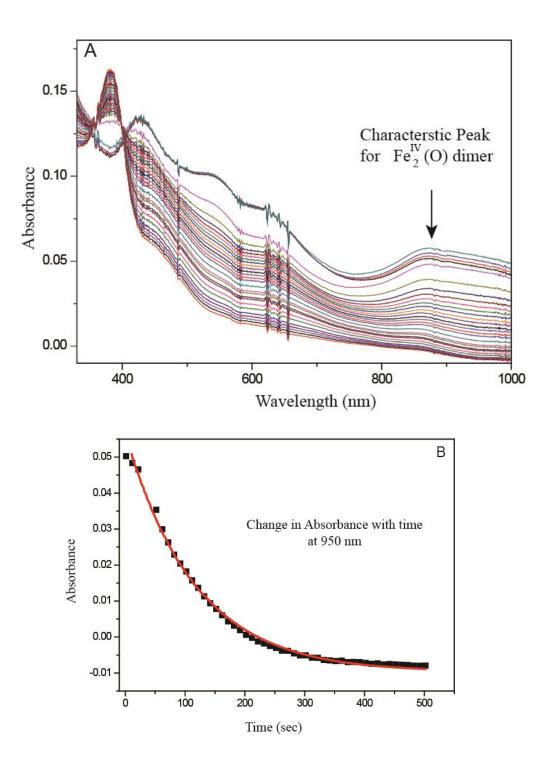
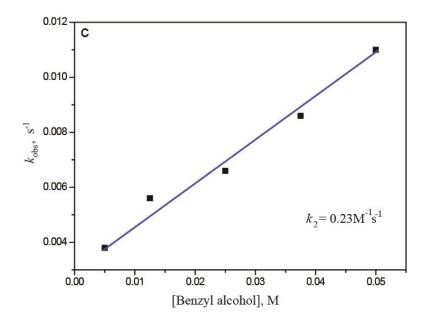

Supporting Information for

Mechanism of Alcohol Oxidation by Fe^V(O) at Room Temperature

Munmun Ghosh[‡],^a YLK Nikhil[‡],^a Basab B. Dhar,^b and Sayam Sen Gupta^a*


^a Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India;
^b Department of chemistry, Shiv Nadar University, Gautam Budha Nagar, UP, 201314, India;
[≠] Indicates equal contribution



Fiugure SI 1 Plot of k_{obs} against the concentration of benzyl alcohol to determine the second-order rate constant

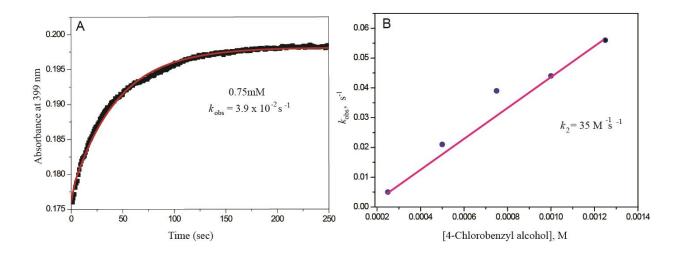
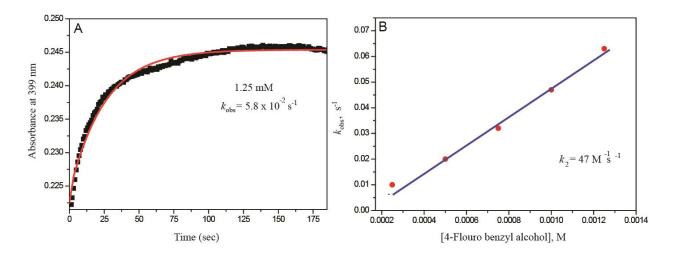
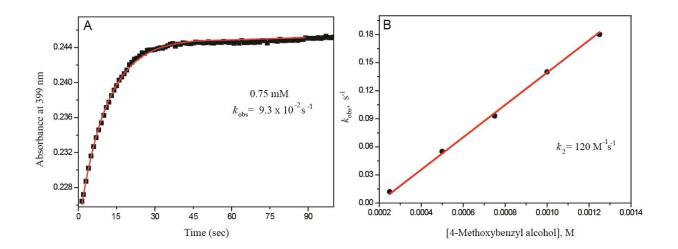


Figure SI 2 GC chromatogram of reaction with 500 equiv benzyl alcohol with $Fe^{V}(O)$ (5 x 10⁻⁵ M) benzaldehyde $R_t = 3.6$ and benzyl alcohol $R_t = 4.25$




Figure SI 3 (**A**) Uv-vis spectral changes upon reaction of μ -oxo-Fe^{IV} dimer (5 x 10⁻⁵ M) with benzyl alcohol (2.5 mM). (**B**) Absorbance *vs* time plot at 950 nm for reaction of μ -oxo-Fe^{IV} dimer (5 x 10⁻⁵ M) with benzyl alcohol (2.5 mM) to determine $k_{obs.}$ (**C**) Plot of k_{obs} against the concentration of benzyl alcohol's to determine the second-order rate constant for reaction of μ -oxo-Fe^{IV} dimer (5 x 10⁻⁵ M) with benzyl alcohol (2.5 mM).

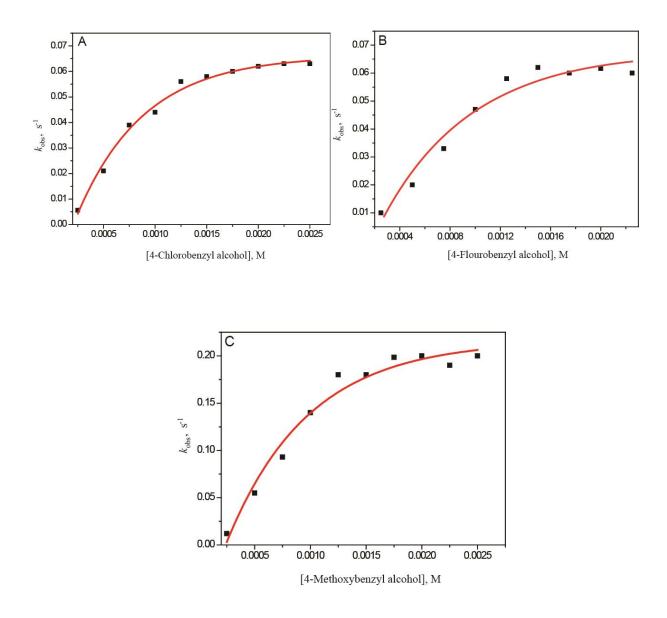

Figure SI 4 Absorbance at 399 nm *vs* time to determine k_{obs} of **(A)** 4-Chlorobenzyl alcohol oxidation (0.75 mM, 15 equiv.) Red line is the first order fit according to the equation [$(A_t = A_a - (A_a - A_0)e^{-k_{obs}t})$]. **(B)** Plot of k_{obs} against the concentration of 4-chloro benzyl alcohol to determine the second-order rate constant.

Figure SI 5 Absorbance at 399 nm *vs* time to determine k_{obs} of **(A)** 4-Fluoro benzyl alcohol oxidation (1.25 mM, 25 equiv). Red line is the first order fit according to the equation [$(A_t = A_a - (A_a - A_0)e^{-k_{obs}t})$]. **(B)** Plot of k_{obs} against the concentration of 4-Fluoro benzyl alcohol to determine the second-order rate constant

Figure SI 6 Absorbance at 399nm *vs* time to determine k_{obs} of **(A)** 4-Methoxy benzyl alcohol oxidation (0.75 mM, 15 equiv). Red line is the first order fit according to the equation [$(A_t = A_\alpha - (A_\alpha - A_0)e^{-k_{obs}t})$]. **(B)** Plot of k_{obs} against the concentration of 4-Methoxy benzyl alcohol's to determine the second-order rate constant.

Figure SI 7 Plot of k_{obs} vs substrate to determine the binding constant *K* and first order rate constant *k*. (A) Chlorobenzyl alcohol (B) Flourobenzyl alcohol (C) Methoxybenzyl alcohol

Substituents	Equilibrium constant <i>K</i> (M ⁻¹)	Rate constant $k(s^{-1})$	$k_2 (M^{-1}s^{-1})$ (experimentally determined)
-OMe	300 ± 15	0.52 ± 0.020	120 ± 10
-F	300 ± 21	0.19 ± 0.008	47 ± 5
-Cl	350 ± 20	0.14 ± 0.004	35 ± 5

SI Table Equilibrium constant (*K*), Rate constant (*k*) and second order rate constant of substituted benzyl alcohols

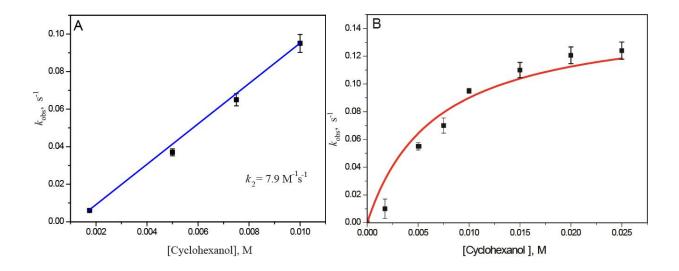


Figure SI 8 (A) Plot of k_{obs} against the concentration of cyclohexanol to determine the secondorder rate constant. (B) Plot of k_{obs} vs substrate to determine the binding constant K and first order rate constant k for oxidation of cyclohexanol

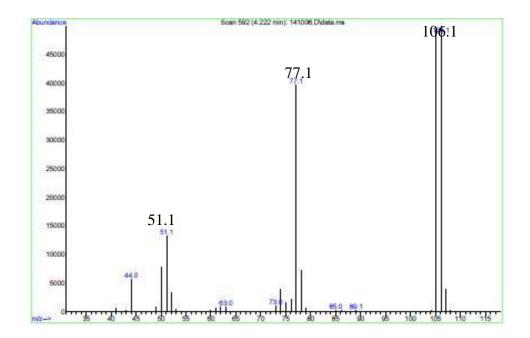
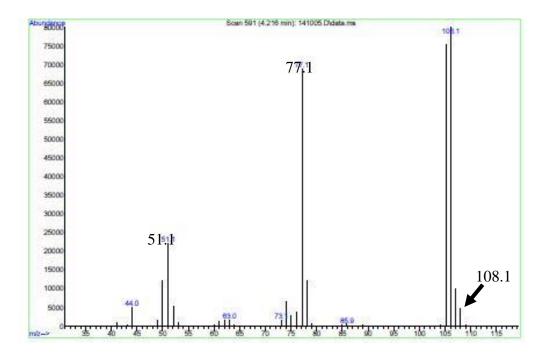
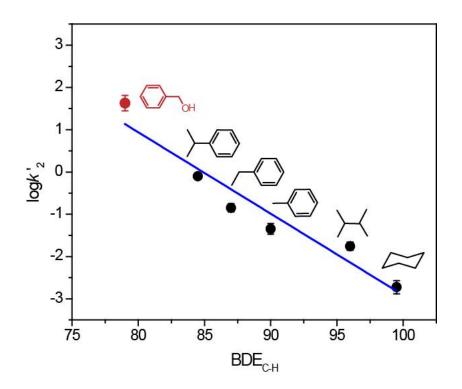




Figure SI 9 GC-MS data for the formation of benzaldehyde product when benzyl alcohol oxidation was carried out with $Fe^{V(^{16}O)}$.

Figure SI 10 GC-MS data showing <5% incorporation of ¹⁸O in benzaldehyde product when benzyl alcohol oxidation was carried out with Fe^V(¹⁸O).

Figure SI 11 $\log k_2$ vs BDE_{C-H} of various hydrocarbons for the reaction with Fe^V(O). The substrates represented with black circles have been published earlier by us.²¹ Benzyl alcohol (this work) is represented with a red circle.