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Kinetic Study: Chlorination, Chloramination and Bromination of BP-3 

 

 

 

Figure S1. Example pseudo first-order kinetic plots for BP-3 chlorination at different pH 

values and 20 ± 2°C ([BP-3]T,0= 1.5 (± 0.3) µM, [Chlorine]T,0= 30 (± 5) µM);  

insert: BP-3 chlorination at pH 7, 20 ± 2°C and various [Chlorine]T,0 
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Figure S2. Chloramination of BP-3 at pH 8.5, T =20 (±2)°C  
([BP-3]T,0 = 1 µM ; [NH2Cl] = 1.7 mM) 

 

 

Figure S3. Example kinetic study of the bromination of BP-3 in the presence of EE2 at pH 7 

([BP-3]T,0 = [EE2]T,0 = 3 µM; [Bromine]T,0 = 0-15 µM) 
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Comparison with other phenolic compounds: Hammett type correlations 

Figure S4a and S4c represent the log k2 as a function of ∑σ(o,m,p) by considering data from 

various studies (1-8) according to Heeb et al. (2014) and Duirk et al. (2013) (9,10). In these 

figures, the Hammett constants were from Hansch et al. (1991) (11), and ∑σ(o,m,p) was 

calculated for every molecule by considering phenol as the reference compound (i.e. 

∑σ(o,m,p)=0) (9,10). For both oxidants (chlorine and bromine), a negative Hammett slope was 

noted, consistent with the electrophilic substitution mechanism. In the case of chlorination, 

different Hammett relationships were observed between monohydroxy and 

metadihydroxybenzenes. For the same ∑σ(o,m,p) values, rate constants of 

metadihydroxybenzenes were more than one order of magnitude higher than those of 

monohydroxybenzenes. This higher sensitivity of metadihydroxybenzenes towards HOCl 

substitution could be explained by the meta electron-donor substituent which directs chlorine 

substitution at similar sites to the phenolic function (i.e. in ortho and/or para position to the 

phenolic function) (2,12). Surprisingly, the calculation for benzophenone-3 (Figure S4a), i.e. a 

monosubstituated phenol, showed a better correlation with metadihydroxybenzenes. This 

could be due to the presence of the electron-donor methoxy substituent –OCH3 in meta 

position to the phenolic function, similarly to metadihydroxybenzenes. Only 

monohydroxybenzene data are represented in Figure S4c in the case of bromination. 

However, a similar behavior was observed for BP-3, with a higher reactivity of the latter 

compared to the Hammett relationship obtained for monohydroxybenzenes (1,3,5-8).  

A corrected Hammett-type correlation was previously suggested for phenol chlorination by 

Deborde and von Gunten (12). In this latter correlation, benzene was used as a reference 

compound and Hammett substituent constants were calculated by considering attack on the 

most probable site(s) of chlorine attack (i.e. unsubstituted ortho or/and para position(s) to the 

phenolic function) from the Hammet constants given by Perrin et al. (1981) (13). This 
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correlation is shown in Figure S4b for monohydroxy and metadihydroxybenzene chlorination 

(26,29,30). Similarly, in the present study, this correlation was applied for bromination of 

phenols using literature data (Figure S4d). Under these conditions, for a given compound, if 

all attack sites were occupied, the non-halogenated site in ortho or para position to the phenol 

function was considered as the reference site. For ∑σ(o,m,p) calculations, the σm value was used 

for the substituent present on the reference site. The results show a good linear correlation 

(R2= 0.87) with no difference between mono and metadihydroxybenzenes for both 

chlorination and bromination by using this corrected Hammett relationship. Moreover, a good 

agreement was obtained between BP-3 and the corrected Hammett-type correlations for both 

studied oxidants. In light of these results, a similar reaction mechanism based on electrophile 

substitution on the ortho and/or para sites to the phenol function would be expected during 

chlorination or bromination of BP-3. The formation of mono, di and trihalogenated 

derivatives is therefore expected (14,15). 
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Figure S4. Cross-linear correlations between the second-order rate constants for the 
reactions of phenoxide ions with HOCl and HOBr and the Hammett constants 

(a) and (c) Classical Hammett-type correlations obtained from literature data (9,10) 
(b) Corrected Hammett-type correlation for phenol chlorination (obtained from data 

obtained for both monohydroxybenzenes and meta-dihydroxybenzenes) (12) 
(d) Corrected Hammett-type correlation obtained in this work for phenol bromination  
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Chlorination in the presence of bromide and ammonia at pH 8.5 

 

Figure S5. BP-3 chlorination in the presence of bromide or ammonia at pH 8,5  
([BP-3]T,0= 1.4 (± 0.1) µM, [Chlorine]T,0= 5 (± 0.2) µM and T= 20 ±2°C) 

(a,b);[NH4
+]=0 µM and [Br-] = 0-2 µM (c,d) ); [Br-] =0 µM and [NH4

+] = 0-5 µM  
Symbols represent experimental data and solid lines represent the modeling obtained via 

Copasi 
 

 

  

Bromide Ammonia 

  

  

  

  



S8 
 

Haloamines impact on BP-3 decay under drinking water treatment conditions  

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Estimation of haloamines contribution on BP-3 decay at pH =7,  
[Chlorine]T,0= 20 µM, [NH4

+] = [Br-] =1 µM and [BP-3]T,0= 5 nM, 
Luh and Marinas model was used to estimate haloamines formation(16).  

Rate constant obtained in this work was considered for monochloramine reaction with BP-3 
and different elementary rate constants from 0 to 107 M-1 s-1 were tested for the reactions of 

other haloamine species 
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BP-3 decay during chlorination in the presence of bromide and ammonia  

 

Figure S7. (a,b) BP-3 decay patterns during chlorination in the presence of different bromide 
and ammonia concentrations (t= 10 min, [BP-3]T,0= 1.4 µM, [Chlorine]T,0= 5 µM)  
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