Identification of a New Type of Covalent PPAR γ Agonist using a Ligand-Linking Strategy

Anna Ohtera ${ }^{\dagger}$, Yusaku Miyamae ${ }^{\dagger}$, , Kotaro Yoshida ${ }^{\dagger}$, Kazuhiro Maejima ${ }^{\ddagger}$, Toru Akita ${ }^{\ddagger}$, Akira Kakizuka ${ }^{\dagger}$, Kazuhiro Irie ${ }^{\S}$, Seiji Masuda ${ }^{\dagger}$, Taiho Kambe ${ }^{\dagger}$, Masaya Nagao ${ }^{\dagger *}$
${ }^{\dagger}$ Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan, ${ }^{\dagger}$ Nippon Shinyaku CO., LTD., Kyoto 601-8550, Japan, ${ }^{8}$ Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan

*Corresponding Authors
E-mail: ymiyamae@lif.kyoto-u.ac.jp
E-mail: mnagao@kais.kyoto-u.ac.jp

Contents

1. Identification and structural elucidation of compounds $\mathbf{1}$ and $\mathbf{2}$ 2
2. Synthetic procedure of hybrid ligands $\mathbf{5}$ and $\mathbf{6}$ 3
3. Method of MTT assay 7
4. Supplementary Table 7
5. Supplementary Figures 8

1. Identification and structural elucidation of compounds 1 and 2

General remarks. Organic solvents for fractionation were purchased from Nacalai Tesque. Flash column chromatography was performed using wako gel C-200 (Wako Pure Chemical Industries, Osaka, Japan) and Parallel FR-360 (Yamazen Corporation, Osaka, Japan). The following spectroscopic and analytical instruments were used: ${ }^{1} \mathrm{H}$ and ${ }^{13}$ C NMR, Avance III 400 (reference TMS, Bruker, Germany), HR-ESI-TOF-MS, Waters Xevo G2-S QTof (Waters, Tokyo, Japan). All other chemicals and reagents were purchased from chemical companies and used without further purification.

Extraction, purification and identification of (E)-ethyl 3-(4-methoxyphenyl)acrylate

 (1) and (\boldsymbol{E})-ethyl 3-(3,4-dimethoxyphenyl)acrylate (2). Dried aerial parts (2 kg) of Kaempferia galanga were extracted with $\mathrm{MeOH}(10 \mathrm{~L})$ for one week at room temperature. After filtration, the filtrate was evaporated to dryness in vacuo at $37^{\circ} \mathrm{C}$ to afford the MeOH extract $(134.4 \mathrm{~g})$. The MeOH extract (126.2 g) of K. galanga was partitioned between EtOAc (1.5 L) and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~L})$. The EtOAc soluble portion (75 g) was subjected to silica gel column chromatography (ϕ_{50} x 500 mm , Hexane/EtOAc/TFA, 100:0:5 \rightarrow 50:50:5 \rightarrow Hexane/2-propanol, 50:50) to afford seven fractions (A1 ~ A7). A2 fraction (56 g) was recrystallized from Hexane/EtOAc to give (E)-ethyl 3-(4-methoxyphenyl)acrylate (1, 10 g). A4 fraction (3.9 g) was separated into eight fractions (B1 ~B8) using silica gel column chromatography ($\phi 20 \times 500 \mathrm{~mm}$, Hexane/EtOAc/TFA, 6:6:0.5). B2 fraction (1.2 g) was fractionated into nine fractions (D1 ~ D9) using ODS column chromatography ($\phi 10$ x $300, \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}$, 10:90:5 \rightarrow 100:0:5). D7 fraction was purified by HPLC with ODS-gel column (Inertsil ODS3, $10 \mathrm{x} \quad 250 \mathrm{~mm}, \quad \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}, \quad 60: 40$) to give (E-ethyl 3-(3,4-dimethoxyphenyl)acrylate (2, 15.4 mg). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (E)-ethyl 3-(4-methoxyphenyl)acrylate and (E)-ethyl 3-(3,4-dimethoxyphenyl)acrylate were identical to those previously reported. (E)-ethyl 3-(4-methoxyphenyl)acrylate (1): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.33(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 3.83(3 \mathrm{H}, \mathrm{s}), 4.25(2 \mathrm{H}, \mathrm{q}, J=7.1$ $\mathrm{Hz}), 6.31(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 6.90(2 \mathrm{H}, \mathrm{dd}, J=2.9,8.8 \mathrm{~Hz}), 7.47(2 \mathrm{H}, \mathrm{dd}, J=2.9,8.8$ $\mathrm{Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 14.3,55.3,60.3$, 114.3 (2C), 115.7, 127.1, 129.6 (2C), 144.2, 161.3, 167.3 ppm. (E)-ethyl 3-(3,4-dimethoxyphenyl)acrylate (2): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.34(3 \mathrm{H}, \mathrm{t}$,$J=7.1 \mathrm{~Hz}), 3.92(6 \mathrm{H}, \mathrm{s}), 4.26(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 6.32(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 6.87(1 \mathrm{H}$, d, $J=8.3 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{dd}, J=1.9,8.3 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, J=$ $15.9 \mathrm{~Hz}) \quad$ ppm. ${ }^{13} \mathrm{C} \quad \mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 14.3,55.8,55.9,60.3,109.6$, $111.0,115.9,122.5,127.4,144.5,149.2,151.0,167.2 \mathrm{ppm}$.

2. Synthetic procedure of hybrid ligands 5 and 6

Synthesis of 8. $\mathrm{Zn}(785 \mathrm{mg}, 12 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}(321 \mathrm{mg}, 6 \mathrm{mmol})$ were added to a solution of $7(200 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at room temperature for 18 h . The solution was filtered and evaporated. After addition of water, the solution was extracted with EtOAc. The organic layer was washed with brine and dried over MgSO_{4}, filtered, and the solvents were evaporated in vacuo. The residue was purified by silica gel chromatography ($\$ 20 \times 150$ $\left.\mathrm{mm} ; \mathrm{CHCl}_{3} / \mathrm{MeOH}, 95: 5\right)$ to afford $\mathbf{8}(137 \mathrm{mg}, 1 \mathrm{mmol}, 83 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 2.76(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 3.81(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 6.56(2 \mathrm{H}, \mathrm{m}), 6.62(1 \mathrm{H}, \mathrm{d}, J=$ $7.7 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 39.4,63.7,113.5,116$, 119.5, 129.7, 139.9, 146.8 ppm .

Synthesis of 9. (Boc$)_{2} \mathrm{O}(218 \mu \mathrm{~L}, 1 \mathrm{mmol})$ was added dropwise to a solution of $\mathbf{8}$ (131 $\mathrm{mg}, 1 \mathrm{mmol})$ in dry THF (10 mL) at room temperature. The reaction mixture was stirred at room temperature for 18 h . Then, more dropwise (Boc$)_{2} \mathrm{O}(220 \mu \mathrm{~L}, 1 \mathrm{mmol}$) was added to the reaction mixture at room temperature. After the solution was stirred at room temperature for 4 h , the solvents were evaporated in vacuo. The residue was purified by silica gel chromatography ($\phi 20 \times 150 \mathrm{~mm}$; Hexane/EtOAc, 65:35) to afford 9 $(217 \mathrm{mg}, 0.9 \mathrm{mmol}, 96 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.51(9 \mathrm{H}, \mathrm{s}), 2.43(2 \mathrm{H}, \mathrm{t}, J=$ $6.5 \mathrm{~Hz}), 3.84(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{s}), 6.90(1 \mathrm{H}, \mathrm{m}), 7.17(1 \mathrm{H}, \mathrm{m}), 7.21(1 \mathrm{H}, \mathrm{m})$, $7.30(1 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 28.5$ (3C), 39.4, 63.7, 80.7, 116.9, 119.3, 123.9, 129.3, 138.8, 139.8, 153 ppm .

Synthesis of 10. The solution of $9(217 \mathrm{mg}, 0.9 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to p-toluensulfonyl chloride ($191 \mathrm{mg}, 1 \mathrm{mmol}$) with DMAP ($12 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(279 \mu \mathrm{~L}, 2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{CL}_{2}(7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Then, the reaction mixture was stirred at room temperature for 18 h . After addition of water, the solution was extracted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine and dried over MgSO_{4}, filtered, and the solvents were evaporated in vacuo. The residue was purified by silica gel chromatography ($\$ 20 \times 150 \mathrm{~mm}$; Hexane/EtOAc, $90: 10$) to afford $10(318 \mathrm{mg}, 0.8 \mathrm{mmol}$, $89 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.52(9 \mathrm{H}, \mathrm{s}), 2.43(3 \mathrm{H}, \mathrm{s}), 2.91(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz})$, $4.19(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 6.44(1 \mathrm{H}, \mathrm{s}), 6.79(1 \mathrm{H}, \mathrm{m}), 7.16(3 \mathrm{H}, \mathrm{m}), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}), 7.69(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 21.8,28.5(3 \mathrm{C})$, $35.5,70.7,80.8,117.2,119,123.8,128.1$ (2C), 129.4, 130 (2C), 133.2, 137.4, 138.8, $144.8,152.8 \mathrm{ppm}$. HR ESI-MS (positive ion) $m / z: 430.1115(\mathrm{M}+\mathrm{K})^{+}($Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{SK}: 430.1091$).

Synthesis of 11. $\mathrm{K}_{2} \mathrm{CO}_{3}(161 \mathrm{mg}, 1.17 \mathrm{mmol})$ was added to a solution of $\mathbf{1 0}(306 \mathrm{mg}$, $0.78 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at room temperature for 20 min . p-hydroxybenzaldehyde ($114 \mathrm{mg}, 0.94 \mathrm{mmol}$) was added to the reaction mixture at room temperature. The reaction mixture was refluxed for 18 h and cooled to room temperature. The solution was added $\mathrm{H}_{2} \mathrm{O}$, and extracted with CHCl_{3}. The organic layer was washed with brine and dried over MgSO_{4}, filtered, and the solvents were evaporated in vacuo. The residue was purified by silica gel chromatography ($\$ 20 \times 150 \mathrm{~mm}$; Hexane/EtOAc, 93:7) to afford $11(192 \mathrm{mg}, 0.56$ mmol, 72%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.52(9 \mathrm{H}, \mathrm{s}), 3.10(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 4.25$ $(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 6.50(1 \mathrm{H}, \mathrm{s}), 6.96(1 \mathrm{H}, \mathrm{m}), 7.00(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{m})$, $7.24(1 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{s}), 7.82(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 9.87(1 \mathrm{H}, \mathrm{s}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 28.5$ (3C), 35.8, 69.1, 80.7, 115 (2C), 117, 119.2, 123.8, 129.3, 130.1, 132.2 (2C), 138.8, 138.9, 153, 164.1, 191 ppm . HR ESI-MS (negative ion) m / z : $340.1559(\mathrm{M} \mathrm{-} \mathrm{H})^{-}\left(\right.$Calcd for $\left.\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{4}: 340.1549\right)$.

Synthesis of 12. (EtO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{COOEt}(132 \mu \mathrm{~L}, 0.66 \mathrm{mmol})$ was added to $\mathrm{LiCl}(29$ $\mathrm{mg}, 0.66 \mathrm{mmol}$) and DBU ($200 \mu \mathrm{~L}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$, and stirred at room temperature for 1 h . Then $11(149 \mathrm{mg}, 0.44 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added to the solution and stirred at room temperature for 18 h . After addition of water, the solution was extracted with EtOAc. The organic layer was washed with brine and dried over MgSO_{4}, filtered, and the solvents were evaporated in vacuo. The residue was purified by silica gel chromatography ($\phi 20 \times 150 \mathrm{~mm}$; Hexane/EtOAc, 95:5) to afford $\mathbf{1 2}$ $(160 \mathrm{mg}, 0.39 \mathrm{mmol}, 89 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.33(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz})$,
$1.52(9 \mathrm{H}, \mathrm{s}), 3.07(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 4.18(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 4.25(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz})$, $6.30(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 6.52(1 \mathrm{H}, \mathrm{s}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{m}), 7.17(1 \mathrm{H}$, $\mathrm{m}), 7.22(1 \mathrm{H}, \mathrm{m}), 7.39(1 \mathrm{H}, \mathrm{s}), 7.44(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 14.7,28.7$ (3C), 36, 60.6, 69, 80.8, 115.2 (2C), 116, 117.1, 119.3, 124, 127.5, 129.4, 130 (2C), 138.9, 139.3, 144.6, 153.1, 160.9, 167.7 ppm. HR ESI-MS (positive ion) $m / z: 434.1971(\mathrm{M}+\mathrm{Na})^{+}\left(\mathrm{Calcd}\right.$ for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Na}$: 434.1943).

Synthesis of 13. 4N HCl / EtOAc (2 mL) was added to a solution of $\mathbf{1 2}(130 \mathrm{mg}, 0.32$ mmol) in EtOAc (1 mL) at room temperature. The reaction mixture was stirred at room temperature for 18 h . Then, the solvents were evaporated in vacuo. The residue was purified by silica gel chromatography ($\phi 10 \times 300 \mathrm{~mm}$; Hexane/EtOAc, 95:5) to afford ethyl 13 ($94.8 \mathrm{mg}, 0.27 \mathrm{mmol}, 86 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): \delta 1.30(3 \mathrm{H}, \mathrm{t}, J=$ $7.1 \mathrm{~Hz}), 3.16(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 4.21(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 4.27(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 4.88$ $(2 \mathrm{H}, \mathrm{s}), 6.35(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 6.94(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.29(1 \mathrm{H}, \mathrm{m}), 7.40(1 \mathrm{H}, \mathrm{m})$, $7.46(2 \mathrm{H}, \mathrm{m}), 7.52(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): \delta 14.8,36.3,61.6,69.4,116.2$ (2C), 116.6, 122.2, 124.8, 128.7, 131.0, 131.1 (2C), 131.4, 132.2, 143.1, 145.9, 162.3, 169.2 ppm. HR ESI-MS (positive ion) $m / z: 312.1621(\mathrm{M}+\mathrm{H})^{+}\left(\right.$Calcd for $\left.\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3}: 312.1600\right)$.

Synthesis of 5. $\mathrm{Et}_{3} \mathrm{~N}(50 \mu \mathrm{~L})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to the solution of $\mathbf{1 3}$ (40 $\mathrm{mg}, \quad 0.12 \mathrm{mmol}$), and stirred at room temperature until dissolved. Then, 5-chloro-2-nitrobenzoyl chloride ($27.8 \mathrm{mg}, 0.13 \mathrm{mmol}$) was added to the solution and stirred at room temperature for 18 h . After addition of water, the solution was extracted with CHCl_{3}. The organic layer was washed with brine and dried over MgSO_{4}, filtered, and the solvents were evaporated in vacuo. The residue was purified by silica gel chromatography ($\phi 10 \times 300 \mathrm{~mm}$; Hexane/EtOAc, 70:30) to afford 5 ($42.7 \mathrm{mg}, 0.086$ mmol, $75 \%)$. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.31(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 3.10(2 \mathrm{H}, \mathrm{t}, J=$ $6.8 \mathrm{~Hz}), 4.20(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 4.21(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 6.24(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz})$, $6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 7.41(2 \mathrm{H}, \mathrm{d}, J$ $=8.8 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{m}), 7.57(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 7.63(1 \mathrm{H}$, m), $8.16(1 \mathrm{H}, \mathrm{dd}, J=2.7,8.8 \mathrm{~Hz}), 8.38(1 \mathrm{H}, \mathrm{s}), 8.48(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 14.4,35.8,60.6,68.6,115.1$ (2C), 115.8, 118.7, 121, 125.1, 125.9,
126.2, 127.3, 129.5, 129.9 (2C), 131.6, 136.9, 137.5, 137.9, 139.6, 144.5, 146.6, 160.7, 162.7, 167.7 ppm . HR ESI-MS (negative ion) $m / z: 493.1168$ (M - H) ${ }^{-}$(Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Cl}: 493.1166$).

Synthesis of $\mathbf{6}$. $\mathrm{Et}_{3} \mathrm{~N}(37.5 \mu \mathrm{~L})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to the solution of $\mathbf{1 3}$ ($30 \mathrm{mg}, 0.086 \mathrm{mmol}$), and stirred at room temperature until dissolved. Then 3-nitrobenzoyl chloride ($17.5 \mathrm{mg}, 0.094 \mathrm{mmol}$) was added to the solution and stirred at room temperature for 18 h . After addition of water, the solution was extracted with CHCl_{3}. The organic layer was washed with brine and dried over MgSO_{4}, filtered, and the solvents were evaporated in vacuo. The residue was purified by silica gel chromatography ($\phi 10 \times 300 \mathrm{~mm}$; Hexane/EtOAc, $65: 35$) to afford $6(32.0 \mathrm{mg}, 0.070$ mmol, 81%). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta 1.24(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 3.06(2 \mathrm{H}, \mathrm{t}, J$ $=6.7 \mathrm{~Hz}), 4.16(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 4.27(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 6.46(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz})$, $6.99(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{d}$, $J=16.0 \mathrm{~Hz}), 7.65(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{m}), 7.84(1 \mathrm{H}, \mathrm{m}), 8.43$ $(2 \mathrm{H}, \mathrm{m}), 8.80(1 \mathrm{H}, \mathrm{m}), 10.58(1 \mathrm{H}, \mathrm{s}) \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta 14.2$, $34.9,59.8,68.2,114.8$ (2C), 115.4, 118.7, 121.1, 122.4, 124.8, 126.1, 126.7, 128.6, 130.1 (2C), 130.2, 134.2, 136.3, 138.7, 138.8, 144.1, 147.7, 160.3, 163.3, 166.4 ppm. HR ESI-MS (negative ion) $m / z: 459.1583(\mathrm{M}-\mathrm{H})^{-}$(Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}: 459.1556$).

3. Method of MTT assay

HepG2 or pre-differentiated 3T3-L1 cells were seeded in $100 \mu \mathrm{~L}$ of medium at a density of 1×10^{4} cells /well in a 96 well micro-plate. After a 24 h incubation, the cells were treated with test samples for 24 or 48 h . Subsequently, $10 \mu \mathrm{~L}$ of 3-(4,5-dimethyl -2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT; DOJINDO, Kumamoto, Japan) dissolved in PBS at $5 \mathrm{mg} / \mathrm{mL}$ was added. After 4 h incubation, the colored formazan was dissolved in $100 \mu \mathrm{~L}$ of 10% SDS in PBS. The absorbance at 570 nm was determined using a multi-detection micro plate reader (Powerscan HT, Dainippon Pharmaceutical, Osaka, Japan).

4. Supplementary Table

Table S1. Primer pairs for real time RT-PCR

	Forward primer	Reverse primer
β-actin	5^{\prime} - GGCCAACCGTGAAAAGATGA-3'	5^{\prime} - CAGCCTGGATGGCTACGTACA-3'
adiponectin	5^{\prime} - CACCTACGACCAGTATCAG -3'	5^{\prime}-GCCAGTAAATGTAGAGTCGT-3'
aP2	5^{\prime} - GTCACCATCCGGTCAGAGAG -3'	5^{\prime} - CTTGTGGAAGTCACGCC -3'

5. Supplementary Figures

Figure S1. Dose-response effect of GW9662 on the cooperative activation of PPAR γ in combination with 1. The luciferase assay was performed in HepG2 cells transiently co-transfected with pGal4-PPAR γ LBD, pUAS-tk-Luc reporter and pact- β Gal plasmids. Relative luciferase activities normalized to β-galactosidase activity are indicated. HepG2 cells were treated with vehicle (shown as -; $0.1 \% \mathrm{DMSO}$), troglitazone ($\operatorname{Tro}, 10 \mu \mathrm{M}$), a synthetic PPAR γ agonist as a positive control, and $\mathbf{1}(0,1,10,100$, and $200 \mu \mathrm{M})$ with or without GW9662 ($0.1,1,10,100 \mathrm{nM}, 1$, and $10 \mu \mathrm{M})$ for 6 h . Results are presented as the mean $\pm \mathrm{SD}(\mathrm{n}=2) . * P<0.05, * * P<0.01$, compared with vehicle control. ${ }^{\dagger} P<0.05,{ }^{\dagger} P>0.01$, compared with cells treated without GW9662.

Figure S2. Cooperative effects of GW9662 and 1 on PPAR $\gamma, \operatorname{RXR} \alpha$, and Gal4 transcriptional activities. The luciferase assay was performed in HepG2 cells transiently co-transfected with pUAS-tk-Luc reporter, pact- β Gal plasmids, and pGal4-mousePPAR $\gamma \mathrm{LBD}, \mathrm{pGa14-humanPPAR} \gamma \mathrm{LBD}$, $\mathrm{pGal4}-\mathrm{humanRXR} \alpha \mathrm{LBD}$ or $\mathrm{pGal4}$. Relative luciferase activities normalized to β-galactosidase activity are indicated. HepG2 cells were treated by vehicle (shown as -; 0.1% DMSO), troglitazone (Tro, $10 \mu \mathrm{M}$), a synthetic PPAR γ agonist as a positive control for the PPAR γ agonist, 9 -cis-retinoic acid (9-cis-RA, $10 \mu \mathrm{M}$) as a positive control for the RXR α agonist, and 1 with or without GW9662 $(10 \mu \mathrm{M})$ for 6 h . Results are presented as the mean $\pm \mathrm{SD}(\mathrm{n}=3)$ of three independent experiments. ${ }^{*} P<$ 0.01 , compared with vehicle control. ${ }^{\dagger} P<0.01$, compared with cells treated without GW9662.

Figure S3. (A) Structure of the complex between PPAR γ LBD and rosiglitazone (PDB code 2PRG). Rosiglitazone exhibits a "U-shaped" conformation, located near the Cys285 residue with its central benzene ring directly behind helix 3 (left) and the TZD head group extending toward helix 12 to form a direct hydrogen bond with the hydroxyl moiety of Tyr473 (right) (B) Structure of the complex between PPAR γ LBD and GW9662 (PDB code3B0R) (left). GW9662 forms a covalent bond with the Cys285 residue in the PPAR γ LBD (right). (C) Open cavity in the GW9662-bound PPAR γ LBD. The potential ligand-binding site is detected by the Molegro cavity detection algorithm and is displayed as a green cavity. (D) Effect of treatment with 1 alone after pre-exposure of GW9662 on the transactivation of PPAR γ. The luciferase assay was performed in HepG2 cells transiently co-transfected with the pUAS-tk-Luc reporter, pact- β Gal plasmids, and pGal4-humanPPAR γ LBD. Relative luciferase activities normalized to the β-galactosidase activity are indicated. After pre-exposure of vehicle (0.1% DMSO) or GW9662 for 1 h , HepG2 cells were treated with vehicle (shown as -; 0.1% DMSO), troglitazone (Tro, 10μ M), and $\mathbf{1}$ with or without GW9662 $(10 \mu \mathrm{M})$ for 6 h . Results are presented as the mean \pm SD $(\mathrm{n}=3)$ of three independent experiments. $* P<0.05$, compared with vehicle control. ${ }^{\dagger} P<0.05$, compared with cells treated without GW9662.

Figure S4. Structure of the complex between PPAR γ LBD and luteolin (PDB code 3SZ1). Luteolin occupies the region near helix 3, the β-sheet, the Ω-loop (left) and interacts with the residue in these regions (right).

A

p-methoxycinnamic acid

Figure S5. Comparison of the putative binding mode and cooperative transcriptional activity of the hydrolysis product of $\mathbf{1}, p$-methoxycinnamic acid, in combination with GW9662. (A) Structure of p-methoxycinnamic acid, a hydrolyzed product of $\mathbf{1}$. (B) Superposition of the docking poses of $\mathbf{1}$ and p-methoxycinnamic acid in complex with human PPAR γ LBD and GW9662. The crystal structure of human PPAR γ LBD and GW9662 was retrieved from the RCSB Protein Data Bank (PDB code: 3B0R). After conversion of GW9662 to a cofactor, $\mathbf{1}$ or p-methoxycinnamic acid were docked as a ligand to the complex of human PPAR γ LBD and GW9662. (C) Effect of p-methoxycinnamic acid $(100 \mu \mathrm{M})$ on the cooperative activation of PPAR γ in combination with GW9662 ($10 \mu \mathrm{M}$). - indicates vehicle ($0.1 \% \mathrm{DMSO}$), and Tro indicates troglitazone $(10 \mu \mathrm{M})$. Results are presented as the mean \pm SD (n $=3$) of three independent experiments. $* P<0.05, * * P<0.01$, compared with vehicle control. ${ }^{\dagger} P<0.05,{ }^{\dagger} P>0.01$, compared with cells treated without GW9662.

Figure S6. Comparison of the putative binding pose of the designed ligands. (A) Structure of the designed ligand in which carbon number of alkyl chain linker is in a range of one to five $(\mathbf{5 a}, \mathbf{5}, \mathbf{5 b}, \mathbf{5 c}$, and $\mathbf{5 d}$). (B) Docking pose of 5a in a crystal structure of the PPAR γ LBD (PDB code 2ZK4). (C) Docking pose of 5. (D) Docking pose of 5b. (E) Docking pose of 5c. (F) Docking pose of 5 d .

Figure S7. Competitive inhibition by 5 against the PPAR γ agonist activity of troglitazone. The full agonist activity of troglitazone was partially inhibited by the co-treatment with 5 . The luciferase assay was performed according to the method described in the Figure S1 legend. HepG2 cells were treated with the vehicle (shown as -; $0.1 \% \mathrm{DMSO}$), troglitazone ($10 \mu \mathrm{M}$), or 5 . Results are presented as the mean $\pm \mathrm{SD}(\mathrm{n}=3)$ of three independent experiments. $* P<0.01$, compared with cells treated without 5 .

Figure S8. Ligand $\mathbf{5}$ and the combination of GW9662 and $\mathbf{1}$ specifically activate PPAR γ in the luciferase reporter assay, while they did not significantly activate other subtypes of the PPAR family. The luciferase reporter assay was performed using pGal4-PPAR $\alpha, \operatorname{PPAR} \delta$ and PPAR γ LBD plasmids. - indicates the vehicle ($0.1 \% \mathrm{DMSO}$). Results are presented as the mean $\pm \mathrm{SD}(\mathrm{n}=3)$ of three independent experiments. $* P<0.01$, compared with vehicle control.

Figure S9. Effect of $\mathbf{1}$ and $\mathbf{5}$ on the cell viability of HepG2 (A) and 3T3-L1 (B) cells. HepG2 or 3T3-L1 cells were treated with vehicle (0.1% DMSO), GW9662 $(10 \mu \mathrm{M}), \mathbf{1}(1,10,100$, or $200 \mu \mathrm{M})$, or $\mathbf{5}(1,10,100 \mathrm{nM}, 1$, or $10 \mu \mathrm{M})$, and then incubated for 24 or 48 hours. Relative cell viability was assessed using MTT assay. All results are presented as the mean $\pm \mathrm{SD}(\mathrm{n}=3)$ of three independent experiments.

Figure S10. Structure of the complex of PPAR γ LBD and $15 \mathrm{~d}-\mathrm{PGJ}_{2}$ (PDB code 2ZK1) (A) or 15-oxo-ETE (PDB code 2ZK4) (B).

