Supplementary Information for:

In vitro and in silico analyses for predicting hepatic cytochrome P450-dependent metabolic potencies of polychlorinated biphenyls in the Baikal seal

Jean Yoo^{\dagger}, Masashi Hirano ${ }^{\dagger}$, Hazuki Mizukawa ${ }^{\dagger}$, , Kei Nomiyama ${ }^{\dagger}$, Tetsuro Agusa ${ }^{\dagger}$, Eun-Young Kim ‡, Shinsuke Tanabe ${ }^{\dagger}$, and Hisato Iwata ${ }^{+*}$

\dagger Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
${ }^{\dagger}$ Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
${ }^{\text {s }}$ Present address: Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
*Corresponding author and address: Prof. Hisato Iwata Center for Marine Environmental Studies (CMES), Ehime University Bunkyo-cho 2-5, Matsuyama 790-8577, Japan E-mail address: iwatah@agr.ehime-u.ac.jp

The supporting information contains 35 pages with 8 Tables and 10 Figures.
Page S4-10: Details of the materials and method.
Page S11-12: Table S1. IUPAC numbers and structural characteristics of 62 PCB congeners used in in vitro metabolism assay.
Page S13: Table S2. Primer sequences used for the RACE of bsCYP2 cDNAs.
Page S14: Table S3. Accession numbers of mammalian CYP2 sequences used for constructing the alignment and the phylogenic tree shown in Figures S4 and S5, respectively.
Page S15-18: Table S4. Parameters used for principle component analysis.
Page S19: Table S5. Validation of the homology models of bsCYP1A1, 1A2, 1B1, 2A, 2B, and 2C.
Page S20-21: Table S6. Estimated shortest distance (\AA) between Cl-unsubstituted carbon of each PCB congener and the heme Fe in bsCYP1 and bsCYP2 protein homology models.
Page S22: Table S7. PC1-5 scores obtained by PC analysis for all of 62 PCB congeners examined. Page S23: Table S8. PC1-4 scores obtained by PC analysis for 1-5 chlorine substituted PCB congeners examined.

Page S24: Figure S1. Concentrations of PCB and OH-PCB congeners detected in the liver of Baikal seals. (A) PCB concentrations. (B) OH-PCB concentrations. Data were cited from Nomiyama et al. (2014).

Page S25: Figure S2. PCBs metabolic pathways in Baikal seal livers predicted from congener profiles of PCBs and OH-PCBs observed in in vitro PCB metabolism assay. (A) Highly activated pathways. (B) Weakly activated pathways.

Page S26-27: Figure S3. Nucleotide and deduced amino acid sequences of bsCYP2s. (A) bsCYP2A (accession no. LC071719), (B) bsCYP2B (accession no. LC071720), and (C) bsCYP2C (accession no. LC071721).
Page S28: Figure S4. Alignment of amino acid sequences of the Baikal seal and other mammalian CYP2s. (A) CYP2A, (B) CYP2B, and (C) CYP2C. The substrate recognition site (SRS) is marked in red line, and each attached number indicates the SRS number. The heme-binding region is marked in blue line.

Page S29: Figure S5. Phylogenetic analysis of amino acid sequences of the Baikal seal CYP2A, 2B, 2 C , and other mammalian CYP2s.
Page S30: Figure S6. In silico homology models constructed by using amino acid sequences of bsCYP1A1, 1A2, 1B1, 2A, 2B, and 2C.

Page S31-32: Figure S7. Alignment of amino acid sequences of human CYP2C9 and bsCYPs. The amino acid residues marked in yellow are predicted to be located in the lining of the access channel in each CYP.

Page S33: Figure S8. Predicted substrate access channel 2c in bsCYP proteins. (A) bsCYP1A1
(access channel volume: $239 \AA^{3}$), (B) bsCYP1A2 $\left(206 \AA^{3}\right)$, (C) bsCYP1B1 ($236 \AA^{3}$), (D) bsCYP2A $\left(209 \AA^{3}\right)$, (E) bsCYP2B $\left(195 \AA^{3}\right)$, and (F) bsCYP2C ($437 \AA^{3}$). The access channel is colored in orange, and the heme is in black.
Page S34: Figure S9. Comparison of the distance from Cl-unsubstituted carbon of docked CB77 to the heme Fe in CYP1A1 homology models of 4 mammalian species. (A) Baikal seal, (B) Rat, (C) Guinea pig, and (D) Hamster. The heme, amino acid residues, and CB77 are shown in orange, grey, and pink, respectively. The shortest distance (\AA) between Cl -unsubstituted carbon atom of CB77 and the heme Fe is shown in green line.
Page S35: Figure S10. Scatter plot of PC1 and PC4 obtained by PC analysis for all 62 PCB congeners examined. PCB congeners were divided into 2 groups ($0-20 \%$ and $>20 \%$) based on the decreased ratio. PCB congeners with $0-20 \%$ and $>20 \%$ decreased ratios are shown in white circles and red circles, respectively.

Materials and methods

Chemicals

The 62 PCB congeners used for the in vitro metabolism assay included $\mathrm{CB} 1, \mathrm{CB} 3, \mathrm{CB} 4, \mathrm{CB}$, CB10, CB15, CB18, CB19, CB22, CB28, CB33, CB37, CB44, CB49, CB52, CB54, CB70, CB74, CB77, CB81, CB87, CB95, CB99, CB101, CB104, CB105, CB110, CB114, CB118, CB119, CB123, CB126, CB128, CB138, CB149, CB151, CB153, CB155, CB156, CB157, CB158, CB167, CB168, CB169, CB170, CB171, CB177, CB178, CB180, CB183, CB187, CB188, CB189, CB191, CB194, CB199, CB201, CB202, CB205, CB206, CB208, and CB209. We selected these congeners based on their I-V structural properties, as categorized by Boon et al. (1997) ${ }^{1}$, and the PCB congener profiles detected in the livers of Baikal seals ${ }^{2}$. Information on individual congeners is summarized in Table S1. These congeners were purchased from Wellington Laboratories Inc.

Sample collection

The liver tissues of Baikal seals were collected from Lake Baikal in 2005, as has been reported in our earlier studies. ${ }^{3,4}$ Permission was granted by the Lake Baikal Basin Committee for Protection, Reproduction of Fish Resources and Fishing Control under the annual seal culling quota. The livers were removed on board immediately after animal collection, and the sub-samples were frozen and stored in liquid nitrogen until microsomal preparation.

Microsomal preparation and CYP spectral analysis

Liver microsomal fractions were prepared following the method of Guengerich (1982) ${ }^{5}$. About 6 g of liver tissue sample from one adult male Baikal seal (40.5 years old) was homogenized in five-fold volumes of cold homogenization buffer (50 M Tris- $\mathrm{HCl}, 0.15 \mathrm{M} \mathrm{KCl}, \mathrm{pH} 7.4-7.5$) with a teflon-glass homogenizer (10 passes) and was centrifuged for 10 min at $750 \times g$. The supernatant was then centrifuged at $12,000 \times g$ for 10 min . The supernatant was further centrifuged at $105,000 \times g$ for 98 min. The supernatant (cytosol) fraction was removed, and the microsomal pellets were resuspended in one volume of TEDG buffer [50 mM Tris-HCl, 1 mM EDTA, 1 mM dithiothreitol, 20\% (vol/vol) glycerol, $\mathrm{pH} 7.4-7.5$. Microsomal fractions were immediately frozen in liquid nitrogen, and stored at
$-80^{\circ} \mathrm{C}$ until use.
Protein concentrations in microsomal fractions were determined by the bicinchoninic acid method. ${ }^{6}$ BCA Protein Assay Reagent (Pierce, Rockford, IL) and bovine serum albumin as a standard were used for the protein assay. Absorbance at 560 nm was measured using a multiwell plate reader (SpectraFluor Plus, Tecan Austria GmbH, Groedig, Austria). The content of hepatic microsomal CYP was determined from the dithionite difference spectra of CO-treated samples ${ }^{7}$ with a DU800 spectrophotometer (Beckman Coulter, Inc.).

Measurements of PCBs and $\mathrm{OH}-\mathrm{PCBs}$

The measurement of PCBs and $\mathrm{OH}-\mathrm{PCBs}$ in the reaction mixture was performed according to the method of Nomiyama et al. (2010) ${ }^{8}$. Briefly, the reaction mixture was denatured with 6 M HCl and 2propanol, and PCBs and OH-PCBs were extracted by 50% methyl t-butyl ether (MTBE)/hexane. The extract was partitioned into neutral and phenolic fractions using 1 M KOH in 50% ethanol/water. The neutral fraction containing PCBs was passed through a 4 g activated silica-gel column and eluted with 80 mL of $5 \% \mathrm{DCM} /$ hexane.

The KOH solution containing $\mathrm{OH}-\mathrm{PCBs}$ was acidified $(\mathrm{pH} 2)$ with sulfuric acid and was extracted twice with 50% MTBE/hexane. The organic fraction containing OH-PCBs was passed through a column packed with 3 g of hydrated silica gel (Wako-gel $\mathrm{S}-1$, deactivated with $5 \% \mathrm{H}_{2} \mathrm{O}$), and OHPCBs was eluted with 50% dichloromethane (DCM)/hexane (100 mL). The eluted $\mathrm{OH}-\mathrm{PCB}$ fraction was concentrated and dissolved in 1 mL hexane. The $\mathrm{OH}-\mathrm{PCBs}$ were derivatized overnight by trimethylsilyldiazomethane. The derivatized (methylated) MeO-PCBs were passed through a 3 g activated silica-gel column, and were then eluted with 140 mL of $10 \% \mathrm{DCM} /$ hexane. The PCBs and MeO-PCB fractions were concentrated to near dryness. Then, ${ }^{13} \mathrm{C}_{12}$-labeled PCBs dissolved in up to $50 \mu \mathrm{~L}$ of decane were injected as surrogates for the gas chromatograph (GC: 6890 series, Agilent) coupled with high resolution ($>10,000$) mass spectrometer (HRMS: MS-800D, JEOL) analysis. Identification and quantification of PCB congeners were performed under previously reported GCHRMS analytical conditions. ${ }^{8}$ Unknown OH-PCB metabolites were quantified as mean values of
relative response factors based on the identifiable ${ }^{12} \mathrm{C}_{12}-\mathrm{OH}-\mathrm{PCB}$ homologues and the corresponding ${ }^{13} \mathrm{C}_{12}$-isomer in standard solution, following the method of Kunisue et al. (2007). ${ }^{9}$

Cloning and sequencing of bsCYP2 cDNAs

The cDNA of Baikal seal liver was prepared from poly $(A)^{+}$RNA using a Marathon cDNA Amplification Kit (BD Biosciences Clontech) ${ }^{3}$. Adaptors of adaptor primer 1 and 2 sequences were added to both ends of each cDNA. Partial cDNA sequences of bsCYP2A, 2B, and 2C were obtained from the cDNA library of the Baikal seal that was prepared for making the custom oligoarray ${ }^{3}$. To identify the full-length cDNA, primer sequences for RACE were designed based on the partial sequences (Table S2). The bsCYP2A primer for 5^{\prime}-RACE was not designed because the 5^{\prime}-sequence containing the start codon has already been obtained from the cDNA library. Amplification of the 5^{\prime} and 3^{\prime}-ends of the cDNA was performed according to the protocol described in the Marathon ${ }^{\mathrm{TM}}$ Amplification Kit (Clontech Laboratories, Inc.). PCR reactions were as follows: $94^{\circ} \mathrm{C}$ for 30 sec , followed by 5 cycles of $94^{\circ} \mathrm{C}$ for 5 s and $72^{\circ} \mathrm{C}$ for $4 \mathrm{~min}, 5$ cycles of $94^{\circ} \mathrm{C}$ for 5 s and $70^{\circ} \mathrm{C}$ for 4 min , and 25 cycles of $94^{\circ} \mathrm{C}$ for 5 s and $68^{\circ} \mathrm{C}$ for 4 min . BLAST homology searches in NCBI nucleotide sequence databases were applied to identify the bsCYP2 cDNAs based on high similarities to deposited sequences of other mammalian CYP2 genes. The molecular weight of bsCYP2 proteins was estimated using GENETYX-MAC version 14.0.11.

Multiple alignments of CYP2A, 2B, and 2C amino acid sequences were performed using the CLUSTAL_W in Mac Vector 11.1.1 program. The aligned amino acid sequences were used to construct a phylogenetic tree with the UPGMA and bootstrap (1000 samplings) method using Mac Vector. ${ }^{10}$ Amino acid sequences of mammals except for the Baikal seal were obtained from the DNA Data Bank of Japan (DDBJ). The DDBJ accession numbers of mammalian CYPs used for constructing the phylogenetic tree are shown in Table S3.

In silico analysis

All in silico analyses were carried out using the Molecular Operating Environment (MOE) program
(Chemical Computing Group, Montreal, Canada). For constructing homology models of the entire proteins of bsCYPs (1A1, 1A2, 1B1, 2A, 2B, and 2C), the following templates of CYP1 and 2 isoenzymes were taken from the Protein Data Bank (http://www.rcsb.org): human CYP1A1 (PDB code: 4 I 8 V), human CYP1A2 (2HI4), human CYP1B1 (3PM0), human CYP2A6 (1Z10), rabbit CYP2B4 (1SUO), and human CYP2C9 (1OG5). All crystallographic water molecules were deleted from each template CYP structure. To adjust for structural defects and the clash of atoms, the Structure Preparation module in MOE was used. The amino acid sequences of bsCYPs and their template structures were aligned and carefully checked for conserved residual structure and gap positioning using the Protein Contacts program. In order to construct the 3 D structure of hemecontaining CYP proteins, a total of 500 generated structures (10 side chain samples per 50 main chain models) for each bsCYP were obtained by employing the 'induced fit' option that allows the heme iron to fit into the template structure. The 3D structures of bsCYPs were optimized by PFROSST force field ${ }^{11}$ with an energy gradient of $0.05 .^{12}$ To generate the final model structure, the generalized Born/volume integral (GB/VI) model parameters ${ }^{13}$ were applied. The overall geometric and stereochemical qualities of the homology models were assessed using Protein Geometry. Ramachandran plots of phi (φ) and psi (ψ) torsion angles for all of the residues and the clash of atoms in each model were checked and adjusted by energy minimization using the PFROSST force field.

Molecular docking simulations were performed to simulate the binding of 62 PCB congeners to bsCYP proteins using ASEDock (Ryoka Systems Inc., Tokyo, Japan) following the method of Goto et al. (2008). ${ }^{14}$ Prior to the ASEDock analysis, structures of PCBs were constructed and energy minimized using Rebuild3D with MMFF94x force field in the MOE. A total of 500 confirmations for each PCB congener were generated using the default systematic search parameters by LowMode MD method. The parameters used for the refinement step were as follows: cutoff value of 4.5 , RMS gradient of 10 , and energy threshold of $500 .{ }^{15}$ The energy of the PCB-CYP complex was refined using PFROSST of MOE under the limited conditions for which the side chains of amino acid residues were fixed. Each docking simulation was evaluated in terms of a U-dock score ($\mathrm{kcal} / \mathrm{mol}$): [U_ele (electric energy) + U_vdw (Van der Waals energy) + U_solv (solvation energy) + U_strain (strain energy)].

The distance between the Cl -unsubstituted carbon in a given PCB congener and the heme Fe in each CYP was measured. The substrate binding pocket in each CYP was designed using Atom Region in MOE.

Since the structure of substrate access channel may be a critical factor to affect the substrate specificity of each CYP, we attempted to identify the access channel 2 c , which is the most probable candidate channel for substrates, ${ }^{16}$ in each bsCYP protein, and compare their conformational characteristics. By reference to the access channel 2c in human CYP2C9 model (PDB code: 1OG2) reported in Otyepka et al. (2012), ${ }^{16}$ the dummy sites in CYP2C9, which were selected by MOE, were edited to fit the shape of channel 2c, and the channel was determined by using Atom Region in MOE. The amino acid residues lining the access channel in CYP2C9 were identified, and the corresponding amino acids in each bsCYP were assigned by aligning the bsCYP sequence with CYP2C9 sequence. The structure of the channel 2 c in each bsCYP, the cavity surrounded by the assigned amino acids, was predicted by using Atom Region in MOE, and the volume was then measured.

Statistical analyses

All statistical analyses were conducted using the IBM SPSS Statistics 22.0 (IBM Corp., Armonk, NY). Statistical significance was set at $p<0.05$. Prior to PC analysis, Spearman's rank correlation test was performed to examine correlations between decreased PCB ratios obtained in in vitro metabolism assays and 119 factors (Table S4), which included structural and physicochemical parameters of PCB congeners and in silico docking variables. Using these variables, PC analysis with VARIMAX rotation was conducted.

References

1. Boon, J.P.; Meer, J.V.D.; Allchin, C.R.; Law, R.J.; Klungsøyr, J.; Leonards, P.E.G.; Spliid, H.; StorrHansen, E.; Mckenzie, C.; Wells, D.E. Concentration-dependent changes of PCB patterns in fisheating mammals: structure evidence for induction of cytochrome P450. Arch. Environ. Contam. Toxicol. 1997. 33 (3), 298-311.
2. Nomiyama, K.; Hirakawa, S.; Eguchi, A.; Kanbara, C.; Imaeda, D.; Yoo, J.; Kunisue, T.; Kim, E.; Iwata, H.; Tanabe, S. Toxicological assessment of polychlorinated biphenyls and their metabolites in the liver of Baikal seal (Pusa sibirica). Environ. Sci. Technol. 2014. 48 (22), 13530-13539.
3. Hirakawa, S.; Imaeda, D.; Nakayama, K.; Udaka, M.; Kim, E.Y.; Kunisue, T.; Ogawa, M.; Matsuda, T.; Matsui, S.; Petrov, E.A.; Batoev, V.B.; Tanabe, S.; Iwata, H. Integrative assessment of potential effects of dioxins and related compounds in wild Baikal seals (Pusa sibirica): Application of microarray and biochemical analyses. Aquat. Toxicol. 2011. 105 (1-2), 89-99.
4. Imaeda, D.; Nomiyama, K.; Kunisue, T.; Iwata, H.; Tsydenova, O.; Amano, M.; Petrov, E.A.; Batoev, B.V.; Tanabe, S. Blood levels of polychlorinated biphenyls and their hydroxylated metabolites in Baikal seals (Pusa sibirica): emphasis on interspecies comparison, gender difference and association with blood thyroid hormone levels. Chemosphere. 2014. 144, 1-8.
5. Guengerich, F.P.; Dannan, G.A.; Wright, S.T.; Martin, M.V.; Kaminsky, L.S. Purification and characterization of liver microsomal cytochromes P-450: electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or beta-naphthoflavone. Biochemistry. 1982. 21 (23), 6019-6030.
6. Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenvzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985. 150 (1), 76-85.
7. Omura, T.; Sato, R. The carbon monoxide-binding pigment of liver microsomes: I. evidence for its hemoprotein nature. J. Biol. Chem. 1964. 239, 2370-2378.
8. Nomiyama, K.; Murata, S.; Kunisue, T.; Yamada, T.K.; Mizukawa, H.; Takahashi, S.; Tanabe, S. Polychlorinated biphenyls and their hydroxylated metabolites (OH-PCBs) in the blood of toothed and baleen whales stranded along Japanese coastal waters. Environ. Sci. Technol. 2010. 44 (10), 37323738.
9. Kunisue, T.; Sakiyama, T.; Yamada, T.K.; Takahashi, S.; Tanabe, S. Occurrence of hydroxylated polychlorinated biphenyls in the brain of cetaceans stranded along the Japanese coast. Mar. Pollut. Bull. 2007. 54 (7), 963-973.
10. Lee, J.S.; Kim, E.Y.; Nomaru, K.; Iwata, H. Molecular and functional characterization of aryl hydrocarbon receptor repressor from the chicken (Gallus gallus): interspecies similarities and differences. Toxicol. Sci. 2011. 119 (2), 319-334.
11. Amari, S.; Kataoka, R.; Ikegami, T.; Hirayama, N. HLA-Modeler: automated homology modeling of human leukocyte antigens. Int. J. Med. Chem. 2013. Article ID. 690513.6 pages
12. Wang, J.; Cieplak, P.; Kollman, P.A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 2000. 21 (12), 1049-1074.
13. Labute, P. The generalized Born/volume integral implicit solvent model: Estimation of the free energy of hydration using London dispersion instead of atomic surface area. J. Comput. Chem. 2008. 29 (10), 1693-1698.
14. Goto, J.; Kataoka, R.; Muta, Hajime.; Hirayama, N. ASEDock-Docking Based on Alpha Spheres and Excluded Volumes. J. Chem. Inf. Model. 2008. 48 (3), 583-590.
15. Labute, P. LowModeMD--implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J. Chem. Inf. Model. 2010. 50 (5), 792-800.
16. Otyepka, M.; Berka, K.; Anzenbacher, P. Is there a relationship between the substrate preferences and structural flexibility of cytochromes P450? Curr. Drug Metab. 2012. 13 (2), 130-142.

Table S1. IUPAC numbers and structural characteristics of 62 PCB congeners used in in vitro metabolism assay.

IUPAC no.	Cl no.	IUPAC name	No. pairs o, m vic. H -atoms	No. pairs m, p - vic. H atoms	No. o-Cl atoms	Metabolic group ${ }^{\text {a }}$
1	1	2-Chlorobiphenyl	3	4	1	III, IV
3	1	4-Chlorobiphenyl	4	2	0	III, IV
4	2	2,2'-Dichlorobiphenyl	2	4	2	п, IV
8	2	2,4'-Dichlorobiphenyl	3	2	1	III, IV
10	2	2,6-Dichlorobiphenyl	2	4	2	I, IV
15	2	4,4'-Dichlorobiphenyl	4	0	0	III
18	3	2,2',5-Trichlorobiphenyl	1	3	2	п, IV
19	3	2,2',6-Trichlorobiphenyl	1	4	3	II, V
22	3	2,3,4'-Trichlorobiphenyl	3	1	1	III, IV
28	3	2,4,4'-Trichlorobiphenyl	3	0	1	III
33	3	2,3',4'-Trichlorobiphenyl	2	2	1	III, IV
37	3	3,4,4'-Trichlorobiphenyl	3	0	0	III
44	4	2,2',3,5'-Tetrachlorobiphenyl	1	2	2	п, IV
49	4	2,2',4,5'-Tetrachlorobiphenyl	1	1	2	ㅍ, IV
52	4	2,2',5,5'-Tetrachlorobiphenyl	0	2	2	IV
54	4	2,2',6,6'-Tetrachlorobiphenyl	0	4	4	IV
70	4	2,3',4',5-Tetrachlorobiphenyl	1	1	1	III, IV
74	4	2,4,4',5-Tetrachlorobiphenyl	2	0	1	III
77	4	3,3',4,4'-Tetrachlorobiphenyl	2	0	0	III
81	4	3,4,4',5-Tetrachlorobiphenyl	2	0	0	III
87	5	2,2',3,4,5'-Pentachlorobiphenyl	1	1	2	II, IV
95	5	2,2',3,5',6-Pentachlorobiphenyl	0	2	3	V
99	5	2,2',4,4',5-Pentachlorobiphenyl	1	0	2	II
101	5	2,2',4,5,5'-Pentachlorobiphenyl	0	1	2	IV
104	5	2,2',4,6,6'-Pentachlorobiphenyl	0	2	4	V
105	5	2,3,3',4,4'-Pentachlorobiphenyl	2	0	1	III
110	5	2,3,3',4',6-Pentachlorobiphenyl	1	1	2	ㅍ, IV
114	5	2,3,4,4',5-Pentachlorobiphenyl	2	0	1	III
118	5	2,3',4,4',5-Pentachlorobiphenyl	1	0	1	III
119	5	2,3',4,4',6-Pentachlorobiphenyl	1	0	2	II
123	5	2,3',4,4',5'-Pentachlorobiphenyl	1	0	1	III
126	5	3,3',4,4',5-Pentachlorobiphenyl	1	0	0	III
128	6	2,2',3,3',4,4'-Hexachlorobiphenyl	2	0	2	피
138	6	2,2',3,4,4',5'-Hexachlorobiphenyl	1	0	2	II
149	6	2,2',3,4',5',6-Hexachlorobiphenyl	0	1	3	V
151	6	2,2',3,5,5',6-Hexachlorobiphenyl	0	1	3	V
153	6	2,2',4,4',5,5'-Hexachlorobiphenyl	0	0	2	I
155	6	2,2',4,4',6,6'-Hexachlorobiphenyl	0	0	4	I
156	6	2,3,3',4,4',5-Hexachlorobiphenyl	1	0	1	III
157	6	2,3,3',4,4',5'-Hexachlorobiphenyl	1	0	1	III

158	6	2,3,3',4,4',6-Hexachlorobiphenyl	1	0	2	II
167	6	2,3',4,4',5,5'-Hexachlorobiphenyl	0	0	1	I
168	6	2,3',4,4',5',6-Hexachlorobiphenyl	0	0	2	I
169	6	3,3',4,4',5,5'-Hexachlorobiphenyl	0	0	0	I
170	7	2,2',3,3',4,4',5- Heptachlorobiphenyl	1	0	2	II
171	7	$2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}, 6-$ Heptachlorobiphenyl	1	0	3	피
177	7	$2,2^{\prime}, 3,3 ', 4,5^{\prime}, 6^{\prime}-$ Heptachlorobiphenyl	1	0	3	피
178	7	$2,2^{\prime}, 3,3^{\prime}, 5,5^{\prime}, 6-$ Heptachlorobiphenyl	0	0	3	I
180	7	$2,2^{\prime}, 3,4,4^{\prime}, 5,5^{\prime}-$ Heptachlorobiphenyl	0	0	2	I
183	7	2,2',3,4,4',5',6- Heptachlorobiphenyl	0	0	3	I
187	7	$2,2^{\prime}, 3,4^{\prime}, 5,5^{\prime}, 6$ - Heptachlorobiphenyl	0	0	3	I
188	7	2,2',3,4',5,6,6'- Heptachlorobiphenyl	0	0	4	I
189	7	$2,3,3^{\prime}, 4,44^{\prime}, 5,5^{\prime}-$ Heptachlorobiphenyl	0	0	1	I
191	7	$2,3,3^{\prime}, 4,4^{\prime}, 5^{\prime}, 6$ - Heptachlorobiphenyl	0	0	2	I
194	8	$2,2^{\prime}, 3,3^{\prime}, 4,4,4^{\prime}, 5,5^{\prime}-$ Octachlorobiphenyl	0	0	2	I
199	8	2,2',3,3',4,5,5',6'- Octachlorobiphenyl	0	0	3	I
201	8	$2,2^{\prime}, 3,3^{\prime}, 4,5^{\prime}, 6,6$ '- Octachlorobiphenyl	0	1	4	V
202	8	$2,2^{\prime}, 3,3^{\prime}, 5,55^{\prime}, 6,6^{\prime}$ ' Octachlorobiphenyl	0	0	4	I
205	8	2,3,3',4,4',5,5',6- Octachlorobiphenyl	0	0	2	I
206	9	$2,2^{\prime}, 3,3$ ', 4, $4^{\prime}, 5,5$,',6- Nonachlorobiphenyl	0	0	3	I
208	9	2,2',3,3',4,5,5',6,6'- Nonachlorobiphenyl	0	0	4	I
209	10	Decachlorobiphenyl	0	0	4	I

${ }^{\text {a }}$ Classification of PCB congeners based on the predicted potency of CYP-mediated metabolism proposed by Boon et al. (1997) as follows;

I: Congeners without any vicinal hydrogen (H)-atoms (persistent)
II: Congeners with vicinal H -atoms exclusively in the ortho- and meta-positions in combination with ≥ 2 ortho-Cl substituents (persistent)

III: Congeners with vicinal H -atoms in the ortho- and meta-positions in combination with ≤ 1 orthoCl (metabolizable at a constant rate or by inducible CYP isozymes)

IV: Congeners with vicinal H-atoms in the meta- and para-positions in combination with ≤ 2 ortho-Cl (metabolizable at a constant rate or by inducible CYP isozymes)

V: Congeners with vicinal H -atoms in the meta- and para-positions in combination with ≥ 3 ortho-Cl (metabolizable at a constant rate or by inducible CYP isozymes)

Table S2. Primer sequences used for the RACE of bsCYP2 cDNAs.

Primer name	Sequence
bsCYP2A 3'-RACE	5'-CCAGCACTTCCTGGATGAGAATGGGCAG-3'
bsCYP2B 5'-RACE	5'-AGCCGCAGCAATTCAGGGTCTCTGTAGC-3
bsCYP2B 3'-RACE	5'-CTAGCTTCAGAGGGTACATCATTCCCA-3
bsCYP2C 5'-RACE	5'-CTAAGCAAGCTAGCAGCAGAGAAT-3'
bsCYP2C 3'-RACE	5'-GCAAGACAGGAGCCGCATGCCCTACACG-3'

Table S3. Accession numbers of mammalian CYP2 sequences used for constructing the phylogenic tree shown in Figure S5.

CYP	accession number
CYP2A	dog CYP2A13 (DQ238561), dog CYP2A25 (DQ238562), horse CYP2A13 (EU286274), human CYP2A6 (AF182275), human CYP2A13 (AY513606), monkey CYP2A23 (DQ074790), mouse CYP2A5 (P20852), mouse CYP2A4 (Q91X75), rat CYP2A1 (P11711), rat CYP2A2 (P15149), rat CYP2A3 (P20812), pig CYP2A19 (AB052255), rabbit CYP2A11 (Q05556), rabbit CYP2A10 (Q05555)
CYP2B	rat CYP2B1 (P00176), rat CYP2B2 (P04167), rat CYP2B3 (P13107), cattle CYP2B6 (no accession no.), dog CYP2B11 (P24460), monkey CYP2B6 (DQ074793), monkey CYP2B30 (AY635461), human CYP2B6 (P20813), human CYP2B7 (DQ198366), mouse CYP2B9 (P12790), mouse CYP2B10 (P12791), mouse CYP2B13 (A6H6J2), mouse CYP2B19 (O55071), mouse CYP2B23 (no accession no.), rabbit CYP2B4 (P00178), pig CYP2B22 (AB052256)
CYP2C	dog CYP2C21 (P56594), dog CYP2C41 (AF016248), horse CYP2C92 (EU014893), human CYP2C8 (P10632), human CYP2C9 (P11712), human CYP2C19 (P33261), monkey CYP2C18 (DQ297681), minke whale CYP2C78 (AB290008), mouse CYP2C29 (Q64458), rabbit CYP2C1 (P00180), rabbit CYP2C2 (P00181), rat CYP2C6 (P05178), rat CYP2C7 (Q4QQW7), pig CYP2C33 (AB052257), pig CYP2C49 (AB052258)
CYP3A	human CYP3A4 (P08684)

The human CYP3A4 is used as an outlier.

Table S4. Parameters used for principle component analysis.

Group	Parameter
In vitro PCB metabolism assay	PCB decrease ratio\%
PCB structural parameters	number of Cl in PCB presence of non-ortho-position presence of mono-ortho-position number of H atom at ortho-position number of H atom at meta-position number of H atom at para-position number of sites with vicinal H atoms at ortho- and meta-positions of PCB number of sites with vicinal H atoms at meta- and para-positions of PCB number of Cl at ortho-position number of Cl at meta-position number of Cl at para-position number of H at \sum (ortho+meta) number of H at \sum (para+meta) presence of vicinal H atoms at 2 and 3 position of PCB presence of vicinal H atoms at 2^{\prime} and 3^{\prime} position of PCB presence of vicinal H atoms at 3 and 4 position of PCB presence of vicinal H atoms at 3^{\prime} and 4^{\prime} position of PCB presence of vicinal H atoms at 4 and 5 position of PCB presence of vicinal H atoms at 4^{\prime} and 5^{\prime} position of PCB presence of vicinal H atoms at 5 and 6 position of PCB presence of vicinal H atoms at 5^{\prime} and 6^{\prime} position of PCB bilateral symmetry
Physicochemical parameters	Log Kow molecular weight ofPCB PEOE_VSA+0_(electricity effect) PEOE_VSA+1_(electricity effect) PEOE_VSA-1_(electricity effect) SlogP_VSA6_(hydrophobicity) SlogP_VSA7_(hydrophobicity) SlogP_VSA9_(hydrophobicity) SMR_VSA3_(molar refractivity) SMR_VSA5_(molar refractivity) SMR_VSA7_(molar refractivity)

Group	Parameter
In silico results	presence of measurable distance from bsCYP2B heme Fe to Cl -unsubstituted carbon at 5 position of PCB presence of measurable distance from bsCYP2B heme Fe to Cl -unsubstituted carbon at 5' position of PCB presence of measurable distance from bsCYP2B heme Fe to Cl -unsubstituted carbon at 6 position of PCB presence of measurable distance from bsCYP2B heme Fe to Cl -unsubstituted carbon at 6 ' position of PCB shortest measurable distance (\AA) from bsCYP2B heme Fe to Cl -unsubstituted carbons of PCB ranking number of docking simulation in bsCYP2B number of posing of docked PCBs of which Cl-unsubstituted carbon was allocated within $5 \AA$ distance from the heme Fe in bsCYP2B number of posing of docked PCBs of which Cl-unsubstituted carbon was allocated within $6 \AA$ distance from the heme Fe in bsCYP2B U_dock value of the interaction of PCB with bsCYP2C presence of measurable distance from bsCYP2C heme Fe to Cl -unsubstituted carbon at 2 position of PCB presence of measurable distance from bsCYP2C heme Fe to Cl -unsubstituted carbon at 2' position of PCB presence of measurable distance from bsCYP2C heme Fe to Cl -unsubstituted carbon at 3 position of PCB presence of measurable distance from bsCYP2C heme Fe to Cl -unsubstituted carbon at 3 ' position of PCB presence of measurable distance from bsCYP2C heme Fe to Cl -unsubstituted carbon at 4 position of PCB presence of measurable distance from bsCYP2C heme Fe to Cl -unsubstituted carbon at 4 ' position of PCB presence of measurable distance from bsCYP2C heme Fe to Cl -unsubstituted carbon at 5 position of PCB presence of measurable distance from bsCYP2C heme Fe to Cl -unsubstituted carbon at 5 ' position of PCB presence of measurable distance from bsCYP2C heme Fe to Cl -unsubstituted carbon at 6 position of PCB presence of measurable distance from bsCYP2C heme Fe to Cl -unsubstituted carbon at 6 ' position of PCB shortest measurable distance (\AA) from bsCYP2C heme Fe to Cl -unsubstituted carbons of PCB ranking number of docking simulation in bsCYP2C number of posing of docked PCBs of which Cl-unsubstituted carbon was allocated within $5 \AA$ distance from the heme Fe in bsCYP2C number of posing of docked PCBs of which Cl-unsubstituted carbon was allocated within $6 \AA$ distance from the heme Fe in bsCYP2C

Table S5. Validation of the homology models of bsCYP1A1, 1A2, 1B1, 2A, 2B, and 2C.

CYP isozyme	PCB congener	Distance (\AA) between Cl unsubstituted carbon of PCB and the heme Fe in the top 3 CYP models		
		average	std	cv \%
bsCYP1A1	CB180	8.1	0.1	0.6
	CB199	7.6	5.0	65.3
	CB209	5.1	1.2	23.5
	CB15	7.0	1.2	17.2
bsCYP1A2	CB44	5.1	0.6	11.6
	CB110	5.8	1.5	25.4
	CB52	6.2	0.8	12.7
bsCYP1B1	CB183	5.7	1.8	32.1
	CB206	8.9	1.8	20.6
	CB19	4.1	0.6	14.7
bsCYP2A	CB70	3.6	0.8	20.9
	CB205	5.7	0.7	11.6
	CB3	2.8	0.3	9.5
bsCYP2B	CB74	3.6	0.3	7.9
	CB206	6.1	1.0	16.1
	CB37	9.3	2.5	26.5
bsCYP2C	CB44	9.3	0.6	6.9
	CB191	9.8	0.5	5.2

Top 3 homology models of each CYP with the $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ lowest total potential energies were constructed, and validated by the variation (average, standard variation (std) and CV\%) in the distance between Cl unsubstituted carbon of some PCB congeners and the heme Fe in the top 3 CYP models. For the validation of the top 3 models for each bsCYP isozyme, we applied 3 PCB congeners which showed the shortest, longest, and median distance between Cl unsubstituted carbon of the PCB and the heme in the $1^{\text {st }}$ ranked model. the heme Fe in bsCYP1 and bsCYP2 protein homology models.

IUPAC No.	CYP1A1	CYP1A2	CYP1B1	CYP2A	CYP2B	CYP2C
1	8.98	4.95	4.75	5.80	3.94	8.15
3	8.11	6.14	7.33	4.92	3.08	9.64
4	7.99	4.34	4.01	4.21	3.55	7.81
8	8.90	6.27	5.31	4.31	3.26	7.06
10	7.99	4.34	4.01	4.21	3.55	7.81
15	8.00	8.43	4.88	2.98	3.13	10.16
18	7.69	7.47	5.35	4.87	4.81	9.69
19	8.07	4.60	4.23	4.70	3.38	9.21
22	7.75	5.14	4.16	3.30	3.55	8.33
28	11.04	6.46	5.99	4.45	3.68	8.06
33	7.39	5.64	5.26	3.89	4.15	8.66
37	8.69	4.74	5.67	3.72	3.17	6.62
44	6.78	5.75	5.62	4.79	4.30	9.50
49	7.39	4.27	4.42	3.27	3.47	7.60
52	7.85	5.37	5.48	4.40	3.65	9.77
54	9.19	5.19	4.16	3.92	3.46	9.60
70	8.23	5.07	4.58	2.73	3.37	10.27
74	8.28	6.26	5.67	4.70	3.80	10.03
77	7.88	5.75	5.88	3.62	3.77	7.68
81	8.05	5.94	5.86	4.21	4.02	8.29
87	8.93	6.27	5.82	5.09	4.37	8.25
95	8.37	6.33	10.70	4.57	3.79	9.99
99	8.43	4.51	4.67	3.13	3.39	8.36
101	8.23	5.34	4.56	4.96	3.90	8.78
104	8.01	4.91	4.13	3.71	3.66	8.18
105	8.29	4.62	4.42	4.25	4.23	9.59
110	6.89	4.14	6.75	4.78	4.10	9.01
114	8.04	6.33	6.65	4.76	3.60	7.98
118	7.77	6.39	5.79	5.36	3.70	9.93
119	7.06	5.95	6.03	4.39	4.00	7.76
123	8.03	4.60	6.74	4.67	3.72	8.25
126	8.86	6.03	4.93	4.99	4.12	8.96
128	9.04	6.29	5.90	4.08	4.18	8.26
138	7.86	4.15	4.00	5.18	3.37	8.22
149	7.04	5.78	7.78	4.47	4.10	8.33
151	9.07	5.17	5.41	3.83	3.79	10.20
153	8.48	5.04	4.98	4.75	3.99	8.65
155	8.08	5.50	4.72	4.12	4.23	9.70
156	8.81	6.44	8.54	5.43	5.55	8.43
157	7.67	6.39	7.82	4.63	5.08	8.71
158	7.19	6.03	6.99	4.68	4.15	8.29
167	8.02	5.22	5.39	4.85	4.90	9.03
168	8.98	6.44	4.77	5.74	3.63	9.26
169	9.81	6.41	6.98	5.69	5.63	8.74
170	9.05	4.40	5.91	5.49	4.98	8.44
171	7.85	7.35	4.23	5.14	4.63	9.35
177	8.22	6.54	5.88	4.67	3.76	9.08
178	8.37	5.06	9.32	3.59	4.88	8.71
180	8.14	6.10	4.56	5.67	3.12	8.47
183	8.36	4.68	3.86	4.27	3.73	10.25
187	8.73	6.14	5.66	4.77	3.53	8.92
188	8.75	6.39	5.45	4.72	3.17	9.76
189	9.63	6.57	6.58	5.35	5.64	8.52
191	7.04	4.69	5.20	5.77	3.43	10.40
194	8.84	5.39	9.12	5.04	5.78	9.56
199	13.04	6.06	5.25	4.42	5.31	8.25
201	7.14	6.65	8.15	4.75	3.74	9.55
202	8.10	5.35	4.69	3.33	6.11	9.78
205	10.85	7.93	10.39	6.42	5.72	10.11

	206	10.89	5.26	10.86	4.85	6.38	8.39
208	7.80	6.65	5.95	4.75	3.77	8.02	
209	6.10	4.85	4.23	4.83	3.92	9.19	

302

Parameter	PC1	PC2	PC3	PC4	PC5
In vitro decreased ratio of PCB (\%)	0.55	0.19	0.08	0.51	-0.01
Number of Cl in PCB	-0.95	-0.10	-0.16	-0.02	0.05
Molecular weight of PCB	-0.95	-0.10	-0.16	-0.02	0.05
Log Kow of PCB	-0.89	-0.20	-0.36	-0.02	0.12
Number of H atom at meta-position of PCB	0.85	0.18	0.18	-0.07	-0.16
Number of sites with vicinal H atoms at meta- and para-positions of PCB	0.75	0.29	0.50	-0.04	-0.19
Presence of vicinal H atoms at meta- and para-positions of PCB	0.50	0.11	0.80	-0.11	-0.03
Presence of Cl-substitution at 4' position of PCB	-0.01	-0.13	-0.80	-0.25	0.14
Presence of vicinal H atoms at 2 and 3 positions of PCB	0.45	-0.19	-0.07	0.59	0.08
Presence of vicinal H atoms at 5 and 6 positions of PCB	0.64	-0.08	-0.19	0.21	-0.12
Presence of vicinal H atoms at 4' and 5' positions of PCB	0.32	-0.07	0.82	0.16	-0.01
Presence of measurable distance from bsCYP1A1 heme Fe to Cl-unsubstituted carbon at 3^{\prime} position of PCB	0.08	0.27	0.26	0.34	0.01
Presence of measurable distance from bsCYP1A2 heme Fe to Cl-unsubstituted carbon at 6 position of PCB	-0.15	-0.20	0.03	-0.07	0.69
Number of posing of docked PCBs of which Cl -unsubstituted carbon was allocated within $6 \AA$ distance from the heme Fe in bsCYP1A2	0.01	0.63	0.16	-0.26	0.10
Presence of measurable distance from bsCYP1B1 heme Fe to Cl -unsubstituted carbon at 4' position of PCB	0.04	0.27	0.05	0.67	-0.16
Presence of measurable distance from bsCYP1B1 heme Fe to Cl -unsubstituted carbon at 5 position of PCB	-0.09	0.06	-0.18	-0.11	0.74
Shortest measurable distance (\AA) from bsCYP2A heme Fe to Cl -unsubstituted carbons of PCB	-0.28	-0.78	0.16	-0.29	0.11
Number of posing of docked PCBs of which Cl-unsubstituted carbon was allocated within $5 \AA$ distance from the heme Fe in bsCYP2A	0.09	0.81	0.11	0.21	-0.21
Number of posing of docked PCBs of which Cl -unsubstituted carbon was allocated within $6 \AA$ distance from the heme Fe in bsCYP2A	0.16	0.82	0.05	0.12	-0.05
Presence of measurable distance from bsCYP2B heme Fe to Cl -unsubstituted carbon at 4' position of PCB	-0.14	0.01	0.19	0.78	-0.08
Presence of measurable distance from bsCYP2B heme Fe to Cl -unsubstituted carbon at 6 position of PCB	-0.14	-0.05	-0.02	0.02	0.89
U_dock value of the interaction of PCB with bsCYP2C (kcal/mol)	0.85	0.13	0.16	0.11	-0.14

Table S7. PC1-5 scores obtained by PC analysis for all of 62 PCB congeners examined.

Parameter	PC1	PC2	PC3	PC4
In vitro decreased ratio of PCB (\%)	-0.41	0.59	0.23	0.37
Number of Cl in PCB	0.94	-0.03	-0.20	-0.17
Molecular weight of PCB	0.94	-0.03	-0.20	-0.17
Log Kow of PCB	0.90	-0.08	0.00	-0.21
Number of H atom at meta-position of PCB	-0.75	0.28	0.00	0.18
Presence of Cl -substitution at 5 position of PCB	0.22	-0.13	-0.01	-0.92
Presence of vicinal H atoms at 2 and 3 positions of PCB	-0.41	0.19	0.64	0.05
Presence of vicinal H atoms at 5 and 6 positions of PCB	-0.43	-0.08	0.14	0.69
Number of posing of docked PCBs of which Cl-unsubstituted carbon was allocated within $6 \AA$ distance from the heme Fe in bsCYP1A2	0.13	0.40	-0.66	0.18
Shortest measurable distance (\AA) from bsCYP1B1 heme Fe to Cl -unsubstituted carbons of PCB	0.43	-0.28	0.62	0.18
Shortest measurable distance (\AA) from bsCYP2A heme Fe to Cl -unsubstituted carbons of PCB	0.03	-0.81	0.11	0.09
Number of posing of docked PCBs of which Cl-unsubstituted carbon was allocated within $6 \AA$ distance from the heme Fe in bsCYP2A	0.11	0.79	-0.09	0.14
Presence of measurable distance from bsCYP2B heme Fe to Cl -unsubstituted carbon at 4' position of PCB	-0.20	0.27	0.72	0.20
Shortest measurable distance (\AA) from bsCYP2B heme Fe to Cl -unsubstituted carbons of PCB	0.35	-0.67	-0.33	0.10
U_dock value of the interaction of PCB with bsCYP2C (kcal/mol)	-0.88	-0.07	0.16	0.15

Table S8. PC1-4 scores obtained by PC analysis for 1-5 chlorine substituted PCB congeners examined.
(A)

(B)

Figure S1.

Figure S2.

121 CCCTTCATTGGGAACTACCTGCAGCTGAACACTCAGCAGATGTCTGATTCCTTCATGAAGATCAGCGAGCGATATGGCCCGGTCTTCATGGTCCACCTGGGGCCCCGGCGCATCGTGGTG 240

241 CTGTGTGGACACGAGGCGGTGAAGGAGGCTCTGGTGGACCAGGCTGAGGAGTTCAGCGGGCGAGGCGCACAGGCCACCTTCGACTATCTCTTCAAAGGCTATGGGGTGACGTTCAGCAAC 360 L C G H E A V K E A L V D Q A E E F S G R G A Q A T F D Y L F K G Y G V T F S

361 GGGGAGCGCGCCAAGCAGCTCCGGCGCTTCTCCATCACCACGCTGCGGGACTTTGGAGTGGGCAAGCGCGGCATTGAGGAGCGCATCCAGGAGGAGGCGGGCTTCCTCATTGAAGCCTTI 480

481 CGGGGCACACACGGTGCCTTCATCGATCCCACCTTCTTCCTGAGCCGAACAGTGTCCAATGTCATCAGCTCCATTGTCTTTGGGGACCGCTTTGACTATGAGGACAAAGAGTTCCTGTCA 600

601 CTGCTGCGTATGATGCTGGGAAGCTTCCAGTTCACAGCTACCTCTATGGGGCAGCTCTGTGAAATGTTCCATTCAGTGATGAAGCACCTGCCAGGGCCACAGCAACAGGCGTTTAAGGAG 720 L L R M M L G S F Q F T A T S M G Q L C E M F H S V M K H L P G P Q Q Q A F K E

721 CTGCAGGGTCTGGAAGACTTCATAGCCAAGAAGGTGGAGCAGAATCAACGCACCCTGGACCCCAATTCCCCGAGGGACTTCATCGACTCCTTCCTCATTCGCATGCAGGAGGAGCAGAAC 840

841 AACCCCAACACGGAGTTCTACATGAAGAACCTGGTGCTGACCACACTGAACCTCTTCTTTGCGGGCACTGAGACGGTCAGCACAACCCTGCGGTACGGCTTCCTGCTGCTCATGAAGCAC 960

961 CCAGAGGTGGAGGCCAAGGTCCATGAGGAGATTGACCGGGTGATTGGCAAGAACCGTCAGCCCAAGTTTGAGGACCGGGCCAAGATGCCCTACACAGAGGCGGTGATCCACGAGATCCAA 1080

1081 AGATTTGGAGACATAATCCCCATGGGCCTGGCCCGCAGAGTCACCAAGGACACCAAGTTTCGAGAGTTCCTCCTCCCCAAGGGCACTGAAGTGTTCCCTATGCTGGGCTCCGTGCTGAGA 1200

1201 GACCCCAAGTTCTTCTCCAACCCCCGAGACTTCCACCCCCAGCACTTCCTGGATGAGAATGGGCAGTTTAAGAAGAGTGATGCTITTGTGCCCTTCTCCATTGGAAAGCGGTACTGTTIT 1320 D P K F F S N P R D F H P Q H F L D E N G Q F K K S D A F V P F S I G K R Y C F

1321 GGAGAAGGCCTGGCTAGAATGGAGCTCTTTCTCTTCCTCACCACCATCTTGCAGAACTTCCGCTTCAAGTCCCCGCAGCTGCCCCAAGACATCAACGTGTCTCCCAAGCTCGTAGGCTTA 1440 G E G L A R M E L F L F L T T I L Q N F R F K S P Q L P Q D I N V S P K L V G L

1441 GCCACCATCCCACGAAATTACACCATGAGCTTCCAGCCCCGCTGA
1485 A T I P R N Y T M S F Q P R *
(B) 1 ATGGAGCTCA GCGTCCTTCT CCTCCTIGCT CTCCTCACGG GACTCTTGCT TCTGCTGGCC AGGGGCCACC TGAGGCCTA TGGCTGCCTG CCGCCAGGCC CCCGTCCTCT GCCTITCTTG 120

121 GGGAACCTTC TTCAGATGGA CAGAAGTGGC TTACTCAAAT CCTTCCTCAG GTTCCAAGAG AAATACGGGG ATGTCTTCAC GGTGTACCTG GGGCCAAGGC CTGTGGTCAT GCTATGTGGG 240

241 ATAAAGGCCA TAGGGGAGGC CCTGGTGGAC CAGGCTGAGA CCTTCTCCGG CCGGGGGAAA ATTGCTATAC TAGAGGCAGT CTTCCAGGAA TATGGTGTGG TCTTTGCCAA TGGGGAACGC 360 I K A I R E A LV D Q A E T F S G R G K I A I L E A V F Q E Y G V V F A N G E R

361 TGGAAGACCC TTGGCCGATT CTCTCTGGCC ACCATGAGGG ACTTCGGGAT GGGGAAGTGG AGTATGGAGA AGCGGATTCA GGAGGAGGCT CAGTGTCTGG TGGAGGAGCT ACGGAAAACC 480

481 CAGGGAGCCC TCCAGGACCC CACCTTATTC TTCCACTCCA TGACCACTAA CGTCATCTGT TCCATTGTCT GTGGAAAACG CTTTGGCTAC AGAGACCCTG AATTGCTGCG GCTGCTGGAC 600 Q G A L Q D P T L F F H S M T T N V I C S I V C G K R F G Y R D P E L L R L L D

601 CTGTTCTACC AGTCCTTCGC GCTCATCAGC TCCTTCTCCA GCCAGGTGTT CGAGCTTTTC CACAGCTTCT TGAAGTACTT CCCTGGTACA CACAGGCAAG TCTACAAAAA CCTGCAGGAA 720

721 ATCACCCGCT TCATTGACCG GGTTGTGGAG AAGCACCGTG AAACCCTGGA CCCCAGCTCC CCCCGGGACT TCATCGACGC CTACCTGATC CGCATGGACA AAGAGAAGGC CGACCCCCGC 840 I T R F I D R V V E K H R E T L D P S S P R D F I D A Y L I R M D K

841 AGCGAGTTCC ACCAGCGGAA CCTCATCTAC ACCGCGCTGT CGCTCATCTT CGCCGGCACG GAGACCACCA GCACCACGCT CCGCTATGGA TTCCTGCTCC TGCTCAAATA CCCCCACATC 960 S E FH Q R N L I Y T A L S L I F A G T E T T S T T L R Y G F L L L L K Y P H I

961 ACAGAGAGAA TCCACAAAGA GATTGACCAG GTGATTGGCC CACACCGCCT TCCATCCCTT GATGACCGAG CCAAAATGCC ATACACTGAT GCAGTCATCC ATGAGATTCA GAGATTCGGG 1080 TERI H K E I D Q V I G P H R L P S L D D R A K M P Y T D A V I H E I Q R F G

1081 GACCTCCTCC CGATTGGTGT GCCCCATATG GTCACCAAAG ACACTAGCTT CAGAGGGTAC ATCATTCCCA AGGGCACTGA AGTATTTCCC ATCCTGCACT CGGCTCTCAA TGATCCACAT 1200

1201 TACTTTGAAA AACCAGAAGT CTTCAACCCT GACCGCTTTC TGGATGCCAA TGGGGCATTG AAGAAGAATG AAGCTTTTAT CCCCTTCTCC GTAGGGAAAC GCAGTTGTCT TGGTGAAGGC 1320 Y F E K P EV F N P D R F L D A N G A L K K N E A F I P F S V G K R \quad S C L G E G

1321 ATCGCCCGCA TGGAATTATT CCTCTTCTTC ATCACCATCC TCCAGAACTT CTCTGTGGCC AGCCCCGTGG CCCCTGAGGA CATTGACCTC ACACCCCGGG AGAGTGGTGT GGGCAAAGTG 1440 I A R M E L F L F F I T I L Q N F S VA S P VA P E D I D L T P R E S G V G K V

1441 CCCCCAGTGT ACCAGATCAG CTTTCTGGCT CATGGAGGAT GCTGA
1485
 $M D P V V V L V L C L S F W L L L S L W K Q S S G K G K L P P G P T P L P G F I G$

121 AATATCCTCC AGGTAGATGT GAAGGACATC GGCAAATCCT TAATCAATCT CTCAAAAGCC TATGGCCCTG TATTCACTCT GTATCTTGGC ATGAAGCCCA CTGTTGTGCT GCATGGGTAT 240
 E A V K E A L I D M G E E F S A R G S F P I A E K L T E G H G L L F T S G K R W

361 AAGGAGTTAC GGCGCTICTC CCTCATGACC CTGCGGAATT TGGGGATGGG GAAGAGTGAC CTTGAGAGCC GAGTTCAAGA GGAAGCCTGC CACCTTGTAG AAGAATTGAG AAAAACCAAT 480 K E L R R F S L M T L R N L G M G K S D L E S R V Q E E A C H L V E E L R K T N

481 GCCTTACCCT GTGATCCCAC TTTTGTCCTG GGCTGTGCTT CCTGCAATGT GATCTGCTCC GTTATTTTCC AGCATCATTT TGATTATACA GATGAGACTT TAATTGGTTT CCTCAAGAGA 600 A L P C D P T FVLG C A S C N V I C S V I F Q H H F D Y T D E T L I G F L K R

601 TTTAATGAAA ACTTCAGGAT TTTGAGCTCC CCATGGATCC ATGTCTACAA TAGCTTCCCC GCTCTCCTTG ATTATCTCCC AGGAAGTCAT AATACAATGT ATAAAAATTC TGTTTTTCTA 720 F NEN F R I L S S P W I H V Y N S F P A L L D Y L P G S H N T M Y K N S V F L

721 AAAAATTACA TTTTGGAGAA AATAAAAGAA CACCAAGAAT CCTTGGACAT TAACAATCCT CGGGACTTCA TTGATTATTT TCTGATGAAA ATGGAACAGG AAAAGTACAA TGAGCAGTTG 840 K N Y I L E K I K E H Q E S L D I N N P R D F I D Y F L M K M E Q E K Y N E Q L

841 GAGTITACTI CTGAAAACTT GATAAACACT GCAGCTGATT TGTTTGCAGC TGGGACAGGG ACAATAAGCA CCACCCTACG ATATGGTCTC CTGATGCTGC TGAAGCACCC AAAAGTCACA 960 E F T S E N L I N T A A D L F A A G T G T I S T T L R Y G L L M L L K H P K V T

961 GCTAAAGTCC AGGAAGAGAT TGACTGTGTA ATTGGCAGAC ACCAGACCCC TTGCATGCAA GACAGGAGCC GCATGCCCTA CACGAATGCA GTATTGCATG AGATCCAGAG ATACATTGAC 1080

1081 CTTGTCCCAA ACAACCTGCT TCATGCAGTG ACCTGTGACA TTAAATTCAG AAACTATTTC ATCCCCAAGG GCACAACCAT ATTAACATCA CTGACTTCTG TGCTCCATGA TGACCAAGAA 1200

1201 TTCCCCAACC CAGAGATATT TGACCCTGCC CACTTCCTGG ATGATAGCGG CAACTTTAAG AAGAGTGACC ATTTCGCGGC TTTCTCAGCA GGAAAACGAG TATGCGTAGG AGAAGGACTG 1320 F P N P E I F D P A H F L D D S G N F K K S D H F A A F S A G K R V C V G E G L

1321 GCCCGAATGG AGCTGTTTTT ATTCCTGACC ACCATTTTAC AGAAATTTAC CCTGAAATCT CTGGTTGACC CAAAGGACAT TGATACCACC CCTATTGCCA GTGGGTTTGG CCATGTCCCA 1440 A R M E L F L F L T T I L Q K F T L K S L V D P K D I D T T P I A S G F G H V P

1441 CCCCCCTACC AGGTGTGCTT CATTCCCATG TGA

Figure S3.
(A) \qquad

kal_s	492	
dog_CYP2B11	492	GGC
human_CYP286	492	
CYP2B1	492	
mouse_CYP2B10	501	

human_CYP2C8
rat CYP2C6
mouse_CYP2C29
mouse_CYP2C29
minke_whale_CYP2C78

Figure S4.

Figure S5.

Figure S6.
hCYP2C9 bsCYP1A1
bsCYP1A2
bsCYP1B1
bsCYP2A
bsCYP2B
bsCYP2C

1 ---------------MDS----LVVLVLCLSCLLLLSLWRQSSGRGKLPPGPTPLPVI 39
1 -------MFSASRLSIPISATELLLASAVFCLMLWVVRAWQPRVPKGLKSPPGPWGWPLL 53
1 -----------MALSQMATELLLASAVFCLMLWVVRAWQPRVPKGLKSPPGPWGWPLL 47 1 MATSLGAEAPLQPSALSSQQTTLLLLLSVLAAVHVGQWLLRQRRRQPGSAPPGPFAWPLI 60
--------------MLASGLLLVALLTCLTTMVLMSVWRQRKLWEKLPPGPTPLPFI 43
$1-2---------M E L S V L L L L A L L T G---L L L L A R G H L K A Y G C L P P G P R P L P F L ~ 40$
1 ----------------MDP---VVVLVLCLSFWLLLSLWKQSSGKGKLPPGPTPLPFI 39
hCYP2C9 40 GNILQIGIKDISKSLTNLSKVYGPVFTLYFGLKPIVVLHGYEAVKEALIDLGEEFSGRGI 99
bsCYP1A1
bsCYP1A2
bsCYP1B1
bsCYP2A
bsCYP2B
bsCYP2C
54 GNVLTLG-KNPHLALSRLSQRYGDVLQIHIGSTPVLVLSGLDTVRQALVRQGEDFKGRPD 112
48 GNVLTLR-KNPHLALSRLSQRYGDVLQIHIGSTPVLVLSGLDTVRQALVRQGEDFKGRPN 106
61 GNAAAMG-PAPHLSFARLARRYGDVFQIRLGNCPVVVLNGERAIRQALVQQGAAFADRPR 119
44 GNYLQLNTQQMSDSFMKISERYGPVFMVHLGPRRIVVLCGHEAVKEALVDQAEEFSGRGA 103
41 GNLLQMDRSGLLKSFLRFQEKYGDVFTVYLGPRPVVMLCGIKAIREALVDQAETFSGRGK 100
40 GNILQVDVKDIGKSLINLSKAYGPVFTLYLGMKPTVVLHGYEAVKEALIDMGEEFSARGS 99
hCYP2C9 100 FPLAERANRGFGIVFS--NGKKWKEIRRFSLMTLRNFGMGKRS------IEDRVQEEAR 150
bsCYP1A1 113 LYSFTLITNGQSMSFSPDSGPVWAARRRLAQNALKSFSIASDPGSSSSCYLEEHVSKEAE 172
bsCYP1A2 107 LYSFTLITNGQSMSFSPDSGPVWAARRRLAQNALESFSIASDPGSSSSCYLEEHVSKEAE 166
bsCYP1B1 120 FASFRVVSGGRSLAFG-PYSQSWKVRRRAAHSTMRAFSTRQPR---SRRVLEGHVLGEAR 175
bsCYP2A 104 QATFDYLFKGYGVTFS--NGERAKQLRRFSITTLRDFGVGKRG-------IEERIQEEAG 154
bsCYP2B 101 IAILEAVFQEYGVVFA--NGERWKTLRRFSLATMRDFGMGKWS-------MEKRIQEEAQ 151
bsCYP2C 100 FPIAEKLTEGHGLLFT--SGKRWKELRRFSLMTLRNLGMGKSD-------LESRVQEEAC 150
hCYP2C9 151 CLVEELRKTKASP--CDPTFILGCAPCNVICSIIFHKRFDYKDQQFLNLMEKLNENIKIL 208
bsCYP1A1 173 ALLSRLQEQMAEVGHFDPYRYVVVSVANVVCAMCFGKRYDHDDQELLSLINLNNE---FG 229
bsCYP1A2 167 ALLSRLQEQMAEVGQFDPYNQVLLSVANVIGAMCFGQHFPQSNEEMLSLIKSSND---FV 223
bsCYP1B1 176 ELVALLVRGSAGGAFVDPRPLTVVAVANVMSAVCFGCRYSHDDAEFRELLSHNEEFGRTV 235
bsCYP2A 155 FLIEAFRGTHGAF--IDPTFFLSRTVSNVISSIVFGDRFDYEDKEFLSLLRMMLGSFQFT 212
bSCYP2B 152 CLVEELRKTQGAL--QDPTLFFHSMTTNVICSIVCGKRFGYRDPELLRLLDLFYQSFALI 209
bsCYP2C 151 HLVEELRKTNALP--CDPTFVLGCASCNVICSVIFQHHFDYTDETLIGFLKRFNENFRIL 208
hCYP2C9 209 SSPWIQICNNFSPIIDYFPGTHNKLLKNV-AFMKSYILEKVKEHQESMDMNN-PQDFIDC 266
bsCYP1A1 230 EAVASGNPVDFFPILRYLPNPALDFFKDLNKRFYSFMQKLVKEHYKTFEKGH-IRDITDS 288
bsCYP1A2 224 ETASSGNPVDFFPILQYMPNPALQRFKAFNQKLVQFLQKIVQEHYQDFDESS-IQDITGA 282
bsCYP1B1 236 GAGSLVDVLPWLQRFPNPVRTAFREFEQLNRNFSNFVLDKFLRHRESLQPGAGPRDMMDA 295
hऽCYP)A 713 ATSMGOI CFMFHSVMKHI PGPOOOAFKFI -OGI FDFTAKKVFONORTI DPNS-PRDFTDS 77 A
bsCYP2B 210 SSFSSQVFELFHSFLKYFPGTHRQVYKNL-QEITRFIDRVVEKHRETLDPSS-PRDFIDA 267
bsCYP2C 209 SSPWIHVYNSFPALLDYLPGSHNTMYKNS-VFLKNYILEKIKEHQESLDINN-PRDFIDY 266
hCYP2C9 267 FLMKMEKEKHNQPS----EFTIESLENTAVDLFGAGTETTSTTLRYALLLLLKHPEVTAK 322
bsCYP1A1 289 LIKHCQDKRLDENAN--IQLSDEKIVNVVLDLFGAGFDTVTTAISWSLLYLVTSPSVQKK 346
bsCYP1A2 283 LLKHNEKGSRAGGG----HIPHEKIVSLINDIFGAGFEPITMAISWSLIYLVTNPEIQRK 338
bsCYP1B1 296 FIISAGTEAAEGSEDGGARQDLEYVPATVTDIFGASQDTLSTALQWLLILFTRYPEVQAR 355
bsCYP2A 271 FLIRMQEEQNNPNT----EFYMKNLVLTTLNLFFAGTETVSTTLRYGFLLLMKHPEVEAK 326
bsCYP2B 268 YLIRMDKEKADPRS---EFHQRNLIYTALSLIFAGTETTSTTLRYGFLLLLKYPHITER 323
bsCYP2C 267 FLMKMEQEKYNEQL----EFTSENLINTAADLFAAGTGTISTTLRYGLLMLLKHPKVTAK 322
(continued)

Figure S7.
(A)

(D)
338

Figure S 8.

(E)

(F)

(C)

(B)

Figure S9.

Figure S10.

