Supporting Information

Similarities between *N*-acetylcysteine and Glutathione in Binding to Lead(II) Ions

Natalie S. Sisombath and, Farideh Jalilehvand *

Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta

T2N 1N4, Canada

Table of Contents

Figure S1. Structures of sulfur-bound Pb(II) complexes for which ²⁰⁷Pb NMR chemical shifts and references have been summarized in Table 3.

Figure S2. X-ray absorption near-edge features in the XANES spectra of Pb(II) *N*-acetylcysteine solutions, containing $C_{Pb(II)} = 10$ mM, 100 mM and H₂NAC/Pb(II) mole ratios 2.1 (pH = 9.4) and 10.0 (pH = 9.1).

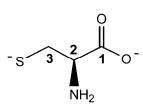
Figure S3. Pb L_{III}-edge k^3 -weighted EXAFS spectrum of a lead(II) glutathione solution ($C_{Pb(II)} = 10 \text{ mM}$; $C_{GSH} = 20 \text{ mM}$; pH = 8.5) compared with those of Pb(II) *N*-acetyl cysteine solutions A and A* (pH = 9.4, H₂NAC/Pb(II) mole ratio 2.1), and their corresponding Fourier-transforms.

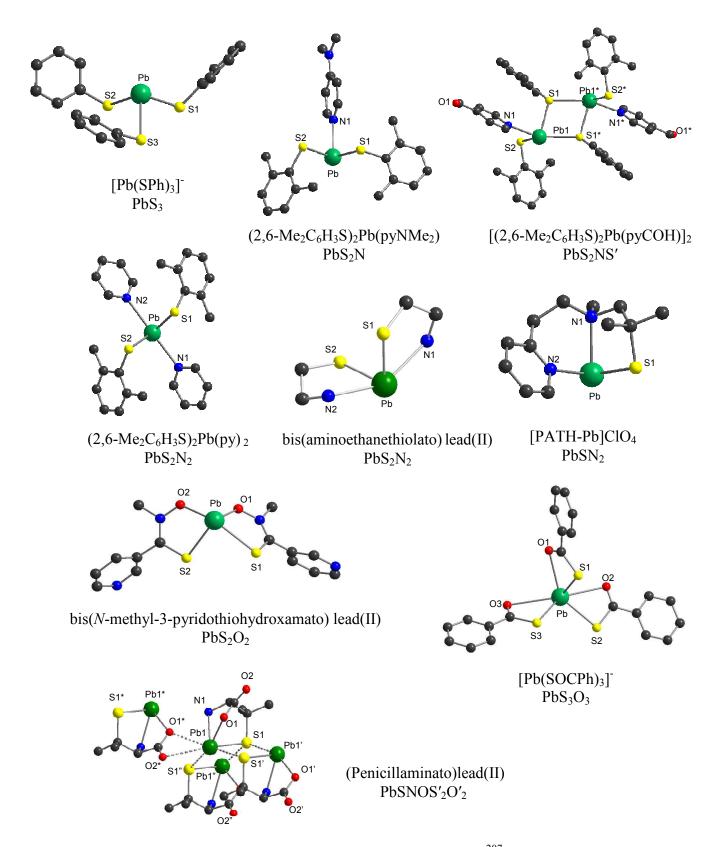
Figure S4. Comparison between Pb L_{III} -edge k^3 -weighted EXAFS spectra and corresponding Fourier-transforms for Pb(II) *N*-acetyl cysteine solutions, containing $C_{Pb(II)} = 10$ mM, 100 mM*, and H₂NAC/Pb(II) mole ratios 2.1 (A, A*, pH = 9.4), 3.0 (B, B*, pH = 9.1) and 10.0 (E, E*, pH = 9.1).

Table S1. Assignment of mass ions observed in ESI-MS spectra (positive-ion mode) for Pb(II) *N*-acetylcysteine solutions A, B and E ($C_{Pb(II)} = 10$ mM; mole ratio H₂NAC/Pb(II) = 2.1, 3.0 and 10.0, respectively)

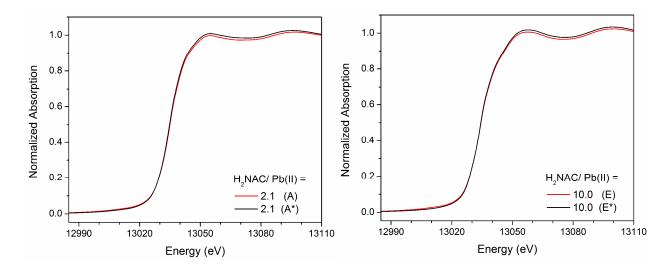
Table S2. Comparison of differences in ¹³C NMR chemical shifts ($\Delta\delta$) for lead(II) *N*-acetylcysteine solutions A – E ($C_{Pb(II)} = 10$ mM) relative to those of pure *N*-acetylcysteine solution (0.1 M; pH = 9.1)

Table S3. Structural parameters obtained from EXAFS least-squares curve-fitting for a Pb(II) GSH solution containing $C_{Pb(II)} = 10$ mM, $C_{GSH} = 20$ mM (pH = 8.5) measured at RT, using different EXAFS fitting models.

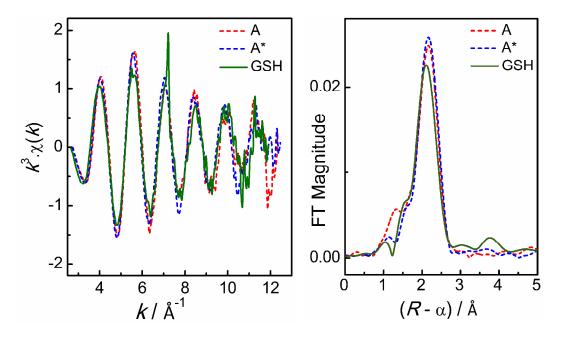

Table S1. Assignment of mass ions observed in ESI-MS spectra (positive-ion mode) for Pb(II) *N*-acetylcysteine solutions A, B and E ($C_{Pb(II)} = 10$ mM; mole ratio H₂NAC/Pb(II) = 2.1, 3.0 and 10.0, respectively)^{*a*}


m/z (amu)	assignment	m/z (amu)	assignment		
164.04	$[H_2NAC + H^+]^+$	555.01	$[Na^{+} + Pb(H_2NAC)_2 - 2H^{+}]^{+}$		
186.01	$[Na^+ + H_2NAC]^+$	556.04	$[3Na^{+}+3(H_2NAC)-2H^{+}]^{+}$		
294.00	$\left[Pb(C_3H_4NO_2) \right]^+$	578.02	$[4Na^{+}+3(H_2NAC)-3H^{+}]^{+}$		
349.05	$[Na^{+} + 2(H_2NAC)]^{+}$	738.98	$[Pb_2(H_2NAC)_2 - 3H^+]^+$		
370.00	$[Pb(H_2NAC) - H^+]^+$	740.02	$[2Na^{+} + Pb(H_2NAC)_3 - 3H^{+}]^{+}$		
371.03	$[2Na^{+}+2(H_2NAC)-H^{+}]^{+}$	741.05	$[4Na^{+} + 4(H_2NAC) - 3H^{+}]^{+}$		
393.01	$[3Na^{+}+2(H_2NAC)-2H^{+}]^{+}$	763.04	$[5Na^{+} + 4(H_2NAC) - 4H^{+}]^{+}$		

^{*a*} H₂NAC (C₅H₉NO₃S); m = 163.03


Table S2. Comparison of differences in ¹³C NMR chemical shifts ($\Delta\delta$) for lead(II) *N*-acetylcysteine solutions A – E ($C_{Pb(II)} = 10$ mM) relative to those of a pure *N*-acetylcysteine solution (0.1 M; pH = 9.1); see Figure 3

	$\Delta\delta$ (¹³ C, ppm)		
Solution	C ₁	C ₃	
А	0.5	3.1	
В	0.6	2.4	
С	0.5	2.0	
D	0.4	1.6	
Е	0.2	0.8	



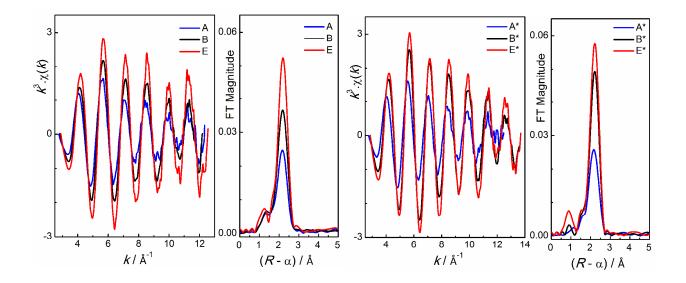

Figure S1. Structures of sulfur-bound Pb(II) complexes for which ²⁰⁷Pb NMR chemical shifts and references have been summarized in Table 2; H-atoms were removed for clarity.

Figure S2. X-ray absorption near-edge features in the XANES spectra of Pb(II) *N*-acetylcysteine solutions, containing $C_{Pb(II)} = 10$ mM (red), 100 mM (black) and H₂NAC/Pb(II) mole ratios 2.1 (pH = 9.4) and 10.0 (pH = 9.1), showing similar features for each set.

Figure S3. Pb L_{III}-edge k^3 -weighted EXAFS spectrum of a lead(II) glutathione solution ($C_{Pb(II)} = 10 \text{ mM}$; $C_{GSH} = 20 \text{ mM}$; pH = 8.5) measured in fluorescence mode (solution A in *Ref.* 26) compared with those of Pb(II) *N*-acetyl cysteine solutions A and A* (pH = 9.4), containing H₂NAC/Pb(II) mole ratio 2.1, and their corresponding Fourier-transforms.

Figure S4. Comparison between Pb L_{III}-edge k^3 -weighted EXAFS spectra and corresponding Fourier-transforms for Pb(II) *N*-acetyl cysteine solutions, containing $C_{Pb(II)} = 10 \text{ mM}$ (*left*), 100 mM (*right*), and H₂NAC/Pb(II) mole ratios 2.1 (A, A*, pH = 9.4), 3.0 (B, B*, pH = 9.1) and 10.0 (E, E*, pH = 9.1).

Table S3. Structural parameters obtained from EXAFS least-squares curve-fitting for a Pb(II) GSH solution containing $C_{Pb(II)} = 10$ mM, $C_{GSH} = 20$ mM (pH = 8.5; solution A in *Ref.* 26) measured at RT, using different EXAFS fitting models.^{*a,b*}

Model		Pb-S			Pb-N			PbPb		
	N	<i>R</i> (Å)	σ^2 (Å ²)	N	<i>R</i> (Å)	σ^2 (Å ²)	N	<i>R</i> (Å)	σ^2 (Å ²)	R
I	2.7	2.63	0.0107							28.5
II	2f	2.66	0.0122	1f	2.48	0.0036				29.8
III ^c	2f	2.65	0.0156	2f	2.51	0.0056				29.4 ^c
IV	2 <i>f</i>	2.62	0.0080				1f	3.84	0.015	27.9
	1f	2.76	0.0117							
V	1.9	2.62	0.0076				1 <i>f</i>	3.84	0.015	27.9
	1f	2.75	0.0109							
VI	1.9 <i>f</i>	2.62	0.0076				1 <i>f</i>	3.84	0.015	27.9
	0.9	2.75	0.0100							

^{*a*} Refined *N* accurate within ± 20 %; S₀² = 0.9 *f*, *f* = fixed; R = residual. ^{*b*} Estimated error limits for *R* is ± 0.04 Å and for $\sigma^2 \pm 0.002$ Å²; ^{*c*} the model shown in Figure 7 and Table 5 of *Ref.* 26