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WS2 NT synthesis. The growth mechanisms of WS2 nanotubes (NT) can be divided into two: 

outside-in sulfurization (OS) of long suboxide (W18O49) nanowhiskers,1 or a vapor-solid (VS) 

growth of an incipient WS2 NT, where a volatile tungsten oxide phase is continuously sulfurized 

at the tip of the INT by H2S gas.2 The WS2 NTs used here, were synthesized using the commonly 

used outside-in sulfurization method, similar to that used for the INT detailed in the FET 

research,3 were synthesized by Nanomaterials Inc.4 Here WO3-x nanoparticles elongate under 

reducing atmosphere (1%H2/99%N2) to tungsten suboxide nanowhiskers which are subsequently 

converted to WS2 NTs by sulfurizing the needlelike WO3-x precursors.2, 5-7 The INT empty core 

is the result of the difference between the oxide and sulfide densities. 

These mechanisms produce WS2 NTs with distinct structural differences. The VS WS2 NTs are 

perfectly cylindrical, crystalline, open ended, slender (length~2-500 µm, diameter~15−20nm) 

with the most distinctive feature being the thin walls (5−8 layers) and the large hollow core (up 

to 70 vol%). The OS WS2 NTs exhibit diameters of 40-250 nm with numerous shells and are 

almost exclusively capped at one of their ends and in some cases capped on both ends. 
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AFM cantilever response during measurement  

 

Figure S1. a) AFM tip oscillation amplitude and b) Force-distance (cantilever deflection) 
measurements recorded upon pressing on the pedal (right). The contact point is indicated by the 
tapping amplitude reaches zero (dashed line). The tapping mode deflection then increases 
linearly, corresponding to cantilever deformation indicated by the linear slope. The yielding of 
the pedal to the force results in a decreased cantilever deformation and therefore a smaller slope.  

 

Mechanical properties. The mechanical properties of 17 WS2 nanotubes (NT), specifically 

the torsional spring constant κ and the shear modulus G, were obtained from these measurements 

(Table S1). Here the first is the property of the torsional device, the second is an extrinsic 

property of the inorganic NT (INT) and the third is an intrinsic property of the INT torsional 

stiffness. The WS2 NT was twisted by pressing the pedal at a series of points along the long axis 

of the pedal with an atomic force microscope (AFM) tip. Care was taken to maintain low torsion 

angles (< 20°), so as to avoid elastic to plastic transition, which may arise at high torsion angles. 

Additional care was taken by fabricating pedals with dimensions and materials identical to those 
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used in previous studies. These aforementioned pedals were studied in order to rule out possible 

artifacts arising from pedal deformation,8 thus ensuring that the measured properties are those 

pertaining to the WS2 NT itself. 

For each point, K is calculated from eq. 1, where kc is the spring constant of the cantilever, zp is 

the Z-axis piezo extension, and zc is the Z-axis cantilever deflection of the cantilever (see Fig. 

1d).9, 10  

� = ����/��� − ��
                                                                                                                      (1) 

K is plotted against the position (x) along the pedal (see Fig. 1d), and fitted to Eq. 2, a modified 

leverage equation allowing for axis displacement (see Fig. 1d) where x-a is the lever arm , a  is 

the pedal center location and KB is the WS2 NT bending spring constant, the latter two and the 

torsional spring constant κ being left as floating parameters.10 

� = ��
 − ���/2� + �������                                                                                                      (2) 

Using this method allows for the separation of the lever-arm dependent and independent 

components such as twisting as opposed to bending and slack, respectively.  

The shear modulus G, is calculated using classical elasticity theory for a cylinder under torsion 

(eq. 7) where L is the length of the suspended segments of the WS2 NT, and rin and rout are the 

inner and outer radii of the cylinder, respectively.10, 11  

�� = �������� �! ∙ �������� �! = �#$%,���' ∙ ℎ��'��,���'                                                                   (3) 

) = 	�� ∙ 
 = �#$% ∙ +                                                                                                                    (4) 

�����, = �������� �! + ℎ��'��,���' + ℎ��'��,�-�.�                                                                            (5) 

+ = tan���������, − �������� �! − ℎ��'��,���'
 
⁄ �                                                          (6) 

3 = 2�4/56�7,8�9 − 7��9�:                                                                                                           (7) 
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Here the inner radii is a function of n, the number of mechanically coupled layers twisting 

together,12 and thus a measure of the WS2 NT inter-layer mechanical coupling. At the extreme 

values of n, the INT is treated as a solid rod (Gs) or a single layer INT (Gh). Thus for the first 

case Eq. 7 is reduced to Eq. 8 or to Eq. 9 for the second when using the interlayer spacing for 

WS2, 6.2Å.13  

3! = 2�4/�67,8�9�	                                                                                                                       (8) 

3� = 2�4/�467,8�<=7�	                                                                                                                 (9) 

It is possible to consider the moderate case where it is treated as a hollow-core cylinder where 

the inner radius is taken to be half of the outer.3 However as the fourth power on the radii results 

in a change of 6% only and within experimental error this case does not give any additional 

information. Finally, it is possible to use the shear modulus (Gc≈80GPa) from DFTB 

calculations,14 Young’s modulus measurements and mechanical measurements on WS2 NTs 

synthesized by other techniques  such as VS WS2 NTs.12, 14. In cases where Gs < 80GPa this 

facilitates a reverse estimation of n (Table S1). 
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Table S1. WS2 NT torsional mechanical properties.1 

Device 
Outer 

Diameter 
Length 

Torsional 
spring 

constant 

Effective shear modulus 
Mechanically 
coupled layers Solid rod Single Layer 

# 
d L κ Gs Gh n 

[nm] [nm] [N*m*1015] [GPa] 
 

1 30.7±3.2 330±10 10.3±0.5 39.5±11.9 243.8±55.5 3.9±2.7 

2 34.8±2.2 320±10 27.7±1.4 51.5±6.6 376.9±38.9 6.7±1.6 

3 37±0.9 310±10 32.9±1.5 56.7±5.2 423.3±32.3 7.9±1.4 

4 39.8±0.3 320±10 42.6±1.3 55.3±2.4 443.7±18.7 8.2±0.6 

5 40.2±3.2 260±10 15.4±0.4 12±0.6 103.7±4.7 1.4±0.7 

6 46.7±1.7 420±10 109.8±4.2 99.6±11.2 935.7±83.3 
 

7 48.2±19 320±10 25.2±1.9 4.7±0.4 61.3±4.8 0.8±0.2 

8 49.3±4.8 300±10 43.9±1.7 31.5±2 312.6±17.3 4.7±0.7 

9 49.2±8.9 410±10 64±1.7 24.2±3.3 259.6±27.2 3.7±1.9 

10 53.1±16.7 140±10 146.1±13.7 10±1.5 135.3±17.9 1.8±1.9 

11 55.2±1.5 420±10 254±15 117±11.3 1302.3±108.4 
 

12 58.3±1.3 290±10 92±8.3 23.2±2.7 273.3±29.1 3.9±1.2 

13 59.7±4 320±10 201±6.2 40.8±1.6 519.2±20.1 8.3±0.5 

14 65.9±1.4 390±10 87.4±7.7 18.5±2 245.7±24.8 3.4±1.1 

15 67.8±3.4 430±10 115.8±6.8 23.7±3.8 324.3±41.4 4.6±2.7 

16 89±2.6 400±10 328.3±14.3 22.3±2.2 395.7±32 5.6±2.1 

17 127.1±1.8 470±10 328.5±35 6±0.7 154.8±17.3 2±1.4 

 

 

                                                 
1 L: suspended length. The error for d is the standard deviation of 4 measurements performed 

along the WS2 NT length while the error for L is derived from the AFM topography resolution. 
The error for all other values is derived from the previous errors. Devices 11 and 15 are depicted 
in Fig 1e and 1f, respectively. 
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Figure S2. The effective shear modulus as a function of the nanotube diameter for OS WS2 NTs 

and VS WS2 NTs (circles and triangles, respectively) synthesized by different techniques. The 

effective shear moduli are calculated assuming either negligible or infinite inter-layer coupling, 

i.e. “hollow cylinder” (Gh) and “solid rod” (Gs) cases (hollow and full markers, respectively). 

The expected intra-layer shear modulus calculated by DFTB (Gc) is shown as a reference.12 Inset 

– close-up of the solid rod case values. The horizontal and vertical error bars correspond to the 

standard deviation of the experimental data. 
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Fig. S2 plots the shear moduli data against the OS WS2 NT diameter for the devices measured 

here, the VS WS2 NTs synthesized by a different synthetic technique,12 and the theoretical value 

marked by a dotted line.14 These results show that over the entire diameter range Gh , which is 

calculated using a single layer case, is significantly larger than the theoretical value Gc. This 

indicates that a significant number of layers are twisting together. This observation is in 

agreement with the experimental results for VS-WS2 NTs as well as the theoretical work on VS 

WS2 NTs where it was shown that for small angles all the layers twist together. Additionally, it 

can be seen that for both types of WS2 NTs, experimental Gs values larger than Gc are observed, 

indicating that Gth is possibly underestimated. Finally, the torsional spring constant κ values 

obtained here are up to an order of magnitude higher than BNNT,8  and two orders of magnitude 

larger than CNT, indicating that WS2 NTs possess quite a high torsional stiffness. 

Comparing these results to those obtained for VS WS2 NTs shows a similar trend,12 albeit at 

higher values. Interestingly, a similar effect was observed in the telescopic shear of WS2 NTs 

where nanotubes synthesized by outside-in sulfurization exhibited a larger degree of inter-layer 

mechanical coupling when compared to VS WS2 NTs.15 This is in line with the promising 

performance of WS2 NTs in nanocomposites and further highlights the possible use of the WS2 

NTs in NEMS. 

Electromechanical properties. After the WS2 NTs were characterized mechanically they 

were connected to an AC voltage of 0.1 V with a DC bias of 5V (see section 2.3). However due 

to technical issues only 6 of the 17 devices were available for electromechanical measurements. 

Of these, 5 out of the 6 showed a consistent electromechanical response to torsion (see Fig. S3). 

Two devices were subjected to bending and both showed a consistent electromechanical 
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response. Due to the measuring equipment generating electrical noise the results presented in 

table S2 were obtained by averaging a large number of measurements.  

 

Figure S3. Repeatability of the electromechanical response with over 250 repeat twists of a WS2 

NT. The blue line shows the average value and the black lines denote the standard deviation of 

the average.  

From this data two values are extracted – �>@̅��.8!�',			.�!���
@�A for bending or as 

�>@̅��.8!�',			.�!��� +⁄ 
@�A for torsion where + is the torsion angle in radians. 

�>@̅��.8!�',			.�!���
@�A	 is calculated for the highest overall change, while 
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�>@̅��.8!�',			.�!��� +⁄ 
@�A yields the maximum sensitivity of the signal at a given angle within 

the rise region. 

Table S2. WS2 NT mechanical and electromechanical properties under torsion and\or tension.2 

# 
d Gs Gh B>̅@��.8!�',	.�!���

/+C
@�A

 B>̅@��.8!�',	.�!���
C
@�A

 

[nm] [GPa] [%*rad-1] [%] 

1 30.7±3.2 39.5±11.9 243.8±55.5 
  

2 34.8±2.2 51.5±6.6 376.9±38.9 
  

3 37±0.9 56.7±5.2 423.3±32.3 
  

4 39.8±0.3 55.3±2.4 443.7±18.7 
  

5 40.2±3.2 12±0.6 103.7±4.7 14% 30% 

6 46.7±1.7 99.6±11.2 935.7±83.3 145% 
 

7 48.2±19 4.7±0.4 61.3±4.8 
  

8 49.3±4.8 31.5±2 312.6±17.3 
  

9 49.2±8.9 24.2±3.3 259.6±27.2 3% 
 

10 53.1±16.7 10±1.5 135.3±17.9 
  

11 55.2±1.5 117±11.3 1302.3±108.4 0% 
 

12 58.3±1.3 23.2±2.7 273.3±29.1 
  

13 59.7±4 40.8±1.6 519.2±20.1 
  

14 65.9±1.4 18.5±2 245.7±24.8 
  

15 67.8±3.4 23.7±3.8 324.3±41.4 8% 26.0% 

16 89±2.6 22.3±2.2 395.7±32 47% 
 

17 127.1±1.8 6±0.7 154.8±17.3 
  

                                                 
2 The error for d is the standard deviation of 4 measurements performed along the WS2 NT 

length while the error for all other values is derived from the previous errors. Device 15 was bent 
by pressing on the pedal above the NT center giving a similar behavior to device 5 (the pedal 
curvature in this section does not allow for extraction of the lever length). 
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It is interesting to note that both the number of responsive devices and the electromechanical 

response are quite high, particularly when compared to CNT (30-350% and 23.8%, respectively). 

9, 16, 17  

Density-functional-tight-binding calculations. The density-functional-tight-binding (DFTB) 

method is an approximate density-functional theory method.18, 19. The single-particle Kohn-Sham 

eigenfunctions are expressed as a linear combination of localized atom-centered basis function, 

which are determined by self-consistent density-functional calculations on isolated atoms. The 

effective one-electron potential in the Kohn-Sham Hamiltonian is written as a superposition of 

atomic potentials, and only one- and two-center integrals are calculated to set up the Hamiltonian 

matrix. The calculations of the twisted nanotubes utilized helical boundary conditions20. 

Calculation of the strain – band gap relationships. We start by several assumptions where 

D is the free charge carrier concentration based on the intrinsic semiconductor model, �E is 

boltzmann’s constant , T is the temperature in kelvin, F is strain, G is the uniaxial strain, H  is the 

shear strain, Y is the measured young’s modulus,14 Fz is the vertical force and Acs is the nanotube 

cross section calculated from d and assuming the inner radius is d/2:3 

> ∝ D                                                                                                                                          (10) 

More specifically that: 

> ∝ J ∝ K
L	�−MN 2�OP⁄ 
	                                                                                                       (11)  

 As was demonstrated in article we may assume a linear ΔMN − F relation: 

∆MN ∝ SF                                                                                                                                     (12) 

Thus assuming MN alone is affected by F as: 

>̅ = �>.�!��� >T⁄ � = K
L	�−MN,.�!��� 2�OP⁄ + MN,T 2�OP⁄ 
 = K
L	�− SF 2�OP⁄ �        (13) 

We may then apply Eq. 13 to calculate >�̅.��@���' for three cases where we calculate the 
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contribution from torsion, tension and the combination of both (>�̅.��@���',			�,!.�,�, 

>�̅.��@���',			���.�,� and  >�̅.��@���',			�,!.�,�&���.�,�, respectively). 

>�̅.��@���',			�,!.�,� = exp�− SYH 2�OP⁄ 
                                                                                     (14)            

>�̅.��@���',			���.�,� = exp�−SZG 2�OP⁄ �                                                                                    (15) 

>�̅.��@���',			�,!.�,�&���.�,� = K
L	�− �SYH + SZG
 2�OP⁄ 
                                                         (16) 

Where G is calculated as:9 

G = 0.5��� ^_�.⁄ ��/<                                                                                                               (17) 

Using the torque ) and the lever length x-a extracted from the measured data. 

�� = ) ∙ �
 − ��                                                                                                                        (18) 

A qualitative comparison between >�̅.��@���',			�,!.�,�&���.�,� and >@̅��.8!�' is made by 

normalizing >�̅.��@���',			�,!.�,�&���.�,�  by a ratio A (A=5-10) to put them both on the same scale 

(>̅∗�.��@���',			�,!.�,�&���.�,� =	>�̅.��@���',			�,!.�,�&���.�,� _⁄ ) as in Eq. 19-20.   

_ = �∆>�̅.��@���',			�,!.�,�&���.�,�
@�A �∆>@̅��.8!�'�@�A⁄                                                        (19) 

>̅∗abcdefcag,			chibdhj&cajbdhj = 1 + ∆>a̅bcdefcag,			chibdhj&cajbdhj _⁄                                         (20) 
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Estimation of resistive elements in the WS2 NTs torsional device setup. The electrical 

model for the device may be described as in Fig. S4: 

 
 
 
 
 
 
 
 
 
 
 

Figure S4. Schematic rendering of the separate resistive elements in the setup used for 

electromechanical measurements. a) Electromechanical measurement scheme. b) Electrical 

diagram of the resistive elements in the circuit.  

① - Contact resistance of untwisted WS2 NT under the Cr\Au source electrode and the Cr\Au source electrode.  

② - Resistance of untwisted WS2 NT under the contact. 

③ - Resistance between twisted and untwisted WS2 NT sections. 

④ - Resistance of twisted WS2 NT section. 

⑤ - Resistance between untwisted and twisted WS2 NT sections. 

⑥ - Contact resistance of untwisted WS2 NT under the Cr\Au pedal and the Cr\Au pedal. 

⑦ - Cr\Au pedal resistance. 

⑧-⑭: Mirrored elements of - ⑥-①. 
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Assuming that: 

1. Twisting the INT produces a symmetric effect with respect to the twist direction. Thus the 

right-hand side resistors are equal to those on the left-hand side. 

2. Previous 4-probe measurements are applicable here:3    

2.1. ⑥+⑦+⑧ >>⑨ 

2.2. ① >>②+[(⑥+⑦+⑧)-1+⑨]-1 

3. The slight differences in Eg (~10 meV) would not cause significant scattering. Thus, ③, 

⑤→0. 

Contact resistance and conductivity estimations. Thus, the contact resistance would remain 

as the dominant resistive element which is independent of +. Furthermore, we then may assume 

that the discrepancy between the estimated and measured values is predominantly due to contact 

resistance (① or Rc) and calculate Rc based on this assumption. 

Using Eq. 21 and 22 for the measured overall device resistance for the relaxed and twisted 

WS2 NT cases (vT and vw, respectively) may be expressed as: 

vT = 2�v� + v�+ = 0�xyz	$%
                                                                                                  (21) 

vw = 2�v� + v�+�xyz	$%
											                                                                                               (22) 

We may express the measured relative conductance >@̅��.8!�' as: 

>	̅@��.8!�' = vw�� vT��⁄ = �v� + v�+ = 0�xyz	$%
 �v� + v�+�xyz	$%
{                              (23) 

The estimated relative conductance >�̅.��@���',			�,!.�,�&���.�,� assumes v� = 0 and thus: 

>�̅.��@���',			�,!.�,�&���.�,� = v�+ = 0�xyz	$% v�+�xyz	$%⁄                                                       (24) 

Finally, we may extract the contact resistance from: 

2v� = vT �>	̅|}~���}�
�� − >}̅���|~�}�,			�������&�}�����

��� �1 − >}̅���|~�}�,			�������&�}�����
���{                (25) 
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Table S3. WS2 NT measured and estimated electromechanical properties.3 

# Deformation >}̅���|~�}�,			�������&�}����� 
vT >	̅|}~���}� 

v� v� vxyz	$%⁄  

[MΩ] [MΩ] 

5 
Twisting 1.65 

800 
1.08 320 7 

Bending 3.00 1.30 260 6 

6 Twisting 3.00 150 1.25 53 7 

9 Twisting 1.40 0.18 1.01 0.088 65 

15 
Twisting 1.60 

417 
1.05 180 11 

Bending -- 1.26 -- -- 

16 Twisting 3.00 1.5 1.03 0.72 64 

 

  

                                                 
3 Device 15 was bent by pressing on the pedal above the NT center giving a similar behavior to 

device 5 (the pedal curvature in this section does not allow for extraction of the lever length). 
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Electromechanical response extrapolation 

 The extrapolated electromechanical response presented here is divided into the 

extrapolated electrical response to torsion and the extrapolated electrical response to tension. The 

extrapolation of the electrical response to tension is done by taking values of σ applied to VS 

WS2 NTs without any damage.12 The extrapolation of the electrical response to tension is done 

by taking values of + applied to OS WS2 NTs in this work without any damage and 

extrapolating them to WS2 NTs of larger diameters used in the FET research.3 It should be noted 

that >�̅.��@���',			�,!.�,� and >�̅.��@���',			���.�,� are not directly comparable in terms of strain 

values. For the sake of completion,  >�̅.��@���',			�,!.�,� as a function of the uniaxial strain (see Eq. 

33 and the inset in Fig. S6a) shows a similar response to that of  >�̅.��@���',			���.�,�. 

G = 	��H ∙ 4�� + 4� 4⁄                                                                                                                 (26) 

 

Figure S5. Extrapolation of the electrical response assuming no contact resistance to a) torsion 

and b) tension. The inset of a) shows  >�̅.��@���',			�,!.�,�as a function of the shear strain converted 

to uniaxial strain using Eq. 26 for the sake of comparison with b). 
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