Edge-Functionalized Graphene as a Nanofiller: Molecular Dynamics Simulation Study

SUPPORTING INFORMATION

Petra Bačová,*,† Anastassia N. Rissanou,*,† and Vagelis Harmandaris*,†

Institute of Applied and Computational Mathematics (IACM), Foundation for Research and
Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece, and Department of
Mathematics and Applied Mathematics, University of Crete, GR-71409, Heraklion, Crete, Greece

E-mail: petra_bacova@ehu.es; rissanou@iesl.forth.gr; harman@uoc.gr

^{*}To whom correspondence should be addressed

 $^{^{\}dagger}$ Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece

[‡]Department of Mathematics and Applied Mathematics, University of Crete, GR-71409, Heraklion, Crete, Greece

In the present Supporting Information we show additional figures to the article entitled Edge-Functionalized Graphene as a Nanofiller: Molecular Dynamics Simulation Study. We refer to the graphs in the main text, therefore we provide only basic description of the figures.

1 Static properties

Figure S1: Polymer end-to-end distance as a function of the distance from the edge of the graphene sheet normalized by the same quantity measured in the bulk. Inset: Square radius of gyration divided by the corresponding bulk values for the same set of data.

Figure S2: Distributions of the dihedral angles in the graphene/PE nanocomposites. Top: data for the region parallel to the graphene surface. Bottom: data obtained for the edge region. The binning of the layers is specified in the legend.

2 Dynamic properties

Figure S3: Mean square displacement of the centre of mass of the polymer situated a) in the parallel and b) in the edge region in the graphene/PEO nanocomposites. Only chains whose centres of masses belong to the same layer during the whole time *t* are taking into account.

Table S1: Stretching exponent β_s estimated from the correlation function of 1-3 vectors by fitting to KWW function.

		$\beta_s(KWW)$ [ps]										
syste	em	СООН РЕ		H PE		СООН РЕО		H PEO				
lay	er	parallel	edges	parallel	edges	parallel	edges	parallel	edges			
0-1.5	nm	0.35 ± 0.01	0.4 ± 0.04	0.35 ± 0.03	0.44 ± 0.02	0.37 ± 0.02	0.327 ± 0.006	0.44 ± 0.06	0.40 ± 0.03			
1.5-3.0	0 nm	$0.55{\pm}0.03$	0.49 ± 0.01	$0.46 {\pm} 0.02$	0.50 ± 0.03	0.44 ± 0.01	0.428 ± 0.007	0.41 ± 0.03	0.424 ± 0.008			
3.0-5.0	0 nm	$0.48 {\pm} 0.07$	0.56 ± 0.05	0.48 ± 0.02	0.6 ± 0.1	0.43 ± 0.01	0.46 ± 0.01	0.43 ± 0.03	0.451 ± 0.004			

*bulk values: $\beta_s(KWW) = 0.51 \pm 0.02$ ps for PE and $\beta_s(KWW) = 0.47 \pm 0.03$ ps for PEO

Table S2: Stretching exponent β_r estimated from the correlation function of end-to-end vectors.

	$\beta_r(\mathrm{KWW})$ [ps]									
system	COOH PE		H PE		COOH PEO		H PEO			
layer	parallel	edges	parallel	edges	parallel	edges	parallel	edges		
0-1.5 nm	0.8 ± 0.1	0.9 ± 0.2	0.64 ± 0.08	0.9 ± 0.1	0.7 ± 0.2	0.54 ± 0.03	0.7 ± 0.1	$0.8 {\pm} 0.2$		
1.5-3.0 nm	0.9 ± 0.1	0.88 ± 0.03	1.0 ± 0.2	0.89 ± 0.08	0.9 ± 0.2	0.88 ± 0.07	0.88 ± 0.08	0.93 ± 0.07		
3.0-5.0 nm	0.9 ± 0.1	0.99 ± 0.04	0.9 ± 0.1	1.0 ± 0.03	0.99 ± 0.06	0.95 ± 0.02	1.0 ± 0.2	0.94 ± 0.02		

*bulk values: $\beta_r(KWW) = 0.99 \pm 0.09$ ps for PE and $\beta_r(KWW) = 0.9 \pm 0.1$ ps for PEO

Figure S4: Stretching exponent β_s characteristic for the segmental relaxation in nanocomposites divided by the same observable measured in bulk polymer and plotted as a function of distance from the graphene sheet.

Figure S5: Stretching exponent β_r obtained from the end-to-end relaxation functions of the polymer matrices in nanocomposites normalized by the bulk value.