Supporting Information

Three-dimensional CdS Sensitized Sea-urchin like TiO2 Ordered

Arrays as Efficient Photoelectrochemical anodes

Haifeng Zhang¹, Dong Zhang², Xiaomei Qin² and Chuanwei Cheng¹*

²Department of Physics, Shanghai Normal University, Shanghai, P. R. China.

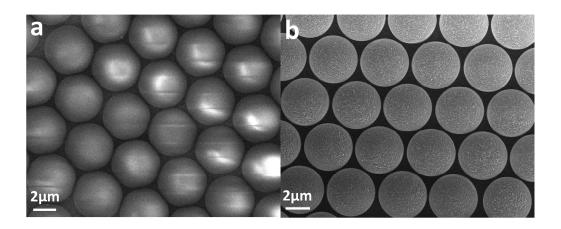


Figure S1. SEM image of (a) monolayer PS microspheres (b) TiO_2 hollow microspheres

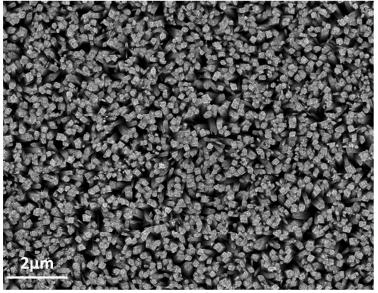


Figure S2. SEM image of 1D TiO₂ nanowires on FTO substratre

¹Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P.R. China

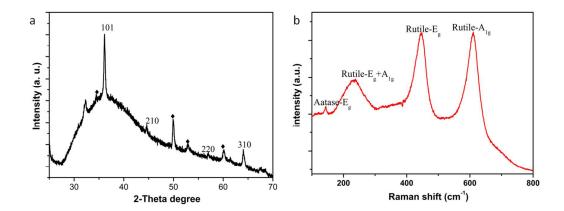


Figure S3 (a) XRD patterns of the sea-urchin like TiO_2 arrays, \blacklozenge labed the peaks from the FTO substrate. (b) Raman spectrum of the sea-urchin like TiO_2 arrays, the three peaks centered at 232 cm⁻¹, 446 cm⁻¹, 611 cm⁻¹ are ascribed to the rutile phase of TiO_2 nanorods, and the small peak at 143 cm⁻¹ is from the anatase phase of hollow TiO_2 microspheres in the TiO_2 sea-urchin like structure.

Figure S4 EDS spectrum of the CdS sensitized sea-urchin like TiO₂