyl ether, ethyl acetate and heptane were purchased from Fisher Scientific and used as received. Bismuth oxide 99.999% trace metals basis (202827) and bromotrichloromethane (B82251) were purchased from Aldrich and used as received. Unless specified, all commercially available alkenes and thiols were used as received. Spiral light bulb (25W) can be purchased from any grocery store. Standard techniques for handling air-sensitive compounds were employed for indicated operations. Removal of solvents was accomplished on a rotary evaporator at reduced pressure.

Physical Properties and Spectroscopic Measurements

All NMR spectra were collected on either a Bruker 400 Avance III with a 5 mm BBFO probe (400 MHz for ${ }^{1} \mathrm{H} ; 101 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) or a Bruker 500 Avance III HD with a 5 mm BBO Nitrogen cryoprobe (500 MHz for ${ }^{1} \mathrm{H}$; 126 MHz for ${ }^{13} \mathrm{C}$). The proton signal for non-deuterated solvent ($\delta 7.27$ for $\mathrm{CHCl}_{3}, \delta 2.50$ for DMSO) was used as an internal reference for ${ }^{1} \mathrm{H}$ NMR spectra. For ${ }^{13} \mathrm{C}$ NMR spectra, chemical shifts are reported relative to the $\delta 77.00$ resonance of CDCl_{3} or $\delta 39.51$ resonance of DMSO$d 6$. Deuterated solvents $\left(\mathrm{CDCl}_{3}\right.$ and DMSO- $\left.d 6\right)$ were purchased from Cambridge Isotope Laboratories Inc. and used as received.

Low-Resolution Mass Spectrometry analyses were conducted on Waters Acquity UPLC (Acquity Binary Solvent Manager, 2777C-Autosampler, Acquity PDA, Acquity ELS and Acquity Column Manager) and Waters Acquity SQ systems from Waters Corporation, Milford, MA. Signal acquisition conditions included: Waters Acquity HSS T3, 2.1mmx50mm, C18, $1.7 \mu \mathrm{~m}$; Column Temperature $60^{\circ} \mathrm{C}$ as the column; 0.1% formic acid in water (v / v) as the mobile phase $\mathrm{A} ; 0.1 \%$ formic acid in acetonitrile (v / v) as the mobile phase B; $1.25 \mathrm{~mL} / \mathrm{min}$ as the flow and ESCI (ESI $+/$-, APCI $+/$-), $100-2000 \mathrm{~m} / \mathrm{z}$ scan, 0.4 sec scan time, Centroid as the MS method.

High-Resolution Mass Spectrometry analyses were conducted on an Agilent 6220 TOF mass spectrometer (Agilent Technologies, Wilmington, DE) in positive or negative electrospray mode. The system was calibrated to greater than 1 ppm accuracy across the mass range prior to analyses according to manufacturer's specifications. The samples were separated using UHPLC on an Agilent 1200 (Agilent Technologies, Wilmington, DE) system prior to mass spectrometric analysis. The resulting spectra were automatically lockmass corrected and the target mass ions and any confirming adducts ($\mathrm{Na}+, \mathrm{NH}+$) were
extracted and combined as a chromatogram. The mass accuracy was calculated for all observed isotopes against the theoretical mass ions derived from the chemical formula using MassHunter software (Agilent Technologies, Wilmington, DE).

Analytical thin layer chromatography (TLC) was performed on $60 \mathrm{~F}_{254}$ glass plates precoated with a $0.25-\mathrm{mm}$ thickness of silica gel purchased from EMD chemical Inc. and TLC plates were visualized with UV light. Column chromatography was performed on TELEDYNE ISCO devices; CombiFlash ${ }^{\circledR}$ Rf+ version: 2.0.4.

General Procedure for Radical Thiol-Ene Reactions:

A vial was charged with an olefin (0.5 mmol), a thiol $(2.00 \mathrm{mmol})$ and bismuth oxide ($1-3$ $\mathrm{mol} \%$) in the dark. Dimethylformamide (0.7 mL) was added and the resulting mixture was degassed for 5 minutes (nitrogen stream). Bromotrichloromethane ($10 \mathrm{~mol} \%$) was then added and the mixturewas irradiated with household bulb lamp (25 W). Upon completion of the reaction, the mixture was concentrated and purified on ISCO to provide the corresponding thioether or thioester (6a-r, 7-13).

Characterization of compounds 3, 6a-r and 7-13

3

6-(benzylthio)hexan-1-ol (3): This compound was obtained using general procedure from 0.50 mmol of hex-5-en-1-ol. 3 was isolated after purification on ISCO with $0-50 \%$ gradient EtOAc/heptane in $\mathbf{9 8 \%}$ yield $(110 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta \mathrm{ppm} 7.32$ (d, $J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.33 \mathrm{ppm}(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 138.6$, $128.8,128.4,126.8,62.8,36.3,32.5,31.2,29.1,28.5,25.3$. HRMS (ESI), m/z: calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$225.1308, found 225.1305.

Octyl(phenethyl)sulfane (6a): This compound was obtained using general procedure from 0.25 mmol of 1 -octene. 6a was isolated after purification on ISCO with $30: 1$ heptane/ $\mathrm{Et}_{2} \mathrm{O}$ in $\mathbf{9 3 \%}$ yield (58 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm} 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-$ $7.20(\mathrm{~m}, 3 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.56(\mathrm{~m}$, $2 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 8 \mathrm{H}), 0.91 \mathrm{ppm}(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 140.7,128.4,128.4,126.3,36.4,33.7,32.3,31.8,29.7,29.2,29.2$, 28.9, 22.6, 14.1. HRMS (ESI), m/z: calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$251.1828, found 251.1755.

6b
3-(phenethylthio)propan-1-ol (6b): This compound was obtained using general procedure from 0.25 mmol of allyl-alcohol. 6b was isolated after purification on ISCO with $30: 1$ heptane/ $\mathrm{Et}_{2} \mathrm{O}$ in $\mathbf{8 2 \%}$ yield (40 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm} 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26$ - $7.18(\mathrm{~m}, 3 \mathrm{H}), 3.76(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.95-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.68 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 140.5$, 128.4, 126.3, 61.8, 36.2, 33.6, 31.9, 29.0. LRMS (ESI), m/z $197.4[\mathrm{M}+\mathrm{H}]^{+}$.

(4-methoxybenzyl)(octyl)sulfane (6c): This compound was obtained using general procedure from 0.25 mmol of 1 -octene. $\mathbf{6 b}$ was isolated after purification on ISCO with 30:1 heptane/ $\mathrm{Et}_{2} \mathrm{O}$ in $\mathbf{9 2 \%}$ yield (61 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm} 7.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.56$ (quint, $J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.19(\mathrm{~m}, 8 \mathrm{H}), 0.89 \mathrm{ppm}(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 158.5,130.7,129.8,113.8,55.2,35.6,31.8,31.3,29.3,29.2,29.1$, 28.9, 22.6, 14.1. LRMS (ESI), m/z $267.6[\mathrm{M}+\mathrm{H}]^{+}$.

Methyl N-(tert-butoxycarbonyl)-S-octyl-L-cysteinate ($\mathbf{6 d}$): This compound was obtained using general procedure from 0.25 mmol of 1-octene. $\mathbf{6 d}$ was isolated after purification on ISCO with $0-50 \%$ gradient EtOAc/heptane in $\mathbf{9 4 \%}$ yield (82 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz) $\delta \mathrm{ppm} 5.39-5.32$ (br. s., 1 H), 4.53 (br. s., 1 H), 3.77 (s, 3 H), 2.96 (br. s., 2 H), 2.52 (t, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 10 \mathrm{H}), 0.89 \mathrm{ppm}(\mathrm{t}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 171.6,155.0,52.5,34.5,32.8,31.8,29.5,29.12,29.11$, 28.7, 28.3, 22.6, 14.0. HRMS (ESI), m/z: calculated for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{NNaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$370.2023, found 370.2027.

Methyl N-(tert-butoxycarbonyl)-S-(6-hydroxyhexyl)-L-cysteinate (6e): This compound was obtained using general procedure from 0.25 mmol of hex-5-en-1-ol. 6e was isolated after purification on ISCO with $0-50 \%$ gradient EtOAc/heptane in $\mathbf{9 9 \%}$ yield (83 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta \mathrm{ppm} 5.42-5.31$ (br. s., 1 H), $4.55-4.43$ (br. s., 1 H), 3.74 (s, 3 H), $3.60(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 1 \mathrm{H}), 1.60-$ $1.49(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.39-1.34 \mathrm{ppm}(\mathrm{m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 171.6$, $155.1,80.1,62.6,53.2,52.4,34.4,32.5,32.4,29.3,28.3,28.2,25.2$. HRMS (ESI), m/z: calculated for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NNaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 358.1659$, found 358.166.

Methyl N-(tert-butoxycarbonyl)-S-phenethyl-L-cysteinate (6f): This compound was obtained using general procedure from 0.25 mmol of styrene. $\mathbf{6 f}$ was isolated after purification on ISCO with $0-50 \%$ gradient EtOAc/heptane in $\mathbf{9 1 \%}$ yield (77 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta \mathrm{ppm} 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.39-5.31(\mathrm{~m}, 1 \mathrm{H}), 4.59-4.51(\mathrm{~m}$, 1 H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.99$ (br. s., 2 H), $2.90-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.77(\mathrm{~m}, 2 \mathrm{H}), 1.45 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 171.5,155.1,140.1,128.5,128.5,126.4,80.2,53.3,52.5$, 36.2, 34.6, 34.2, 28.3. HRMS (ESI), m/z: calculated for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NNaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$362.1397, found 362.1398 .

(S)-2-((tert-butoxycarbonyl)amino)-7-(phenethylthio)heptanoic acid ($\mathbf{6 g}$): This compound was obtained using general procedure from 0.25 mmol of (S)-2-((tert-butoxycarbonyl)amino)hept-6-enoic acid. $\mathbf{6 g}$ was isolated after purification on ISCO with $0-50 \%$ gradient EtOAc/heptane in $\mathbf{8 8 \%}$ yield (77 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ ppm 7.34-7.29 (m, 2H) $7.26-7.21(\mathrm{~m}, 3 \mathrm{H}) 5.07(\mathrm{~d}, J=8.31 \mathrm{~Hz}, 1 \mathrm{H}) 4.33(\mathrm{~d}, J=5.13 \mathrm{~Hz}, 1 \mathrm{H})$ 2.92-2.88(m, 2H) 2.81-2.77 (m, 2H) $2.54(\mathrm{t}, J=7.09 \mathrm{~Hz}, 2 \mathrm{H}) 1.95-1.00(\mathrm{~m}, 1 \mathrm{H}) 1.75-1.55$ $(\mathrm{m}, 3 \mathrm{H}) 1.54-1.35(\mathrm{~m}, 14 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 177.6,155.7,140.7,128.54$, 128.52, 126.3, 80.3, 53.3, 36.4, 33.7, 32.4, 32.1, 29.4, 28.4, 28. 3, 25.0. LRMS (ESI), m/z: 380.5 [M-H].

(S)-2-((tert-butoxycarbonyl)amino)-6-((2-methoxy-2-oxoethyl)thio)hexanoic acid (6h): This compound was obtained using general procedure from 0.25 mmol of (S)-2-((tert-butoxycarbonyl)amino)hex-5-enoic acid. 6h was isolated after purification on ISCO with 0-70\% gradient EtOAc/heptane in $\mathbf{8 6 \%}$ yield (75 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ ppm 5.04 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.85 (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.69$ (br. s., 1H), $1.65-1.57$ (m, 2H), 1.45 (s, 9H), 1.43 (br. s., $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 176.8,171.1,155.6,80.2,53.2,52.4,33.4,32.4,32.1$, 29.7, 28.6, 28.3, 28.2, 24.8. LRMS (ESI), m/z $372.31[\mathrm{M}+\mathrm{Na}]^{+}$.

Ethyl 11-(acetylthio)undecanoate ($\mathbf{6 i}$): This compound was obtained using general procedure from 0.50 mmol of ethyl undec-10-enoate. 6i was isolated after purification on ISCO with $0-20 \%$ gradient EtOAc/heptane $\mathbf{9 9 \%}$ yield (143 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$) δ ppm $4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.65$ - $1.49(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.18(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 195.9,173.8,60.1$, $34.3,30.6,29.4,29.3,29.3,29.2,29.1,29.05,29.01,28.7,24.9,14.2$. HRMS (ESI), m/z: calculated for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$289.1832, found 289.1828.

6j
(S)-2-((tert-butoxycarbonyl)amino)-7-(((R)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3oxopropyl)thio)heptanoic acid ($\mathbf{6 j}$): This compound was obtained using general procedure from 0.25 mmol of (S)-2-((tert-butoxycarbonyl)amino)hept-6-enoic acid. 6j was isolated after purification on ISCO with 0-50\% gradient EtOAc/heptane $\mathbf{9 0 \%}$ yield (115 mg) as colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta \mathrm{ppm} 5.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.51$ $(\mathrm{m}, 1 \mathrm{H}), 4.33-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.08-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.77$ $(\mathrm{m}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.35(\mathrm{~m}, 22 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126\right.$ $\mathrm{MHz}) \delta \mathrm{ppm} 171.8,163.3,155.6,155.3,138.0,115.1,81.5,80.4,80.1,54.8,54.4,53.3,52.8$, $36.9,34.4,32.4,31.8,28.4,28.3,28.2,24.8$. HRMS (ESI), m/z: calculated for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 478.2469$, found 478.2446.

6-((4-hydroxy-2-methylbutan-2-yl)thio)hexan-1-ol (6k): This compound was obtained using general procedure from 0.25 mmol of hex-5-en-1-ol. $\mathbf{6 k}$ was isolated after purification on ISCO with $0-70 \%$ gradient EtOAc/heptane in $\mathbf{5 5 \%}$ yield (30 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta \mathrm{ppm} 3.81(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.06$ (br. s., 2 H$), 1.81(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 62.7,60.1,43.9,43.1,32.5,29.4,29.2,28.8,27.8,25.2$. HRMS (ESI), m / z : calculated for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 243.1389$, found 243.1390 .

61

6-(cyclohexylthio)hexan-1-ol (6l): This compound was obtained using general procedure from 0.25 mmol of hex-5-en-1-ol. 61 was isolated after purification on ISCO with $0-50 \%$ gradient EtOAc/heptane in $\mathbf{8 9 \%}$ yield (48 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta \mathrm{ppm} 3.64$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.71$ $(\mathrm{m}, 2 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.48(\mathrm{~s}, 1 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.18(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 62.86,43.5,33.7,32.6,30.0,29.9,28.8,26.1,25.8,25.3$. LRMS (ESI), m/z $217.33[\mathrm{M}+\mathrm{H}]^{+}$.

6m
3-Methyl-3-((2-(pyridine-4-yl)ethyl)thio)butan-1-ol (6m): This compound was obtained using general procedure from 0.476 mmol of 4 -vinylpyridine. $\mathbf{6 m}$ was isolated after purification on ISCO with $0-100 \%$ gradient EtOAc/heptane in $\mathbf{5 0 \%}$ yield (54 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm} 8.54(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.93-2.79(\mathrm{~m}, 4 \mathrm{H}), 1.84(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta$ ppm 149.8, 123.9, 59.9, 44.5, 43.6, 35.1, 29.3, 28.2. LRMS (ESI), m/z $226.3[\mathrm{M}+\mathrm{H}]^{+}$.

6n
3-Methyl-3-((2-(pyridine-2-yl)ethyl)thio)butan-1-ol (6n): This compound was obtained using general procedure from 0.476 mmol of 2 -vinylpyridine. $\mathbf{6 n}$ was isolated after purification on ISCO with $0-100 \%$ gradient EtOAc/heptane in $\mathbf{4 6 \%}$ yield (49 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta \mathrm{ppm} 8.56(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}$, $2 \mathrm{H}), 3.79(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.03(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.95(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.33(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta \mathrm{ppm} 159.7,148.9,136.9,123.5,121.7,59.9,44.4$, 43.6, 37.7, 29.4, 27.5. LRMS (ESI), m/z $226.3[\mathrm{M}+\mathrm{H}]^{+}$.

60

4-(2-((4-methoxybenzyl)thio)ethyl)pyridine (60): This compound was obtained using general procedure from 0.5 mmol of 4 -vinylpyridine. $\mathbf{6 0}$ was isolated after purification on ISCO with 0 50% gradient EtOAc/heptane then $9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ in $\mathbf{9 6 \%}$ yield (124 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta \mathrm{ppm} 8.52-8.47(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 6.89-6.82 (m, 2H), 3.87-3.74 (m, 3H), 3.69 (s, 2H), 2.86-2.74 (m, 2H), 2.72-2.58 $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 158.7,149.78,149.2,149.2,129.95,129.94$, 129.90, 123.8, 113.9, 55.3, 35.9, 35.1, 31.4. LRMS (ESI), m/z 260.4 [M+H] ${ }^{+}$.

Cyclohexyl(4-methoxybenzyl)sulfane (6p): This compound was obtained using general procedure from 0.50 mmol of cyclohexene. $\mathbf{6 p}$ was isolated after purification on ISCO with 30:1 heptane $/ \mathrm{Et}_{2} \mathrm{O}$ in $\mathbf{8 9 \%}$ yield (105 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta \mathrm{ppm} 7.26-$ $7.22(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{tt}, J=3.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ $-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.22(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $126 \mathrm{MHz}) \delta \mathrm{ppm} 158.41,130.9,130.5,129.7,113.9,113.8,55.2,42.8,33.9,33.4,26.0,25.9$. LRMS (ESI), m/z $237.4[\mathrm{M}+\mathrm{H}]^{+}$.

6q

2-(3-(4-methoxybenzylthio)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (6q): This compound was obtained using general procedure from 0.50 mmol of allylboronic acid pinacol ester. $\mathbf{6 q}$ was isolated after purification on ISCO with $0-20 \%$ gradient EtOAc/heptane in $\mathbf{9 0 \%}$ yield (143 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm} 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.70$ (quint., $J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 12 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 158.3$, $130.6,129.8,113.7,82.9,55.1,35.2,33.3,24.7,23.7,10.5$ (broad multiplet, coupling with boron). GCMS (ESI), m/z $322.2\left[\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{BO}_{3} \mathrm{~S}\right]$.

S-(4-bromophenethyl) ethanethioate ($\mathbf{6 r}$): This compound was obtained using general procedure from 0.50 mmol of 1-bromo-4-vinylbenzene. $6 \mathbf{r}$ was isolated after purification on ISCO with $0-50 \%$ gradient EtOAc/heptane in $\mathbf{8 5 \%}$ yield (110 mg) as yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta \mathrm{ppm} 7.43(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.07(\mathrm{~m}, 2 \mathrm{H})$, $2.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 62.9,43.5,33.7,32.6$, 30.0, 29.9, 28.7, 26.1, 25.8, 25.3. LRMS (ESI), m/z $260.18[\mathrm{M}+\mathrm{H}]^{+}$.

(2R,3R,4R,5R,6R)-2-(acetoxymethyl)-6-(3-(((R)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)thio)propyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (7): This compound was obtained using general procedure from 0.537 mmol of ($2 R, 3 R, 4 R, 5 R, 6 R$)-2-(acetoxymethyl)-6-allyltetrahydro-2H-pyran-3,4,5-triyl triacetate. 7 was isolated after purification on ISCO with 0$100 \%$ gradient EtOAc/heptane in $\mathbf{6 5 \%}$ yield (212 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta \operatorname{ppm} 5.35(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 5.31(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=5.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{t}, J=$
$9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.52 (br. s., 1H), 4.25 (dd, $J=5.3,12.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.17 (ddd, $J=3.1,5.8,11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.09$ (dd, $J=2.5,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.02-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.67-$ $2.52(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.76-$ $1.59(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta \mathrm{ppm} 171.4,170.5,170.0,169.5$, $169.4,155.0,80.0,72.1,70.23,70.20,68.7,68.6,62.2,53.2,52.4,34.3,32.0,28.2,24.7,23.9$, 20.59, 20.57, 20.54, 20.5. HRMS (ESI), m/z: calculated for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{NO}_{13} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 608.2371$, found 608.2387.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(3-(acetylthio)propoxy)tetrahydro-2H-pyran-3,4,5triyl triacetate (8): This compound was obtained using general procedure from 0.772 mmol of ($2 R, 3 R, 4 S, 5 R, 6 R$)-2-(acetoxymethyl)-6-(allyloxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate. $\mathbf{8}$ was isolated after purification on ISCO with $0-100 \%$ gradient EtOAc/heptane in 74\% yield (266 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm} 5.21(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=8.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=4.7,12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15(\mathrm{dd}, J=2.6,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{td}, J=5.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{ddd}, J=2.8,4.8,9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{ddd}, J=5.3,7.5,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.07$ $(\mathrm{s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.79(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta \mathrm{ppm}$ $195.3,170.4,170.0,169.2,169.1,100.5,72.6,71.6,71.1,68.2,68.0,61.7,30.4,29.1,25.4,20.5$, 20.41, 20.36. HRMS (ESI), m/z: calculated for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{11} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 465.1425$, found 465.1437.

(6R,16S)-16-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-6-(methoxycarbonyl)-2,2-dimethyl-4,13-dioxo-3,12-dioxa-8-thia-5,14-diazaheptadecan-17-oic acid (9): This compound was obtained using general procedure from 0.25 mmol of (S)-2-((()9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(((allyloxy)carbonyl)amino)propanoic acid. 9 was isolated after purification on ISCO with $0-10 \%$ gradient $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in 91% yield (147 mg) as white foam. ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.6,500 \mathrm{MHz}\right) \delta \mathrm{ppm} 12.85-12.62$ (br. s., 1 H), 7.89 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.71 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.25-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.06$ $(\mathrm{m}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.27(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.77-$ $2.69(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- ${ }_{6}$,
$126 \mathrm{MHz}) \delta$ ppm 1712.0, 171.6, 156.2, 155.9, 155.3, 143.8, 143.8, 140.7, 127.6, 127.07, 125.23, 120.12, 78.43, 65.71, 62.59, 53.89, 53.63, 51.98, 46.59, 41.43, 32.47, 28.58, 28.11, 27.83. HRMS (ESI), m/z: calculated for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 646.2429$, found 646.2441 .

(S)-2-((R)-1-(((R)-2-amino-3-(4-methoxyphenyl)propanoyl)-L-isoleucyl)pyrrolidine-2-carboxamido)-7-(((R)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropyl)thio)heptanoic acid (10): This compound was obtained using general procedure from 0.125 mmol of $\mathbf{S 5}$. 10 was isolated after purification on ISCO with $0-10 \%$ gradient $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathbf{7 5 \%}$ yield (72 mg) as white solid. ${ }^{1} \mathrm{H}$ NMR (MeOD, 500 MHz) $\delta \mathrm{ppm} 7.19(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.92-6.88(\mathrm{~m}, 2 \mathrm{H}), 4.89$ (br. s., 7 H), 4.59 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.34-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80-3.76(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{dd}, \mathrm{J}=$ $5.3,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=7.9,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 1 \mathrm{H})$, 2.04-1.93 (m, 2H), 1.92-1.81 (m, 2H), 1.79-1.61 (m, 2H), $1.60-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$, $1.36(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.75$ $(\mathrm{d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 178.3,173.5,173.4,171.6,169.9$, $160.8,157.9,131.7,127.8,115.5,80.9,61.5,56.8,56.2,55.9,55.8,55.3,53.0,38.1,36.9,34.7$, $33.3,30.5,29.8,29.3,28.9,25.7,25.6,25.3,15.5,11.1$. HRMS (ESI), m/z: calculated for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 766.4055$, found 766.4066.

11

S-(7-oxo-7-((4-phenylthiazol-2-yl)-I2-azanyl)heptyl) ethanethioate (11): This compound was obtained using general procedure from N-(4-phenylthiazol-2-yl)hept-6-enamide (3.5 mmol) $\mathbf{S 9}$. 11 was isolated after purification on ISCO with $0-20 \%$ gradient EtOAc/heptane as white solid in $\mathbf{6 1 \%}$ yield (775 mg). 256 mg of N-(4-phenylthiazol-2-yl)hept-6-enamide $\mathbf{S 9}$ was recovered, BRSM yield 82\%. ${ }^{\mathrm{l}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ ppm 11.70 (br. s., 1 H), 7.83 (d, $J=7.4 \mathrm{~Hz}$, 2H), $7.46-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 2.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.49-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.26-1.07(\mathrm{~m}, 2 \mathrm{H}), 1.04-0.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$ δ ppm 195.6, 171.2, 159.5, 149.0, 133.9, 128.6, 127.9, 125.9, 107.5, 76.7, 76.4, 35.1, 30.2, 28.8,
28.6, 27.9, 27.9, 24.0. HRMS (ESI), m/z: calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 363.1195$, found 363.1204.

12

S-(5-((3S,6R,9S,14aR)-9-((S)-sec-butyl)-6-(4-methoxybenzyl)-1,4,7,10-tetraoxotetradecahydropyrrolo[1,2-a][1,4,7,10]tetraazacyclododecin-3-yl)pentyl)
ethanethioate (12): This compound was obtained using general procedure from 0.045 mmol of S6. 12 was isolated after purification on ISCO with $0-10 \%$ gradient $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathbf{8 7 \%}$ yield $(23 \mathrm{mg})$ as white foam. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta \mathrm{ppm} 7.17(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 6.83-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.66(\mathrm{~m}$, $2 \mathrm{H}), 4.48(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{td}, J=7.5,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 3.51 (td, $J=7.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (dd, $J=7.8,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.76$ $(\mathrm{m}, 1 \mathrm{H}), 2.80-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.72$ $(\mathrm{m}, 1 \mathrm{H}), 1.65-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.89-$ $0.83(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 195.9,173.6,173.5,173.2,171.8,158.3$, $129.9,128.7,113.9,57.7,57.4,55.2,53.1,52.8,47.1,33.8,33.5,30.6,29.2,28.9,28.8,28.3$, 25.1, 25.0, 24.9, 24.7, 15.6, 10.5. LRMS (ESI), m/z $589.5[\mathrm{M}+\mathrm{H}]^{+}$and $611.5[\mathrm{M}+\mathrm{Na}]^{+}$.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(3-((3-oxo-3-((4-
sulfamoylphenethyl)amino)propyl)thio)propoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (13): This compound was obtained using general procedure from ($2 R, 3 R, 4 S, 5 R, 6 R$)-2-(acetoxymethyl)-6-(allyloxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (0.13 mmol). $\mathbf{1 3}$ was isolated after purification on ISCO with 20:1 DCM/MeOH as white solid in $\mathbf{8 7 \%}$ yield (76 mg).
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz},\right) \delta \mathrm{ppm} 8.02-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.71(\mathrm{~m}, 2 \mathrm{H})$, 4.22-4.12 (m, 1H), 4.06-3.93(m, 2H), 3.84-3.71(m, 1H), 3.62-3.49(m, 1H), 3.37-3.25 (m, $2 \mathrm{H}), 2.81-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.02(\mathrm{~s}$, $3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.67(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta \mathrm{ppm}$ $170.4,170.2,170.0,169.5,169.2,169.0,162.3,143.7,142.0,129.1,125.6,99.4,72.0,70.9,70.5$, 68.2, 67.7, 61.7, 35.70, 34.8, 30.7, 29.0, 27.3, 27.0, 20.5, 20.3, 20.2, 19.9. HRMS (ESI), m/z: calculated for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{13} \mathrm{~S}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$694.2310, found 694.2316.

Synthesis and characterization of novel intermediates

((S)-2-((R)-1-(((R)-2-amino-3-(4-methoxyphenyl)propanoyl)-L-isoleucyl)pyrrolidine-2-carboxamido)hept-6-enoic acid (S5): This compound was obtained using typical Fmoc-2CTC resin solid phase peptide synthesis following the sequence shown in Scheme 2 from 1.2 mmol of S1. S5 was obtained in $\mathbf{9 3 \%}$ yield (592 mg) as off-white foam. ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 500 \mathrm{MHz}$) $\delta \mathrm{ppm} 8.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{dd}, J=10.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (dd, $J=9.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=5.5,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}$, $2 \mathrm{H}), 1.90-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.30-$ $1.18(\mathrm{~m}, 1 \mathrm{H}), 0.88-0.75(\mathrm{~m}, 2 \mathrm{H}), 0.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.58(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm} 174.1,172.0,171.0,168.5,168.2,158.3,138.8,130.4,127.0$, $114.7,113.7,59.2,54.9,54.5,54.1,53.1,46.9,36.6,34.8,33.3,31.9,27.1,24.2,23.8,23.6,21.1$, 14.7, 10.3. HRMS (ESI), m/z: calculated for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 531.3177$, found 531.3183.

Scheme 3. Macrocyclization towards S6, precursor of compound 12.

(3S,6R,9S,14aR)-9-((S)-sec-butyl)-6-(4-methoxybenzyl)-3-(pent-4-en-1-
yl)decahydropyrrolo[1,2-a][1,4,7,10]tetraazacyclododecine-1,4,7,10-tetraone (S6): To a
solution of TPTU ($288 \mathrm{mg}, 0.969 \mathrm{mmol}$) and HOBTM ($166 \mathrm{mg}, 1.09 \mathrm{mmol}$) in 180 ml DMF, was added DIPEA to adjust the pH of the mixture to $7 . \mathbf{S 5}(200 \mathrm{mg}, 0.377 \mathrm{mmol})$ was dissolved in 115 ml DMF was then added dropwise using a dropping funnel. After 1 hr LC/MS showed reaction was done. The mixture was quenched with water and extract with EtOAc (4x). Combined organic layers were washed with diluted sodium bicarbonate solution, 20% citric acid and then brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude material was purified on ISCO using $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(0 \%-10 \%)$ to give $\mathbf{S 6}$ as a white solid in $\mathbf{8 2 \%}$ yield. ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right) \delta \mathrm{ppm} 8.75(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.77-5.66(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.89(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dt}, J=6.4,9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.37(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.48(\mathrm{~m}$, $1 \mathrm{H}), 2.89(\mathrm{dd}, J=6.1,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=9.2,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.09-$ $1.99(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{ddd}, J=4.0$, $7.6,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.11(\mathrm{~m}, 2 \mathrm{H}), 1.11-1.01(\mathrm{~m}$, $1 \mathrm{H}), 0.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 126 \mathrm{MHz}\right) \delta \mathrm{ppm}$ $173.4,173.2,172.7,171.5,157.7,138.3,130.0,129.8,114.9,113.4,56.9,56.0,54.9,53.4,53.1$, $46.0,33.7,32.5,32.5,29.5,24.5,24.4,24.1,24.0,15.0,10.3$. HRMS (ESI), m/z: calculated for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$513.3071, found 513.3075.

\boldsymbol{N}-(4-phenylthiazol-2-yl)hept-6-enamide (S9): A solution of hept-6-enoic acid (S8) (803 mg, $6.26 \mathrm{mmol})$ in DMF (6 mL) were stirred with N-methyl morpholine $(1.84 \mathrm{~mL}, 16.7 \mathrm{mmol})$ at rt for 5 min . HATU ($2.38 \mathrm{~g}, 6.26 \mathrm{mmol}$) solid was then added and mixture was stirred at rt for 15 min to afford a bright yellow solution. Solid 4-phenylthiazol-2-amine (S7) ($736 \mathrm{mg}, 4.18 \mathrm{mmol}$) was added, and the resulting bright orange mixture was stirred at rt for 48 h . The reaction mixture was diluted with ether, the organic layer was washed with water and brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford an oily residue, which was purified by ISCO using $0-20 \%$ gradient EtOAc/heptane to afford $\mathbf{S 9}$ as a white solid in $\mathbf{5 8 \%}$ yield (1.04 g). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta \mathrm{ppm} 11.68$ (br. s., 1 H$), 7.84(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.47-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 5.74-5.63(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.88(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.78(\mathrm{~m}, 4 \mathrm{H})$, $1.43(\operatorname{td}, J=7.8,15.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta=171.5$, $159.9,149.4,138.2,134.3,128.9,128.3,126.2,114.6,107.8,77.3,76.7,35.5,33.1,28.0,24.1$. HRMS (ESI), m/z: calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$287.1213, found 287.1212.

Control Experiment with Sunlight

6-(benzylthio)hexan-1-ol (3): This compound was obtained using general procedure with the exception that sunlight was used as the light source for 6 h from 0.50 mmol of hex- 5 -en-1-ol. 3 was isolated after purification on ISCO with $0-50 \%$ gradient EtOAc/heptane in 94% yield (105 mg) as colorless oil. A control experiment with no catalyst proceeded with $<20 \%$ conversion.

