Supporting Information

Chalcogenization-Derived Band Gap Grading in Solution-Processed CuIn_xGa_{1-x}(Se,S)₂ Thin-Film Solar Cells

Se Jin Park,^{†,‡} Hyo Sang Jeon,[†] Jin Woo Cho,[§] Yun Jeong Hwang,[†] Kyung Su Park,[§] Hyeong Seop Shim, [∥] Jae Kyu Song, [∥] Yunae Cho,[⊥] Dong-Wook Kim,[⊥] Jihyun Kim,[‡] and Byoung Koun Min^{*,†,}[√]

[†]Clean Energy Research Center and [§]Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Korea,

[‡]Department of Chemical and Biological Engineering and [¬]Green School, Korea University, Seoul,

02841, Korea

^{II} Department of Chemistry, Kyung Hee University, Seoul, 02447, Korea

[⊥]Department of Physics, Ewha Womans University, Seoul, 03760, Korea

* Corresponding author: B. K. Min, E-mail: bkmin@kist.re.kr. Tel.: +82 2 958 5853. Fax: +82 2 958 5809.

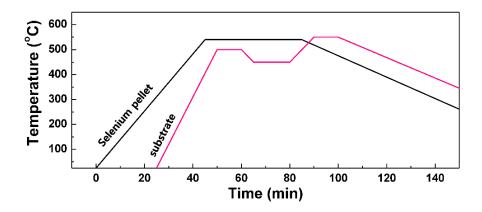
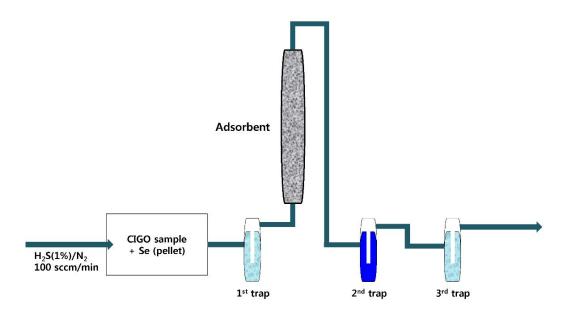
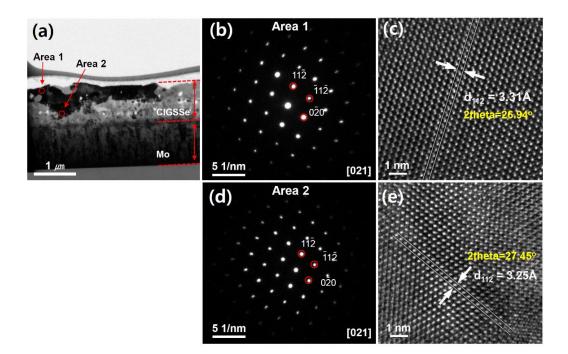
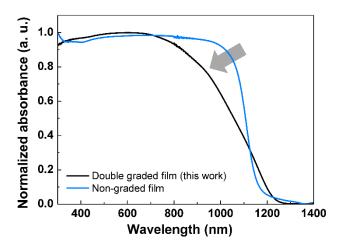
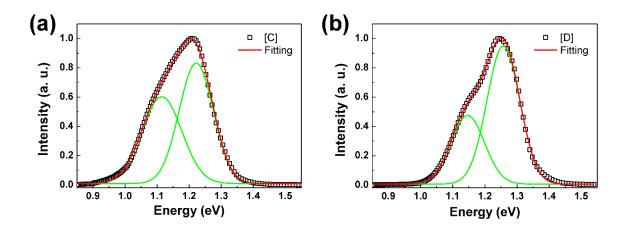


Figure S1. Temperature profiles of two zones of a tube furnace during selenization process.


Figure S2. Schematic diagram of experimental setup for gas analysis and purification

For the synthesis of CIGSSe film, we attempted selenization under H_2S gas environment. In this process, H_2Se gas may be generated due to the reaction between H_2S and Se at high


temperature. H₂Se gas is a colorless and extremely toxic gas, thus requires caution and purification before releasing the gas to atmosphere. In order to check whether or not H₂Se gas is really generated, we prepared the setup as shown in Figure S2. First of all, the 1st trap with deionized (DI) water was connected to outlet of the reactor because H₂Se gas is soluble in water. Temperature of the trap was maintained at 4 °C because solubility of selenium in water is variable as temperature. Absorbent (PureSphere, Puresorb TA-301) was then connected to the outlet of the 1st trap to adsorb both H₂Se and H₂S gas. Sequentially, the 2^{nd} trap with 0.1 M CuSO₄ in DI water was connected to the outlet of the absorbent, followed by installation of the 3rd trap of DI water to confirm the complete removal of H₂Se gas before releasing the gas to atmosphere through an exhaust gas hood. When residual H₂S gas was dissolved in CuSO₄ solution, a precipitate of CuS was formed due to the reaction: $H_2S(g) + CuSO_4(aq)$ \rightarrow CuS (s) + H₂SO₄ (aq).¹ Due to the black color of CuS precipitate, it is easy to confirm the ability of adsorbent. To quantify the generation of H₂Se gas the Se amount dissolved in the water trap was analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) showing 30 ppm. To exclude any influence of Se vapor from a Se pallet on the quantification we tested with similar procedure under only N2 gas without H2S and no apparent Se in the 1st trap was detected by our ICP-OES. Notably, after passing the absorbent and the CuSO₄ solution trap no H₂S and H₂Se gas was dissolved in 3rd DI water trap indicating that our purification procedure is assumed to be reliable.

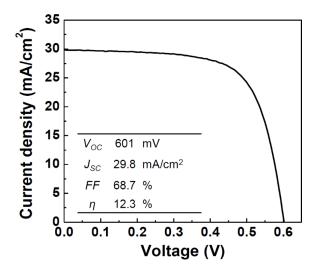

Figure S3. (a) Cross-sectional transmission electron microscopy (TEM) image of the CIGSSe film on Mo substrate, (b) and (d) selected area electron diffraction (SAED) patterns of the areas 1 and 2, and (c) and (e) high resolution TEM image of the selected area

Figure S4. Comparison of absorption spectra of the double graded CIGSSe film and the nongraded CIGSSe film on glass substrate showing absorption loss of the double graded one (see an arrow).

Figure S5. Photoluminescence (PL) spectra of (a) sample [C] and (b) sample [D] showed the wide and asymmetric shapes, which were deconvoluted by two Gaussian functions.

Figure S6. The current density-voltage (*J-V*) characteristics measured with an anti-reflection layer (MgF₂, 100 nm) under simulated AM 1.5G illumination. The efficiency of the cells was calculated per active area (0.249 cm^2).

Reference

(1) Fergusson, J.; Hart, R. CXC Chemistry, Oxford University Press: Oxford, 1999.