A Catalyst-Free Synthesis of Phosphinic Amides using O-Benzoylhydroxylamines

Rui Zhu, Chongqing Pan and Zhenhua Gu*

Supporting Information

General Information

The reactions were carried out in Schlenk tubes fitted with glass stoppersunder under open air atmosphere. Flash column chromatography was performed using 40-63 µm silica gel as the stationary phase. ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra were recorded on a Bruker AC-400 FT spectrometer using solvent residue as an internal reference (7.26 and 77.00 ppm for CDCl₃, respectively). High resolution mass spectral analysis (HRMS) was performed on Water XEVO G2 Q-TOF (Waters Corporation).

EPR experiments

EPR spectra was recorded at 298 K on EPR spectrometer operated at 9.062 GHz. Typical spectrometer parameters are shown as follows, scan range: 10 mT; center field set: 324 mT; time constant: 0.1s; scan time: 60 s; modulation amplitude: 0.3 mT; modulation frequency: 100 kHz; microwave power: 10 mW.

The interaction between diphenylphosphine oxide, N-benzoyloxylmorpholine, and K_2CO_3 was investigated by electron paramagnetic resonance (EPR) (X band, 9.1GHz, RT): diphenylphosphine oxide (0.20 mmol), N-benzoyloxylmorpholine (1.2 equiv), K_2CO_3 (1.1 equiv) and t-AmylOH (2 ml) were added sequentially in a schlenk tube under open air atmosphere. The reaction was stirred at 105 °C for 20 min, then put the reaction system into liquid nitrogen. Afterwards, 60 μ L of the melting mixture was quickly taken out into a small tube and analyzed by EPR.

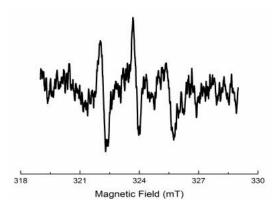


Figure S1 The EPR spectra

Typical Procedures for the preparation of 3a:

N-benzoyloxylmorpholine **2a** (50 mg, 0.24 mmol, 1.2 equiv) was added to a solution of **1a** (40 mg, 0.20 mmol, 1.0 equiv) and potassium carbonate (30 mg, 0.22 mmol, 1.1 equiv) in *t*-amyl alcohol (2.0 mL) at room temperature. The mixture was stirred at 105 °C for 8 h under air atmosphere before being diluted with water (15 mL) and extracted with dichloromethane (3×10 mL). The combined organic layer was washed with brine (15 mL), dried over sodium sulfate, filtrated and concentrated. The crude product was purified by column chromatography (ethyl acetate, then hexane/dichloromethane 40/1) to afford **3a** (49 mg, 85%) as white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.97-7.78 (m, 4 H), 7.58-7.38 (m, 6 H), 3.70 (t, J = 4.6 Hz, 4 H), 3.6-2.99 (m, 4 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 132.4 (d, J = 9.1 Hz), 131.9 (d, J = 2.6 Hz), 130.8 (d, J = 128.3 Hz), 128.7 (d, J = 12.3 Hz), 67.2 (d, J = 6.7 Hz), 44.9; ³¹**P NMR** (162 MHz, CDCl₃) δ 29.08; HRMS (ESI) calcd. for C₁₆H₁₉NO₂P [M + H]⁺: 288.1153, found 288.1154.

3b (52 mg, 81%, reaction time: 6 h) (R_f 0.4, EA) was prepared following the typical procedure in 0.20 mmol scale as colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.01-7.70 (m, 4 H), 7.26-7.03 (m, 4 H), 3.69 (t, J = 4.6 Hz, 4 H), 3.15-2.96 (m, 4 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.2 (dd, J = 252.5 (C_{C,F}), 3.3 Hz), 134.8 (dd, J = 10.4, 8.8 Hz), 126.7 (dd, J = 132.7, 3.4 (C_{C,F}) Hz), 116.2 (dd, J = 21.2, 13.6 Hz), 67.2 (d, J = 6.6 Hz), 45.0; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -106.43; ³¹**P NMR** (162 MHz, CDCl₃) δ 27.26; HRMS (ESI) calcd. for

 $C_{16}H_{17}F_2NO_2P [M + H]^+$: 324.0965, found 324.0966.

3c (49 mg, 78%, reaction time: 10 h) (R_f 0.3, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.82-7.65 (m, 4 H), 7.32-7.18 (m, 4 H), 3.68 (t, J = 4.4 Hz, 4 H), 3.19-2.91 (m, 4 H), 2.35 (s, 6 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 142.3 (d, J = 2.8 Hz), 132.3 (d, J = 9.4 Hz), 129.4 (d, J = 12.8 Hz), 127.7 (d, J = 130.8 Hz), 67.2 (d, J = 6.8 Hz), 44.9, 21.5; ³¹**P NMR** (162 MHz, CDCl₃) δ 29.58; HRMS (ESI) calcd. for $C_{18}H_{23}NO_2P$ [M + H]⁺: 316.1466, found 316.1463.

3d (61 mg, 88%, reaction time: 8 h) (R_f 0.4, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.84-7.72 (m, 4 H), 7.50-7.41 (m, 4 H), 3.69 (t, J = 4.4 Hz, 4 H), 3.19-2.95 (m, 4 H), 1.29 (s, 18 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 155.2 (d, J = 2.7 Hz), 132.2 (d, J = 9.4 Hz), 127.8 (d, J = 130.6 Hz), 125.60 (d, J = 12.5 Hz), 67.25 (d, J = 6.9 Hz), 44.89, 34.90, 31.05; ³¹**P NMR** (162 MHz, CDCl₃) δ 29.25; HRMS (ESI) calcd. for $C_{24}H_{35}NO_2P$ [M + H]⁺: 400.2405, found 400.2404.

3e (61 mg, 88%, reaction time: 10 h) (R_f 0.3, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.87-7.69 (m, 4 H), 7.00-6.91 (m, 4 H), 3.83 (s, 6 H), 3.69 (t, J = 4.4 Hz, 4 H), 3.11-2.99 (m, 4 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 162.5, 134.1 (d, J = 10.4 Hz), 122.4 (d, J = 135.2 Hz), 114.2 (d, J = 13.3 Hz), 67.3 (d, J = 6.9 Hz), 55.3, 44.9; ³¹**P NMR** (162 MHz, CDCl₃) δ 29.27; HRMS (ESI) calcd. for $C_{18}H_{23}NO_4P$ [M + H]⁺: 348.1365, found 348.1368.

3f (74 mg, 84%, reaction time: 12 h) (R_f 0.3, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (dd, J = 11.2, 8.0 Hz, 4 H), 7.70 (dd, J = 8.4, 3.2 Hz, 4 H), 7.66-7.55 (m, 4 H), 7.54-7.41 (m, 4 H), 7.41-7.33 (m, 2 H), 3.76 (t, J = 4.6 Hz, 4 H), 3.25-3.06 (m, 4 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 144.8 (d, J = 2.8 Hz), 139.8, 132.87 (d, J = 9.4 Hz), 129.3 (d, J = 130.4 Hz), 128.9, 128.1, 127.5, 127.4, 67.2 (d, J = 6.6 Hz), 45.0; ³¹**P NMR** (162 MHz, CDCl₃) δ 29.11; HRMS (ESI) calcd. for $C_{28}H_{27}NO_2P$ [M + H]⁺: 440.1779, found 440.1783.

3g (37 mg, 59%, reaction time: 15 h) (R_f 0.3, EA) was prepared following the typical procedure in 0.20 mmol scale as colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.50-7.36 (m, 4 H), 7.31-7.16 (m, 4 H), 3.71 (t, J = 4.4 Hz, 4 H), 3.26-3.09 (m, 4 H), 2.53 (s, 6 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 143.0 (d, J = 9.1 Hz), 132.7 (d, J = 11.5 Hz), 132.05, 131.90 (t, J = 3.2 Hz), 130.0 (d, J = 122.1 Hz), 125.39 (d, J = 12.9 Hz), 67.36 (d, J = 5.3 Hz), 44.96, 21.58 (d, J = 3.7 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 34.60; HRMS (ESI) calcd. for $C_{18}H_{23}NO_2P$ [M + H]⁺: 316.1466, found 316.1465.

3h (47 mg, 68%, reaction time: 12 h) (R_f 0.3, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.48-7.32 (m, 6 H), 7.09-6.98 (m, 2 H), 3.83 (s, 6 H), 3.70 (t, J = 4.4 Hz, 4 H), 3.15-3.01 (m, 4 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 159.7 (d, J = 15.6 Hz), 132.2 (d, J = 127.8 Hz), 129.9 (d, J = 14.6 Hz), 124.3 (d, J = 8.7 Hz), 118.1 (d, J = 2.7 Hz), 117.3 (d, J = 10.3 Hz), 67.2 (d, J = 6.7 Hz), 55.4, 45.0; ³¹**P NMR** (162 MHz, CDCl₃) δ 29.16; HRMS (ESI) calcd. for $C_{18}H_{23}NO_4P$ [M + H]⁺: 348.1365, found 348.1370.

3i (57 mg, 83%, reaction time: 12 h) (R_f 0.3, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (bd, J = 11.6 Hz, 4 H), 7.11 (bs, 2 H), 3.70 (t, J = 4.6 Hz, 4 H), 3.14-2.96 (m, 4 H), 2.33 (s, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ 138.3 (d, J = 12.9 Hz), 133.6 (d, J = 2.9 Hz), 130.7 (d, J = 127.0

Hz), 129.9 (d, J = 9.0 Hz), 67.25 (d, J = 6.5 Hz), 45.01, 21.27; ³¹**P NMR** (162 MHz, CDCl₃) δ 30.02; HRMS (ESI) calcd. for $C_{20}H_{27}NO_2P$ [M + H]⁺: 344.1779, found 344.1786.

3j (58 mg, 75%, reaction time: 12 h) (R_f 0.4, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.01-8.79 (m, 2 H), 8.01 (d, J = 8.4 Hz, 2 H), 7.92-7.82 (m, 2 H), 7.71-7.47 (m, 6 H), 7.47-7.34 (m, 2 H), 3,67 (t, J = 4.4 Hz, 4 H), 3.37-3.20 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ 133.9 (dd, J = 9.7, 6.9 Hz), 133.3 (d, J = 2.9 Hz), 133.1 (d, J = 11.4 Hz), 128.7 (d, J = 1.0 Hz), 128.7, 127.7, 127.6 (d, J = 4.6 Hz), 127.5, 127.0 (d, J = 85.4 Hz), 124.4 (d, J = 14.9 Hz), 67.3 (d, J = 4.9 Hz), 45.1; ³¹P NMR (162 MHz, CDCl₃) δ 35.65; HRMS (ESI) calcd. for C₂₄H₂₃NO₂P [M + H]⁺: 388.1466, found 388.1469.

3k (29 mg, 64%, reaction time: 9 h) (R_f 0.2, EA) was prepared following the typical procedure in 0.20 mmol scale as colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.85-7.71 (m, 2 H), 7.64-7.35 (m, 3 H), 3.75-3.58 (m, 4 H), 3.15-2.93 (m, 4 H), 1.71 (d, J = 13.6 Hz, 3 H); ¹³C **NMR** (100 MHz, CDCl₃) δ 132.1 (d, J = 123.5 Hz), 132.0 (d, J = 2.7 Hz), 131.3 (d, J = 9.5 Hz), 128.7 (d, J = 12.3 Hz), 67.1 (d, J = 7.0 Hz), 44.2, 13.8 (d, J = 92.3 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 35.43; HRMS (ESI) calcd. for C₁₁H₁₇NO₂P [M + H]⁺: 226.0997, found 226.1000.

3l (49 mg, 72%, reaction time: 10 h) (R_f 0.4, EA) was prepared following the typical procedure in 0.20 mmol scale as wihte solid. ¹**H NMR** (300 MHz, CDCl₃) δ 8.88 (d, J = 8.4 Hz, 1 H), 7.98 (d, J = 8.1 Hz, 1 H), 7.93-7.73 (m, 4 H), 7.64-7.34 (m, 6 H), 3.69 (t, J = 4.5 Hz, 4H), 3.26-3.05 (m, 4 H); ¹³**C NMR** (75 MHz, CDCl₃) δ 133.83 (d, J = 13.8 Hz), 133.78 133.6 (t, J = 11.3 Hz), 133.3 (d, J = 3.0 Hz), 132.3, 132.2 (d, J = 3.7 Hz), 131.9 (d, J = 3.7 Hz), 129.3 (d, J = 272.0 Hz), 128.8 (d, J = 1.7 Hz), 128.6 (d, J = 16.7 Hz), 126.9 (d, J = 95.1 Hz),

126.8 (d, J = 5.6 Hz), 126.3, 124.4 (d, J = 19.3 Hz), 67.2 (d, J = 5.9 Hz), 45.0; ³¹**P NMR** (121 MHz, CDCl₃) δ 32.40; HRMS (ESI) calcd. for C₂₀H₂₁NO₂P [M + H]⁺: 338.1310, found 338.1309.

3m (45 mg, 90%, reaction time: 9 h) (R_f 0.3, EA) was prepared following the typical procedure in 0.20 mmol scale as colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.87-7.67 (m, 2 H), 7.61-7.41 (m, 3 H), 6.95-6.70 (m, 0.1 H), 5.98-5.84 (m, 0.2 H), 5.84-5.67 (m, 0.9 H), 5.24-5.01 (m, 1.8 H), 3.67 (t, J = 4.6 Hz, 4 H), 3.18-2.99 (m, 4 H), 2.95-2.83 (m, 1.7 H), 1.94-1.88 (m, 0.3 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 132.0 (d, J = 2.7 Hz), 131.8 (dd, J = 9.2, 4.7 Hz), 131.1 (d, J = 121.4 Hz), 128.6 (dd, J = 12.2, 4.8 Hz), 127.7 (d, J = 8.6 Hz), 120.24 (d, J = 12.4 Hz), 67.07 (d, J = 6.6 Hz), 44.43 (d, J = 4.5 Hz), 33.7 (d, J = 87.5 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 34.41; HRMS (ESI) calcd. for C₁₃H₁₉NO₂P [M + H]⁺: 252.1153, found 252.1154.

3n (44 mg, 82%, reaction time: 8 h) (R_f 0.4, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.06-7.87 (m, 2 H), 7.87-7.73 (m, 2 H), 7.58-7.37 (m, 6 H), 3.87 (td, J = 8.4, 3.6 Hz, 1 H), 3.09-2.96 (m, 1 H), 2.96-2.83 (m, 1 H), 2.17 (bs, 1 H), 2.08-1.87 (m, 2 H), 1.87-1.62 (m, 2 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 133.0, 131.8 (d, J = 8.6 Hz), 131.5 (d, J = 112.6 Hz), 131.7 (dd, J = 12.0, 2.7 Hz), 131.1 (d, J = 8.7 Hz), 128.5 (dd, J = 11.2, 4.2 Hz), 56.9 (d, J = 84.4 Hz), 48.3 (d, J = 8.6 Hz), 26.6, 26.4 (d, J = 6.5 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 31.43; HRMS (ESI) calcd. for $C_{16}H_{19}NOP [M + H]^+$: 272.1204, found 272.1208.

3o (52 mg, 91%, reaction time: 8 h) (R_f 0.4, EA) was prepared following the typical procedure in 0.20 mmol scale as white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.94-7.79 (m, 4 H), 7.54-7.35 (m, 6 H), 3.00 (dd, J = 10.8, 6.4 Hz, 4 H), 1.72-1.45 (m, 6 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 132.2 (d, J = 10.0 Hz), 132.0 (d, J = 128.5 Hz), 131.5 (d, J = 2.7 Hz), 128.5 (d, J = 12.3 Hz), 45.7, 26.2 (d, J = 6.8 Hz), 24.5; ³¹**P NMR** (162 MHz, CDCl₃) δ 28.98;

HRMS (ESI) calcd. for $C_{17}H_{21}NOP [M + H]^+$: 286.1361, found 286.1357.

3p (45 mg, 91%, reaction time: 9 h) (R_f 0.3, EA) was prepared following the typical procedure in 0.20 mmol scale as colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.93-7.76 (m, 4 H), 7.55-7.36 (m, 6 H), 2.66 (s, 3 H), 2.63 (s, 3 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 132.3 (d, J = 9.2 Hz), 131.8 (d, J = 128.4 Hz) 131.7 (d, J = 2.7 Hz), 128.5 (d, J = 12.3 Hz), 37.1 (d, J = 2.4 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 31.27; HRMS (ESI) calcd. for $C_{14}H_{17}NOP$ [M + H]⁺: 246.1048, found 246.1044.

3q (37 mg, 67%, reaction time: 10 h) (R_f 0.3, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.00-7.80 (m, 4 H), 7.60-7.37 (m, 6 H), 3.61-3.47 (m, 1 H), 2.89-2.72 (m, 1 H), 2.58-2.40 (m, 1 H), 1.85 (bs, 1 H), 1.31 (dd, J = 15.6, 6.8 Hz, 3 H), 1.01 (t, J = 7.2 Hz, 3 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 131.8 (d, J = 183.7 Hz), 131.68 (dd, J = 40.6, 8.4 Hz), 131.67 (t, J = 2.5 Hz), 128.4 (dd, J = 15.6, 11.1 Hz), 52.6 (d, J = 83.6 Hz), 42.3 (d, J = 11.7 Hz), 15.3, 14.2 (d, J = 1.8 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 32.11; HRMS (ESI) calcd. for $C_{16}H_{21}NOP$ [M + H]⁺: 274.1361, found 274.1361.

3s (56 mg, 86%, reaction time: 12 h) (R_f 0.3, EA) was prepared following the typical procedure in 0.20 mmol scale as white solid. **Conformers were observed by NMR analysis.** ¹**H NMR** (400 MHz, CDCl₃) δ 8.11-7.92 (m, 2 H), 7.92-7.75 (m, 2 H), 7.62-7.34 (m, 6 H), 4.20 (t, J = 8.8 Hz, 0.1 H), 3.80 (dd, J = 6.8, 4.4 Hz, 0.9 H), 3.22-3.12 (m, 0.1 H),2.89-2.68 (m,1.9 H), 2.56-2.34 (m, 1 H), 2.15 (s, 1 H), 2.08-1.92 (m, 1 H), 1.69-1.11 (m, 8 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 133.1 (d, J = 92.8 Hz), 131.9, 131.7 (dd, J = 99.4, 8.4 Hz), 131.6 (dd, J = 12.4, 2.6 Hz), 130.9, 128.4 (dd, J = 11.0, 8.8 Hz), 59.9, 59.0, 51.5 (d, J = 4.7 Hz), 39.0 (d, J = 3.3 Hz), 27.3 (d, J = 5.3 Hz), 26.0, 23.4, 22.6; ³¹**P NMR** (162 MHz, CDCl₃) δ 30.63; HRMS (ESI) calcd. for C₂₀H₂₅NOP [M + H]⁺: 326.1674, found 326.1677.

3t (42 mg, 48%, reaction time: 12 h) (R_f 0.3, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.93-7.70 (m, 4H), 7.65-7.4 (m, 7H), 7.28 (d, J = 8.0 Hz, 3H), 3.81-3.68 (m, 1 H), 3.64 (d, J = 12.0 Hz, 2 H), 3.51 (bs, 1 H), 3.09 (d, J = 13.2 Hz, 1 H), 2.99-2.85 (m, 1 H), 2.52-2.35 (m, 4 H), 2.32-2.18 (m, 1 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 143.9, 132.5 (dd, J = 21.8, 2.7 Hz), 132.3, 131.4 (d, J = 11.1 Hz), 131.2 (d, J = 9.1 Hz), 129.0 (d, J = 10.6 Hz), 128.8 (d, J = 11.7 Hz), 128.7 (d, J = 209.5 Hz), 53.8 (d, J = 80.4 Hz), 46.4, 45.6 (dd, J = 34.5, 6.3 Hz), 29.7, 21.5; ³¹**P NMR** (162 MHz, CDCl₃) δ 28.88; HRMS (ESI) calcd. for C₂₃H₂₆N₂O₃PS [M + H]⁺: 441.1402, found 441.1401.

3u

3u (64 mg, 82%, reaction time: 8 h) (R_f 0.3, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.93-7.76 (m, 4 H), 7.60-7.41 (m, 6 H), 7.41-7.28 (m, 5 H), 3.61 (bd, J = 12.8 Hz, 4 H), 3.08 (bs, 4 H); ¹³C **NMR** (100 MHz, CDCl₃) δ 170.5, 135.4, 132.2 (d, J = 9.2 Hz), 132.1 (d, J = 2.7 Hz), 130.7 (d, J = 128.1 Hz), 129.8, 128.7 (d, J = 12.4 Hz), 128.5, 126.9, 45.0 (m); ³¹**P NMR** (162 MHz, CDCl₃) δ 29.66; HRMS (ESI) calcd. for $C_{23}H_{24}N_2O_2P$ [M + H]⁺: 391.1575, found 391.1576.

3v (49 mg, 74%, reaction time: 10 h) (R_f 0.3, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.92-7.77 (m, 4 H), 7.58-7.40 (m, 6 H), 3.68-3.56 (m, 2 H), 3.53-3.39 (m, 2 H), 3.16-3.06 (m, 2 H), 3.06-2.97 (m, 2 H),2.06 (s, 3 H); ¹³**C NMR** (75 MHz, CDCl₃) δ 169.1, 132.2 (d, J = 9.2 Hz), 132.1 (d, J = 2.7 Hz), 130.8 (d, J = 170.8 Hz), 128.8 (d, J = 12.5 Hz), 46.9 (d, J = 6.3 Hz), 44.9 (d, J = 5.9 Hz), 41.9 (d, J = 6.1 Hz), 21.3; ³¹**P NMR** (162 MHz, CDCl₃) δ 29.70; HRMS (ESI) calcd. for $C_{18}H_{22}N_2O_2P$ [M + H]⁺: 329.1419, found 329.1414.

$$\begin{array}{c|c}
O \\
P - N \\
N - NO_2
\end{array}$$

3w

3w (52 mg, 64%, reaction time: 10 h) (R_f 0.2, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.18-8.07 (m, 2 H), 7.97-7.84 (m, 4 H), 7.62-7.44 (m, 6 H), 6.87-6.75 (m, 2 H), 3.47-3.38 (m, 4 H), 3.31-3.20 (m, 4 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 154.9, 139.0, 132.3 (d, J = 9.2 Hz), 132.2 (d, J = 2.7 Hz), 130.8 (d, J = 128.3 Hz), 128.8 (d, J = 12.5 Hz), 125.9, 113.10, 47.8 (d, J = 6.5 Hz), 44.5; ³¹**P NMR** (162 MHz, CDCl₃) δ 29.53; HRMS (ESI) calcd. for $C_{22}H_{23}N_3O_3P$ [M + H]⁺: 408.1477, found 408.1477.

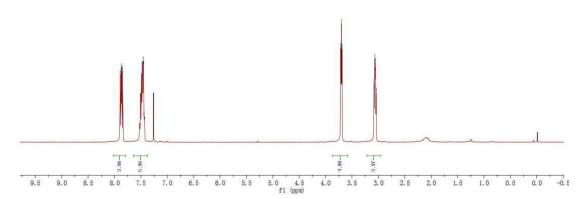
3x (40 mg, 67%, reaction time: 8 h) (R_f 0.1, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.98-7.75 (m, 4 H), 7.58-7.35 (m, 6 H), 3.93-3.72 (m, 1 H), 3.42-3.18 (m, 2 H), 2.96-2.74 (m, 2 H), 2.54 (bs, 1 H), 1.97-1.79 (m, 2 H), 1.66-1.46 (m, 2 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 132.2 (d, J = 9.2 Hz), 131.8 (d, J = 2.7 Hz), 131.6 (d, J = 128.5 Hz), 128.6 (d, J = 12.4 Hz), 67.7, 42.8, 34.9 (d, J = 6.5 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 29.52; HRMS (ESI) calcd. for $C_{17}H_{21}NO_2P$ [M + H]⁺: 302.1310, found 302.1310.

3y (56 mg, 89%, reaction time: 10 h) (R_f 0.2, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.98-7.67 (m, 4 H), 7.57-7.34 (m, 6 H), 3.50 (d, J = 5.6 Hz, 2 H), 3.37-3.20 (m, 2 H), 2.91 (bs, 1 H), 2.84-2.68 (m, 2 H), 1.76-1.57 (m, 2 H), 1.37-1.15 (m, 2 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 132.2 (d, J = 9.2 Hz), 131.7 (d, J = 2.7 Hz), 130.9, 128.5 (d, J = 12.3 Hz), 67.3, 44.9, 38.7, 29.2 (d, J = 6.7 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 29.50; HRMS (ESI) calcd. for $C_{18}H_{23}NO_2P$ [M + H]⁺: 316.1466, found 316.1468.

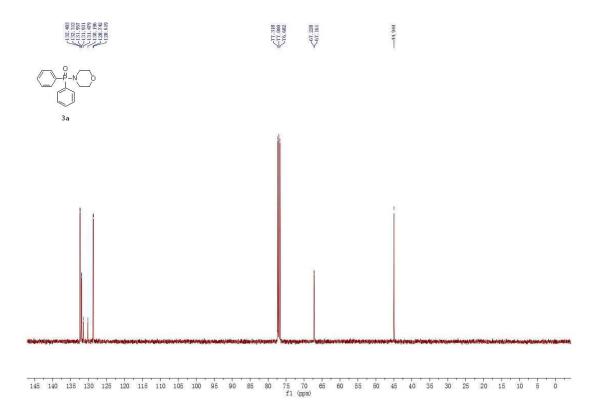
3z (39 mg, 53%, reaction time: 8 h) (R_f 0.5, dichloromethane/methanol 20/1 + 2% triethylamine) was prepared following the typical procedure in 0.20 mmol scale as yellow solid. 1 H NMR (400 MHz, CDCl₃) δ 8.08-7.74 (m, 4 H), 7.58-7.32 (m, 6 H), 3.40-3.24 (m, 2 H), 2.83-2.66 (m, 2 H), 2.48 (t, J = 5.0 Hz, 4 H), 2.42-2.26 (m, 1 H), 1.77 (bd, J = 12.0 Hz, 2 H), 1.65-1.45 (m, 6 H), 1.45-1.31 (m, 2 H); 13 C NMR (100MHz, CDCl₃) δ 132.1 (d, J = 9.0 Hz), 131.7 (d, J = 128.6 Hz), 131.6 (d, J = 2.7 Hz), 128.46 (d, J = 12.3 Hz), 62.4, 50.1, 44.7, 28.7 (d, J = 7.3 Hz), 26.2, 24.6; 31 P NMR (162 MHz, CDCl₃) δ 28.92; HRMS (ESI) calcd. for $C_{22}H_{30}N_2$ OP [M + H] $^+$: 369.2096, found 369.2091.

$$\begin{bmatrix}
O & H & O & Me \\
Ph & Ph & Ph & Ph & H
\end{bmatrix}$$

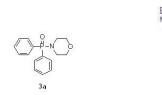
$$\begin{bmatrix}
O & H & O & Me \\
Ph & Ph & Ph & H
\end{bmatrix}$$


$$Conformers$$

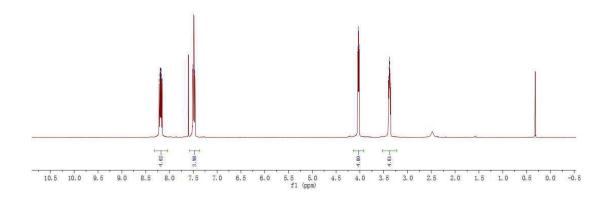
3A (40 mg, 67%, reaction time: 10 h) (R_f 0.2, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow oil. **Conformers were observed by NMR analysis.** ¹**H NMR** (400 MHz, CDCl₃) δ 8.00-7.72 (m, 4 H), 7.60-7.37 (m, 6 H), 3.77-3.67 (m, 0.7 H), 3.49-3.40 (m, 0.3 H), 3.17-3.09 (m, 0.3 H), 3.07-2.96 (m, 0.7 H), 2.88-2.77 (m, 0.7 H), 2.60 (td, J = 12.4, 2.4 Hz, 0.3 H), 2.25-2.09 (m, 1 H), 1.90-1.79 (m, 1 H), 1.79-1.41 (m, 3 H), 1.34-1.23 (m, 1 H), 0.99 (d, J = 6.8 Hz, 2 H), 0.87 (d, J = 6.4 Hz, 1 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 131.9 (d, J = 3.2 Hz), 131.80 (d, J = 91.8 Hz), 131.79 (d, J = 1.8 Hz), 131.7 (d, J = 2.7 Hz), 131.6 (d, J = 8.5 Hz), 131.4 (d, J = 8.8 Hz), 131.2 (d, J = 8.5 Hz), 128.6 (d, J = 2.4 Hz), 128.5 (d, J = 1.7 Hz), 128.4, 56.8, 56.0, 51.5, 50.7, 47.5 (d, J = 14.3 Hz), 41.9 (d, J = 10.0 Hz), 34.9, 33.5, 32.4, 31.6 (d, J = 12.5 Hz), 31.5, 25.8 (d, J = 8.5 Hz), 22.5, 18.7; ³¹**P NMR** (162 MHz, CDCl₃) δ 32.73, 31.19; HRMS (ESI) calcd. for C₁₈H₂₃NOP [M + H]⁺: 300.1517, found 300.1515.


3B (41 mg, 55%, reaction time: 7 h) (R_f 0.2, EA) was prepared following the typical procedure in 0.20 mmol scale as yellow oil. **Conformers were observed by NMR analysis.** ¹**H NMR** (400 MHz, CDCl₃) δ 8.05-7.83 (m, 2 H), 7.83-7.65 (m, 2 H), 7.59-7.45 (m, 4 H), 7.45-7.35 (m, 1 H), 7.33-7.00 (m, 6 H), 3.78-3.70 (m, 0.7 H), 3.48-3.40 (m, 0.3 H), 3.16-3.04 (m, 1 H), 2.97-2.84 (m, 1 H), 2.76-2.59 (m, 1 H), 2.58-2.47 (m, 1 H), 2.44-2.26 (m, 1 H), 1.87-1.74 (m, 2 H), 1.74-1.61 (m, 1 H), 1.61-1.48 (m, 1 H), 1.44-1.25 (m, 1 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 140.4, 131.9 (d, J = 2.6 Hz), 131.7 (d, J = 2.9 Hz), 131.6 (d, J = 8.5 Hz), 131.2 (d, J = 8.7 Hz), 129.0 128.59 (dd, J = 12.3, 11.4 Hz), 128.58 (d, J = 89.2 Hz), 128.2, 51.9, 51.1, 42.2 (d, J = 9.4 Hz), 39.2, 33.2 (d, J = 8.1 Hz), 30.4, 29.3; ³¹**P NMR** (162 MHz, CDCl₃) δ 32.88, 31.36; HRMS (ESI) calcd. for $C_{24}H_{27}NOP$ [M + H]⁺: 376.1830, found 376.1832.

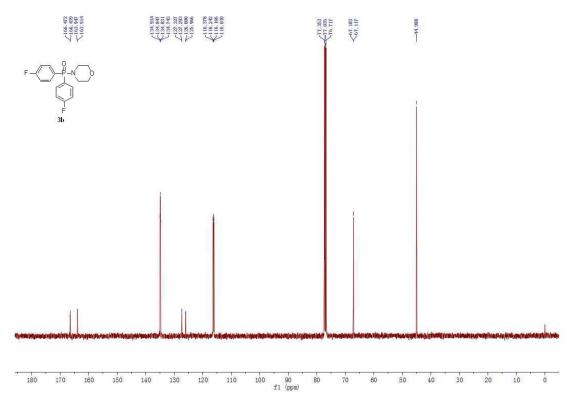
¹H NMR of **3a**



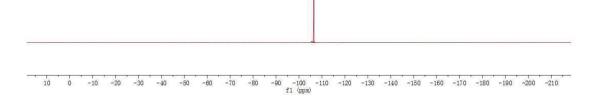
¹³C NMR of **3a**

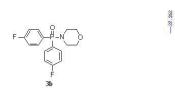


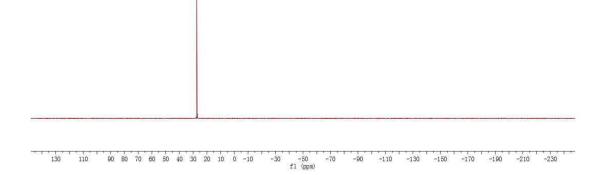
³¹P NMR of **3a**

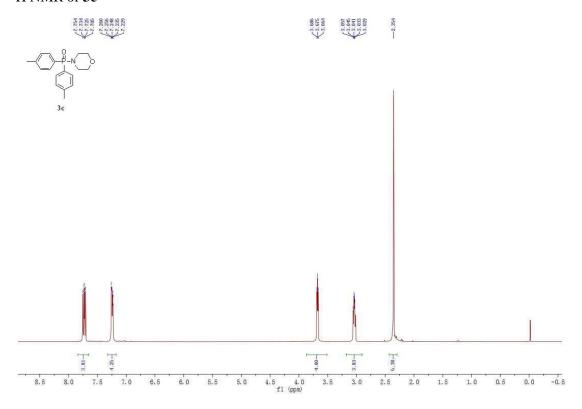


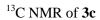
¹H NMR of **3b**

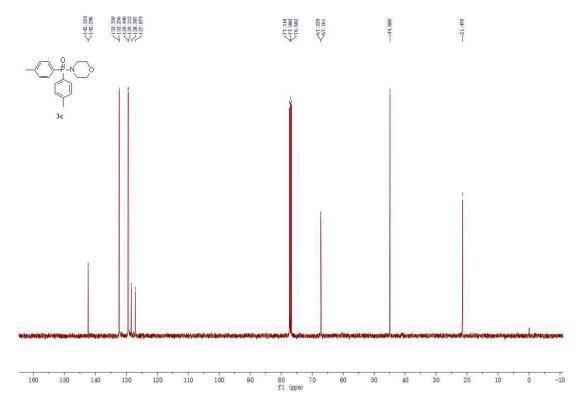


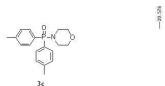

¹⁹F NMR of **3b**

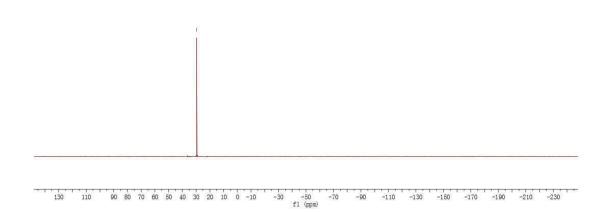


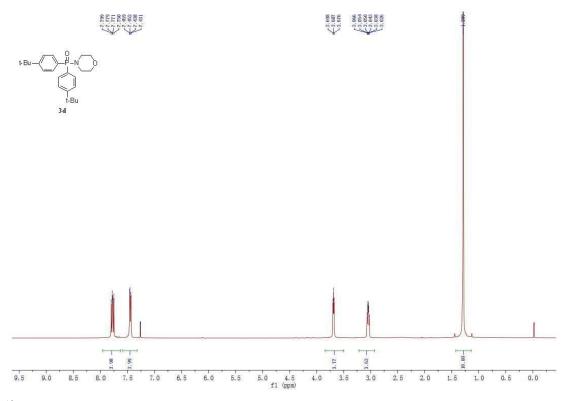




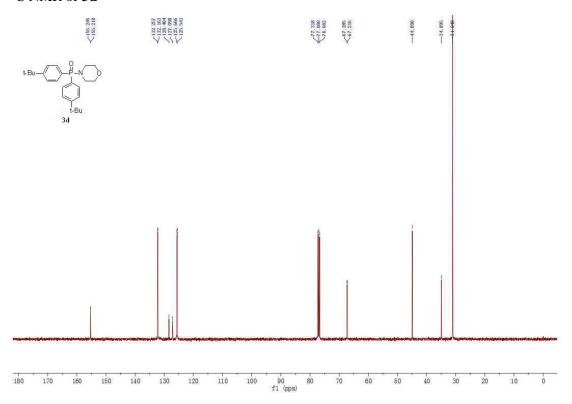


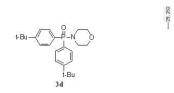

¹H NMR of **3c**

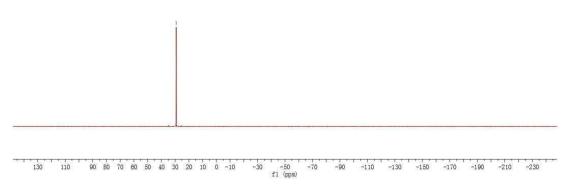


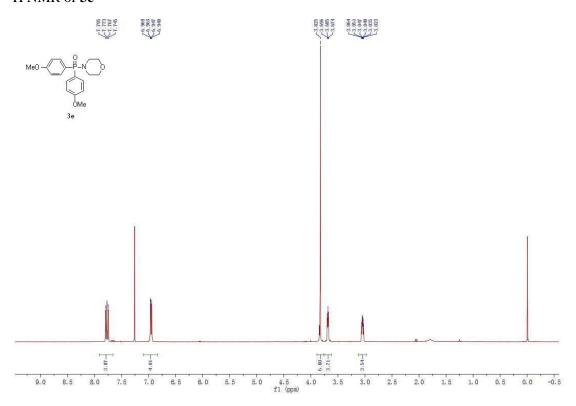


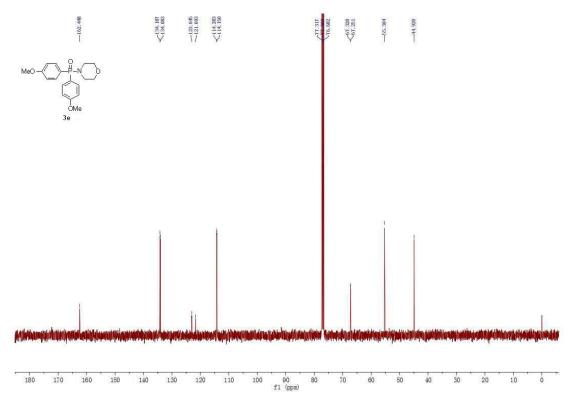
31 P NMR of 3c

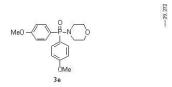


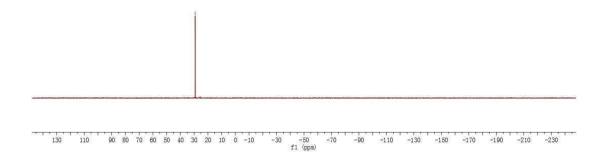


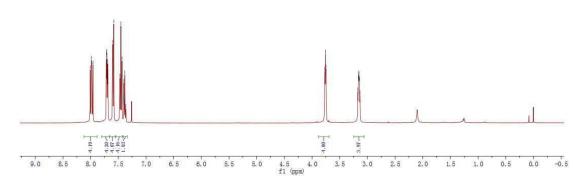


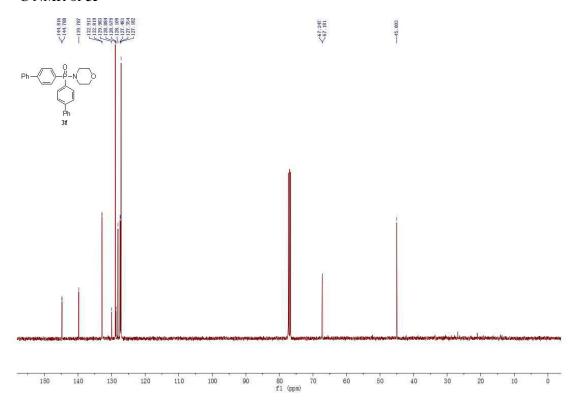

¹³C NMR of **3d**

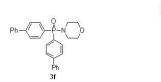


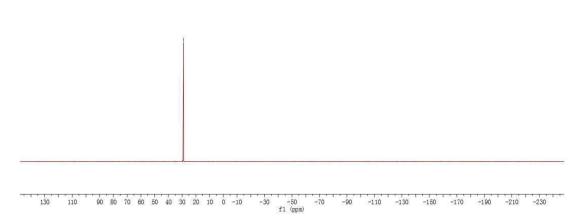

¹H NMR of **3e**



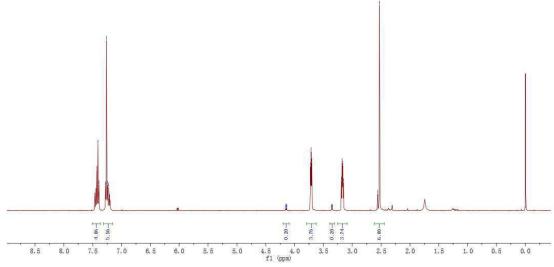

³¹P NMR of **3e**

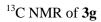


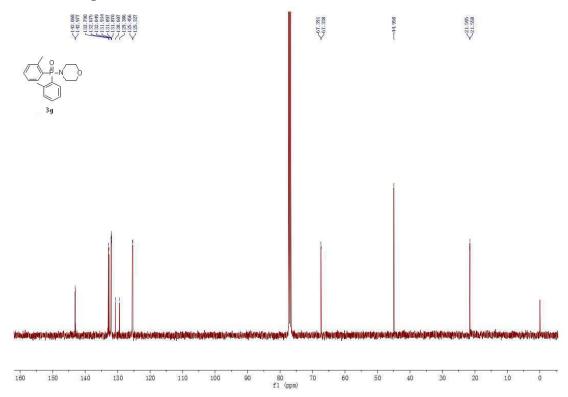

¹H NMR of **3f**



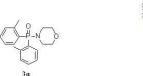
¹³C NMR of **3f**

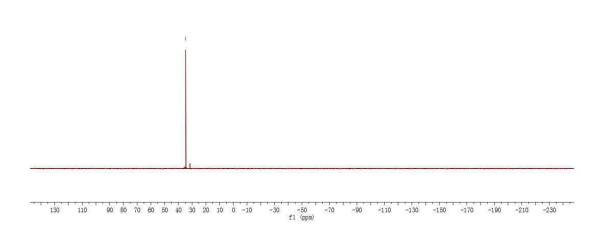


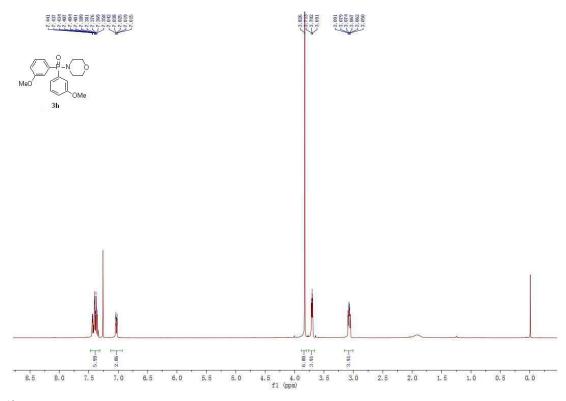




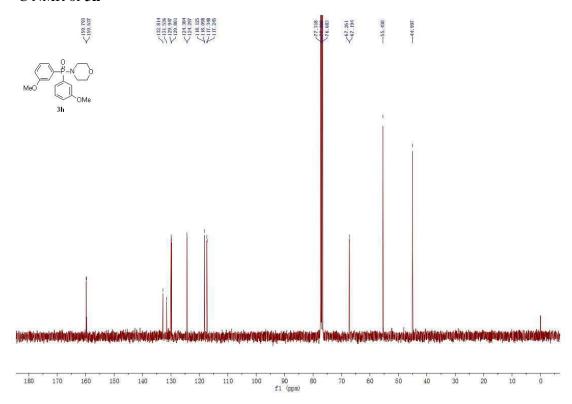
¹H NMR of **3g**

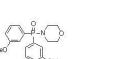


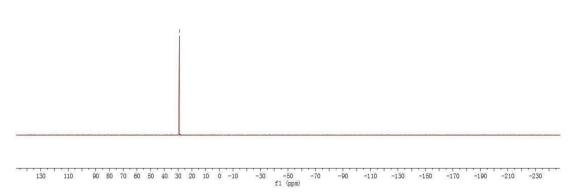


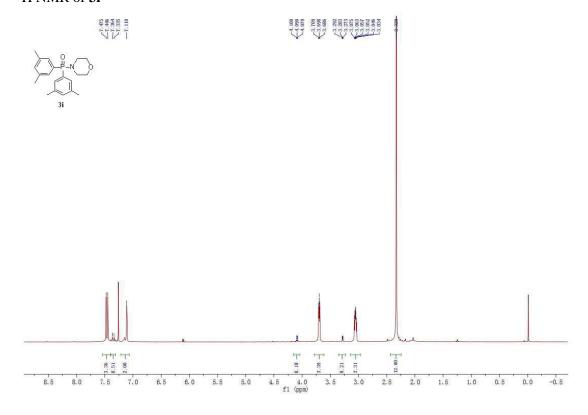


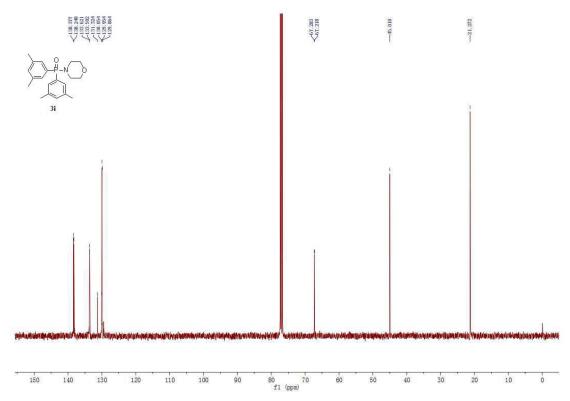
³¹P NMR of **3g**

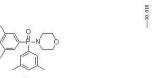


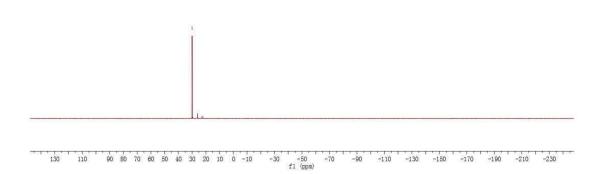


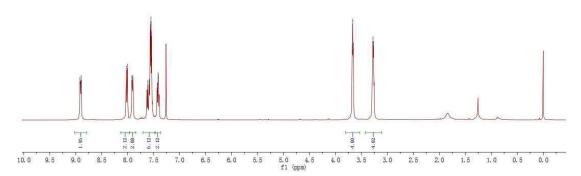

¹H NMR of **3h**

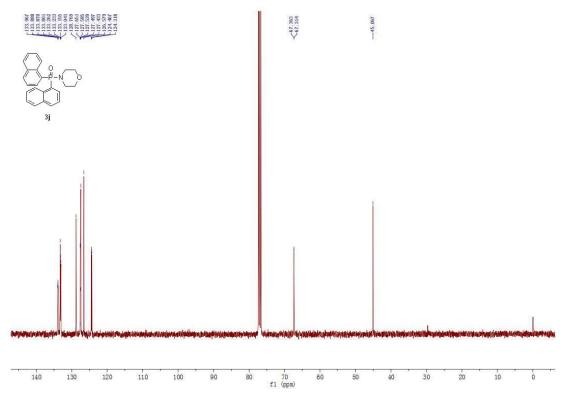

¹³C NMR of **3h**



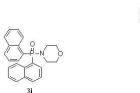

¹H NMR of **3i**

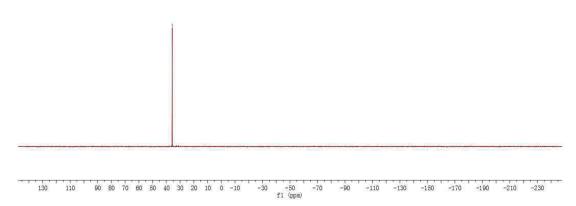



³¹P NMR of **3i**

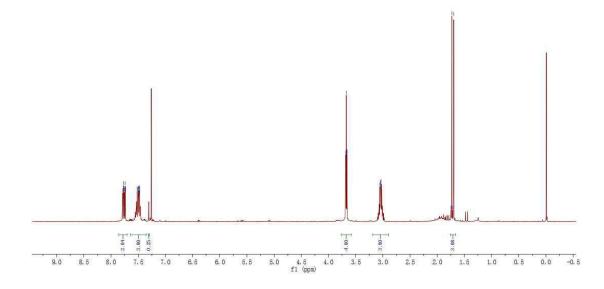


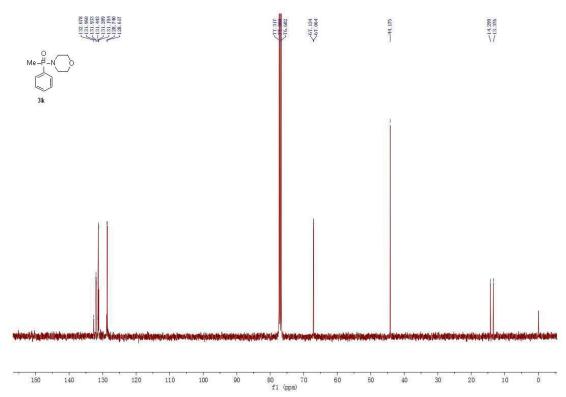
¹H NMR of **3j**



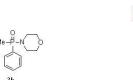


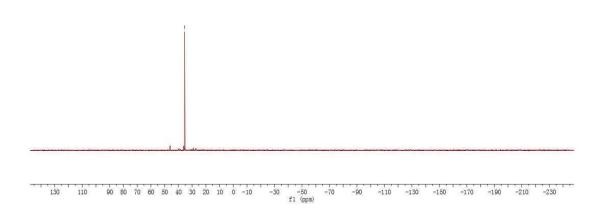
¹³C NMR of **3j**

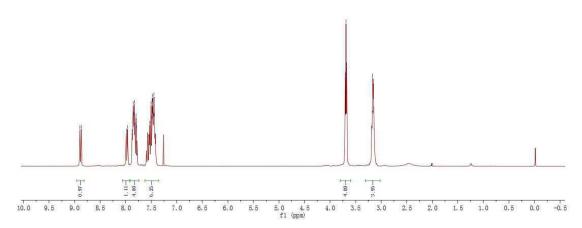

³¹P NMR of **3j**

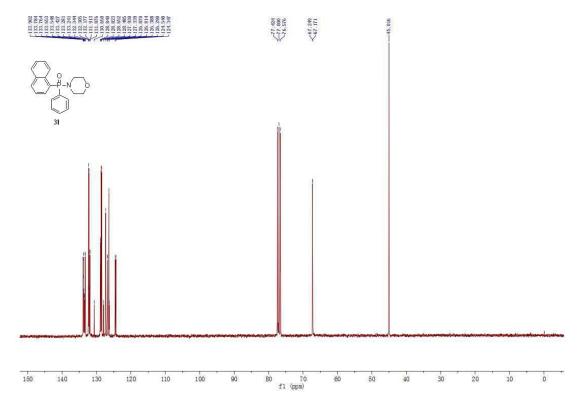


¹H NMR of **3k**

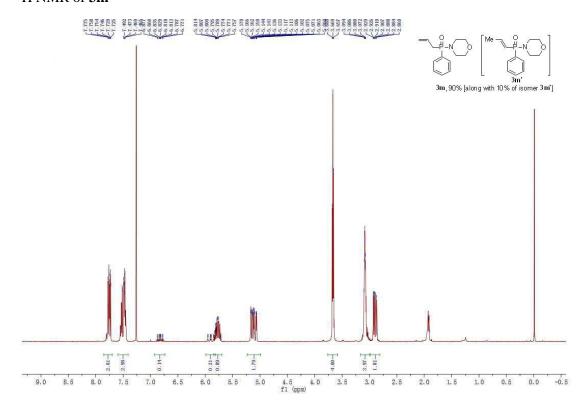


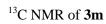


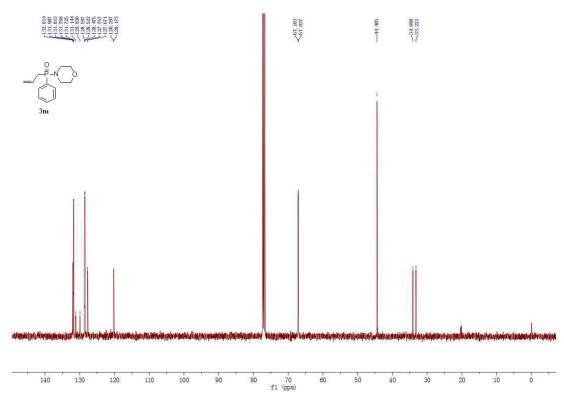

31 P NMR of 3k

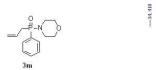


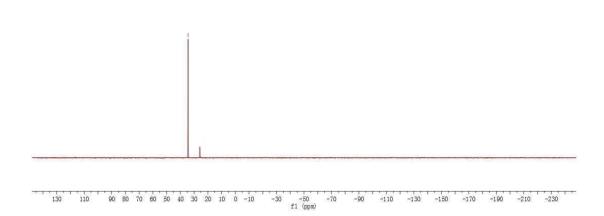
¹H NMR of **31**

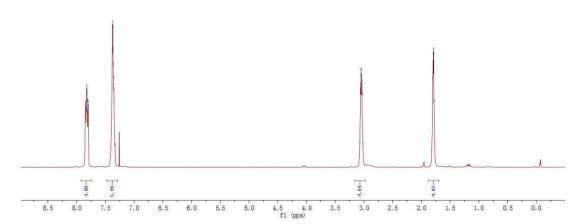


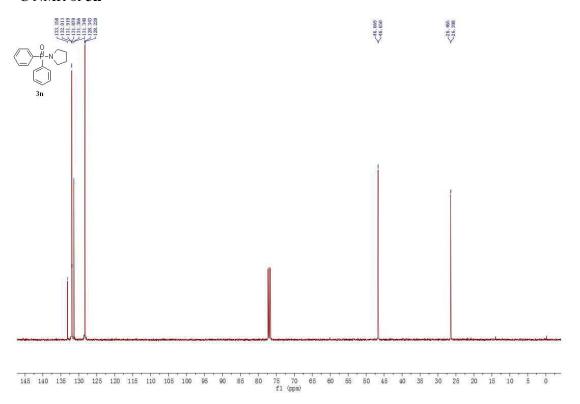



¹³C NMR of **3l**

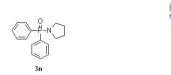

¹H NMR of **3m**

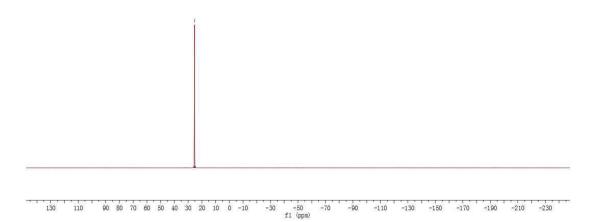



³¹P NMR of **3m**

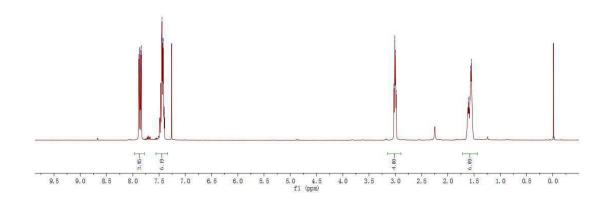


¹H NMR of **3n**



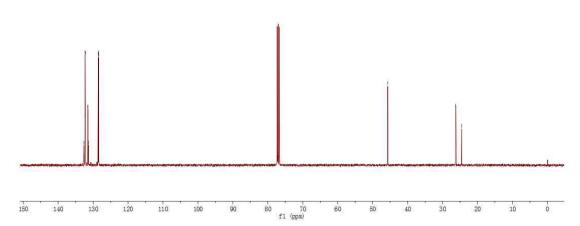


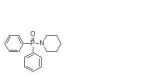
¹³C NMR of **3n**

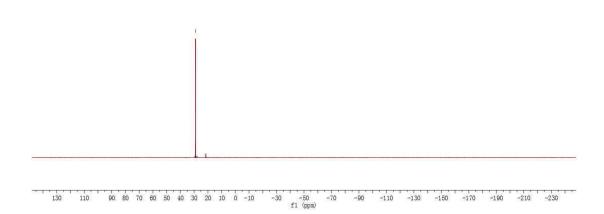


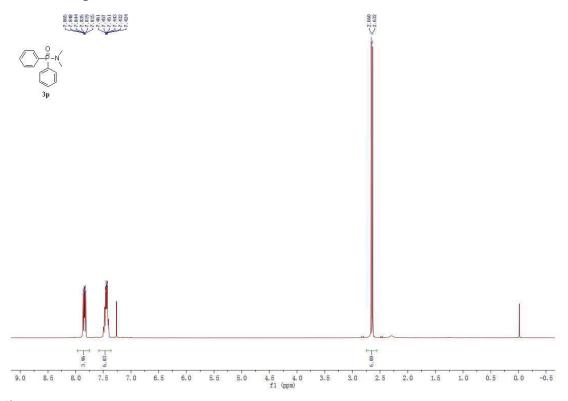


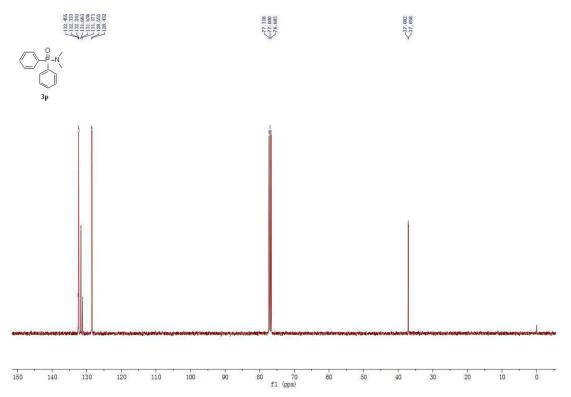
¹H NMR of **30**

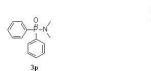


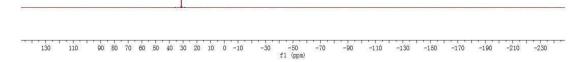

¹³C NMR of **30**



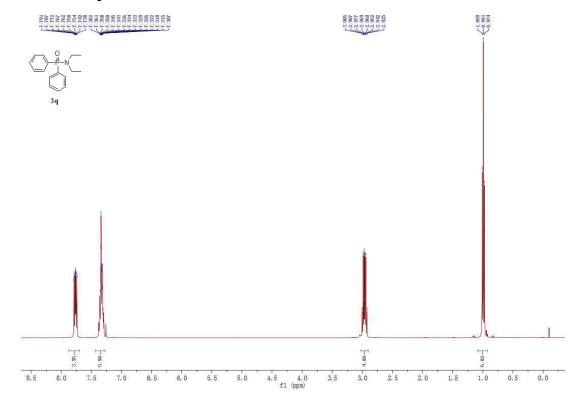

³¹P NMR of **30**

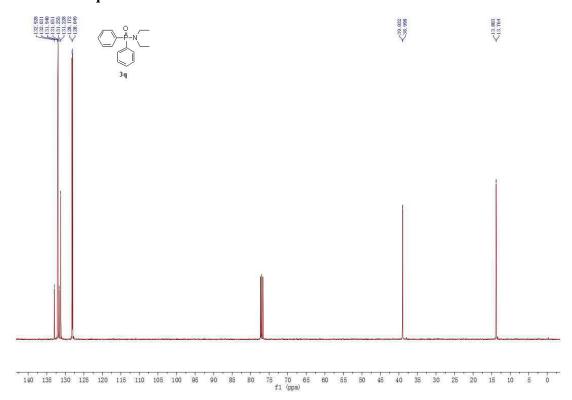

-28.978



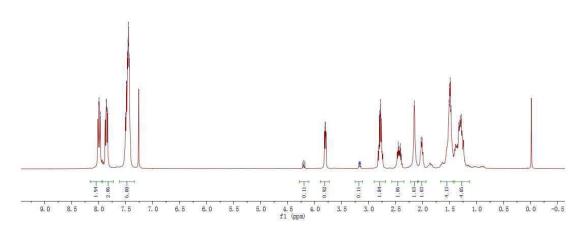


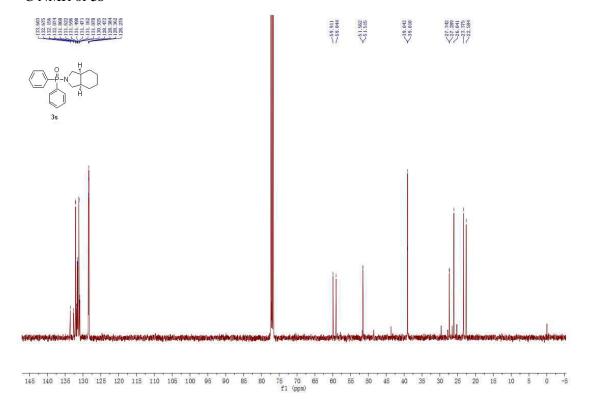
¹³C NMR of **3p**



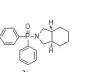


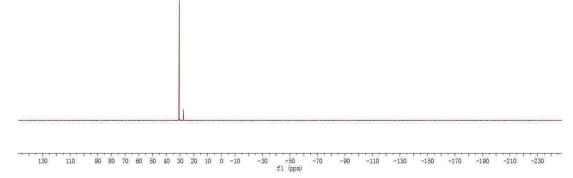
¹H NMR of **3q**



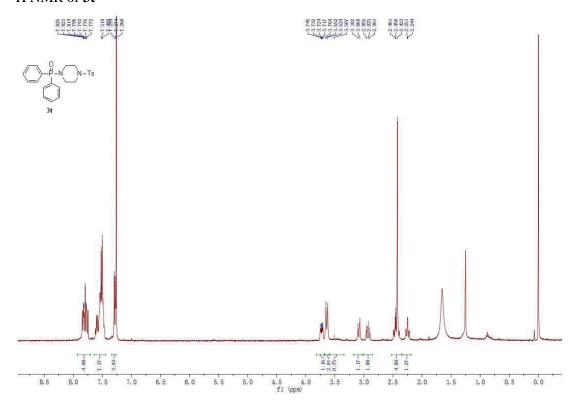

³¹P NMR of **3q**

¹H NMR of **3s**

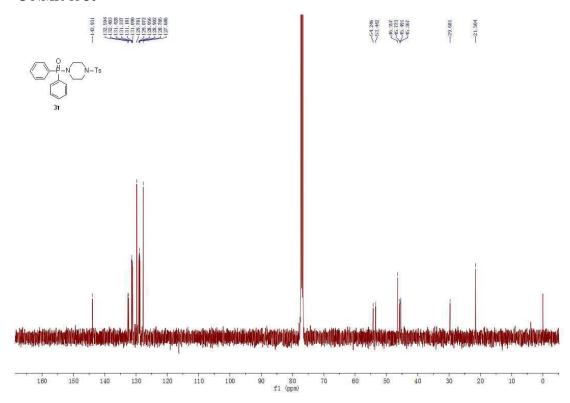


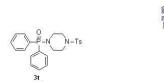


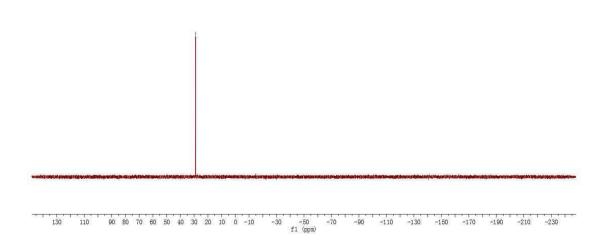
13 C NMR of 3s

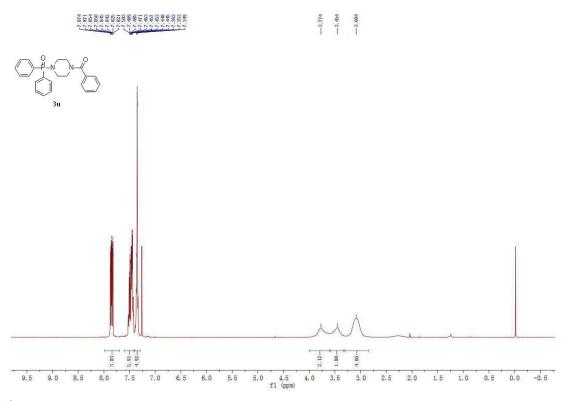


-30.633

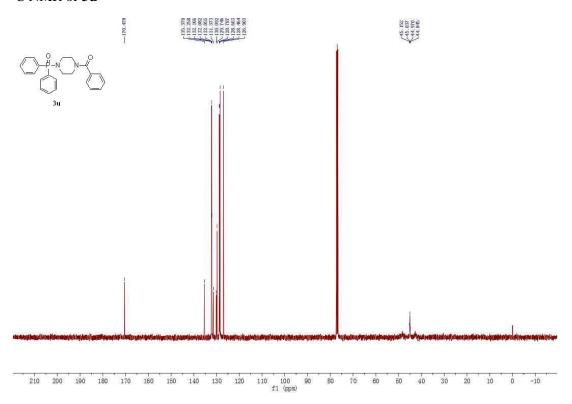



¹H NMR of **3t**

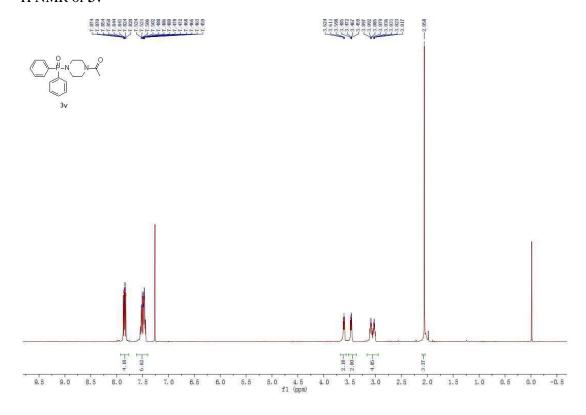


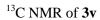


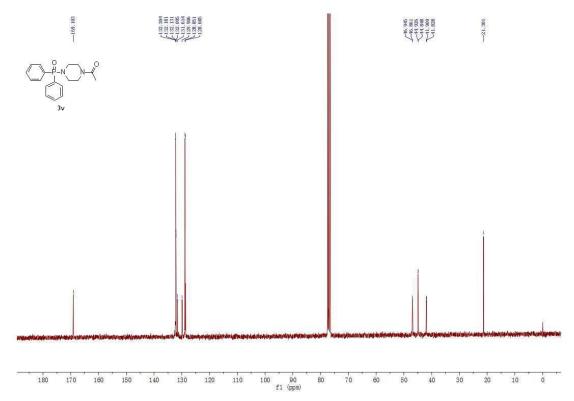
31 P NMR of 3t



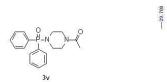
¹H NMR of **3u**

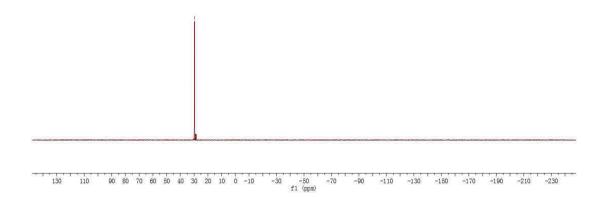


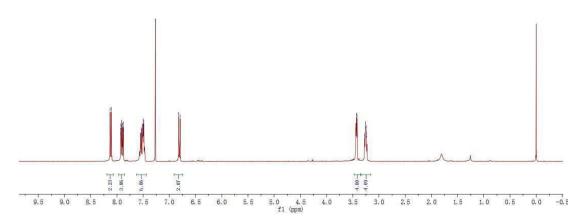

¹³C NMR of **3u**

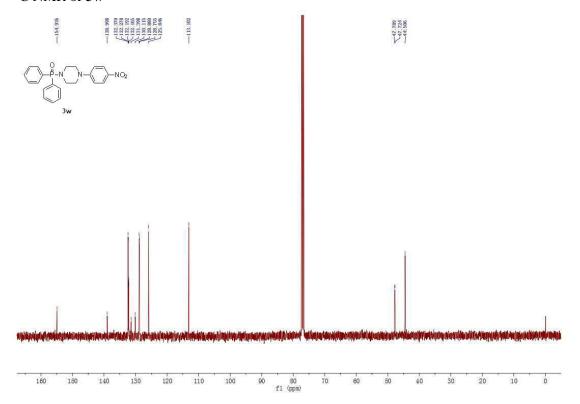


130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)


1 H NMR of 3v




31 P NMR of 3v

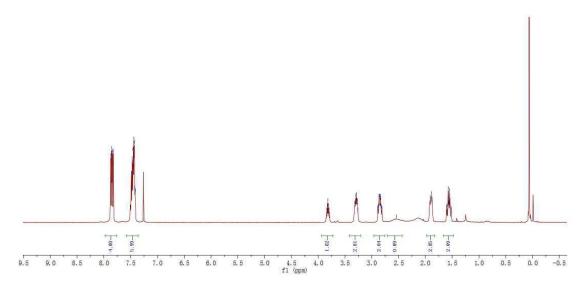


¹H NMR of **3w**

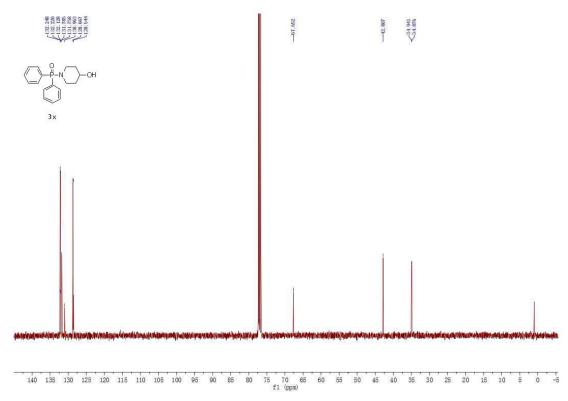
¹³C NMR of **3w**

 31 P NMR of 3w

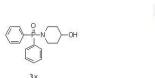
-29.533

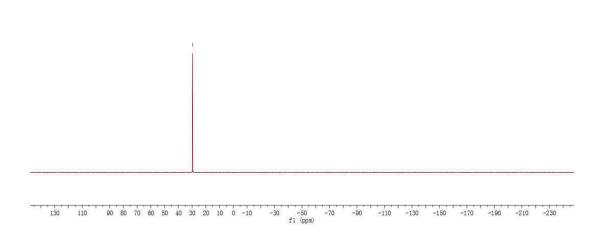

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fi (ppm)

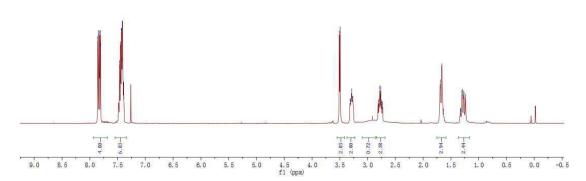
 1 H NMR of 3x


7, 824 7, 825 7,

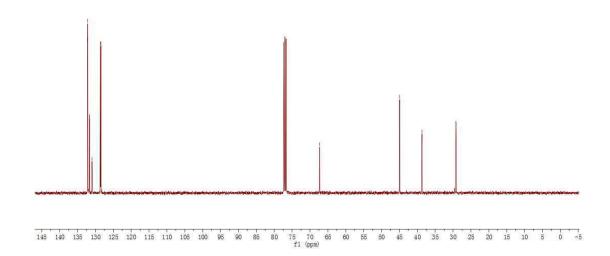
3.824 3.828 3.808 3.706 3.206 5.326

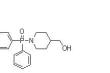




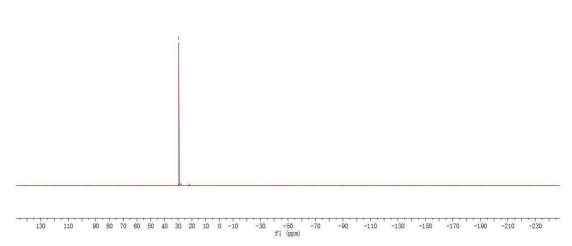

31 P NMR of 3x

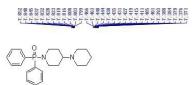


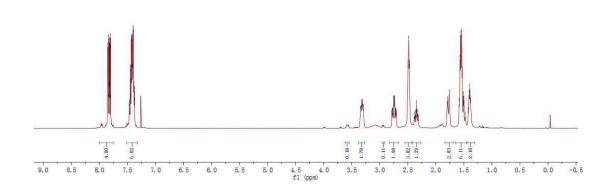

¹H NMR of **3y**



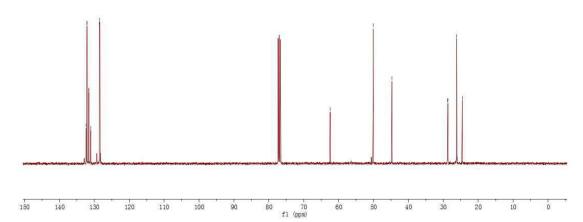
¹³C NMR of **3y**

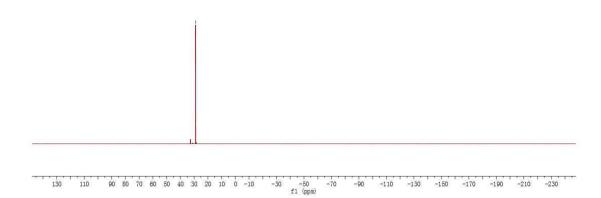


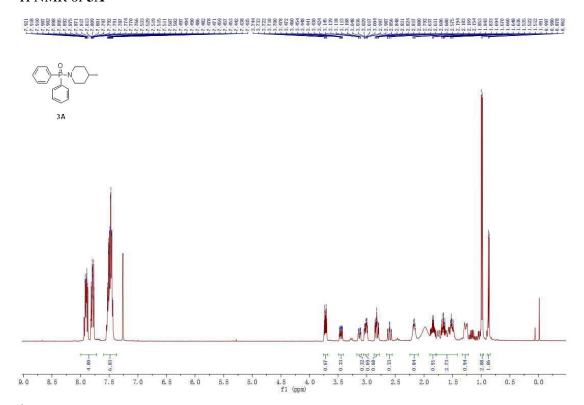


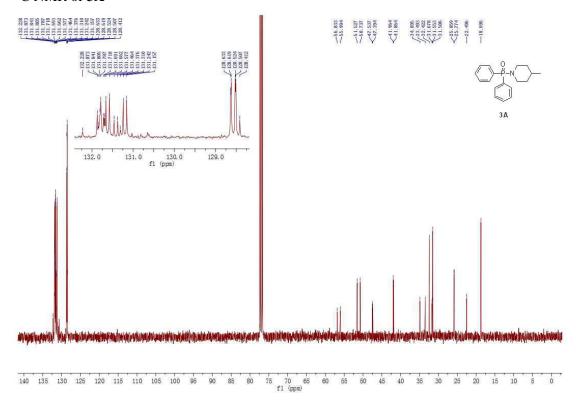

-29.50

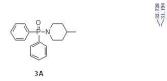
1 H NMR of 3z

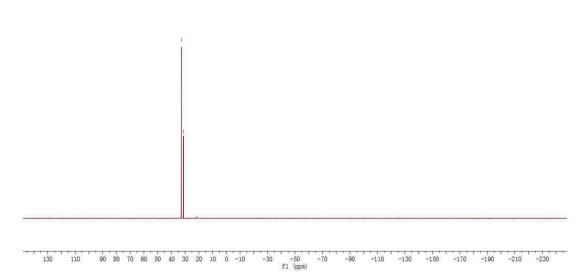


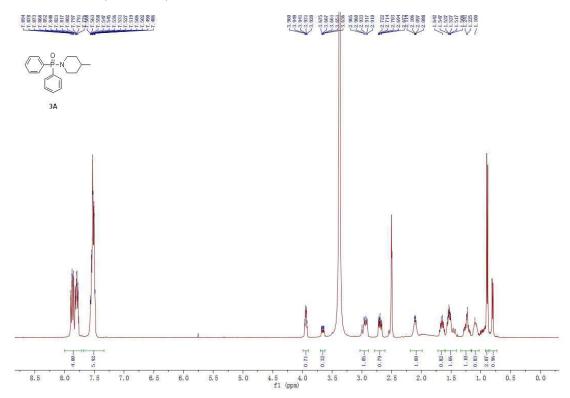


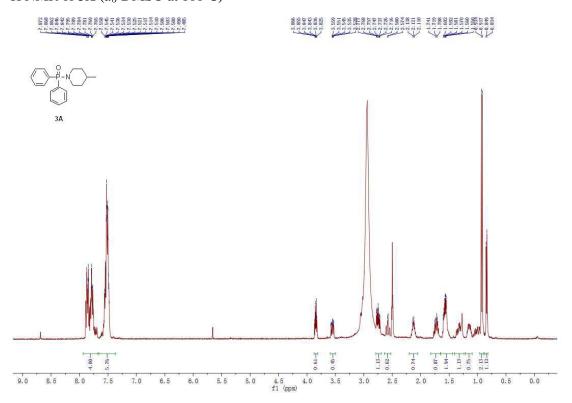

31 P NMR of 3z

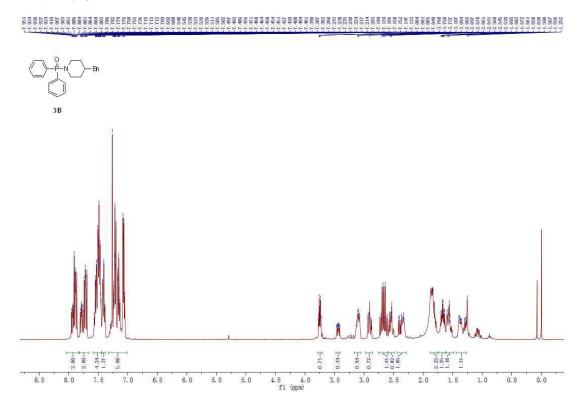

-- 28.92

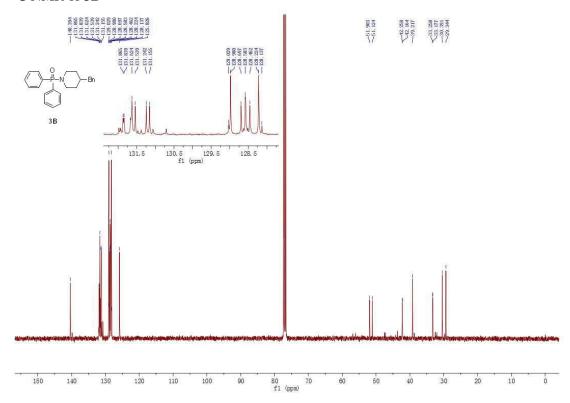


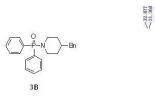

¹H NMR of **3A**

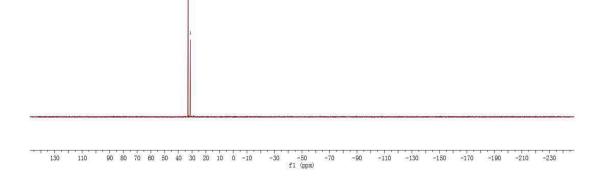

¹³C NMR of **3A**




1 H NMR of **3A** (d_{6} -DMSO)


1 H NMR of **3A** (d_{6} -DMSO at 100° C)


¹H NMR of **3B**



³¹P NMR of **3B**

