Edge-Functionalized Graphene as a Nanofiller: Molecular Dynamics Simulation Study ## SUPPORTING INFORMATION Petra Bačová,*,† Anastassia N. Rissanou,*,† and Vagelis Harmandaris*,† Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece, and Department of Mathematics and Applied Mathematics, University of Crete, GR-71409, Heraklion, Crete, Greece E-mail: petra_bacova@ehu.es; rissanou@iesl.forth.gr; harman@uoc.gr ^{*}To whom correspondence should be addressed $^{^{\}dagger}$ Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece [‡]Department of Mathematics and Applied Mathematics, University of Crete, GR-71409, Heraklion, Crete, Greece In the present Supporting Information we show additional figures to the article entitled Edge-Functionalized Graphene as a Nanofiller: Molecular Dynamics Simulation Study. We refer to the graphs in the main text, therefore we provide only basic description of the figures. ## 1 Static properties Figure S1: Polymer end-to-end distance as a function of the distance from the edge of the graphene sheet normalized by the same quantity measured in the bulk. Inset: Square radius of gyration divided by the corresponding bulk values for the same set of data. Figure S2: Distributions of the dihedral angles in the graphene/PE nanocomposites. Top: data for the region parallel to the graphene surface. Bottom: data obtained for the edge region. The binning of the layers is specified in the legend. ## 2 Dynamic properties Figure S3: Mean square displacement of the centre of mass of the polymer situated a) in the parallel and b) in the edge region in the graphene/PEO nanocomposites. Only chains whose centres of masses belong to the same layer during the whole time *t* are taking into account. Table S1: Stretching exponent β_s estimated from the correlation function of 1-3 vectors by fitting to KWW function. | | | $\beta_s(KWW)$ [ps] | | | | | | | | | | | |---------|------|---------------------|-----------------|-------------------|-----------------|-----------------|-------------------|-----------------|-------------------|--|--|--| | syste | em | СООН РЕ | | H PE | | СООН РЕО | | H PEO | | | | | | lay | er | parallel | edges | parallel | edges | parallel | edges | parallel | edges | | | | | 0-1.5 | nm | 0.35 ± 0.01 | 0.4 ± 0.04 | 0.35 ± 0.03 | 0.44 ± 0.02 | 0.37 ± 0.02 | 0.327 ± 0.006 | 0.44 ± 0.06 | 0.40 ± 0.03 | | | | | 1.5-3.0 | 0 nm | $0.55{\pm}0.03$ | 0.49 ± 0.01 | $0.46 {\pm} 0.02$ | 0.50 ± 0.03 | 0.44 ± 0.01 | 0.428 ± 0.007 | 0.41 ± 0.03 | 0.424 ± 0.008 | | | | | 3.0-5.0 | 0 nm | $0.48 {\pm} 0.07$ | 0.56 ± 0.05 | 0.48 ± 0.02 | 0.6 ± 0.1 | 0.43 ± 0.01 | 0.46 ± 0.01 | 0.43 ± 0.03 | 0.451 ± 0.004 | | | | *bulk values: $\beta_s(KWW) = 0.51 \pm 0.02$ ps for PE and $\beta_s(KWW) = 0.47 \pm 0.03$ ps for PEO Table S2: Stretching exponent β_r estimated from the correlation function of end-to-end vectors. | | $\beta_r(\mathrm{KWW})$ [ps] | | | | | | | | | | |------------|------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--| | system | COOH PE | | H PE | | COOH PEO | | H PEO | | | | | layer | parallel | edges | parallel | edges | parallel | edges | parallel | edges | | | | 0-1.5 nm | 0.8 ± 0.1 | 0.9 ± 0.2 | 0.64 ± 0.08 | 0.9 ± 0.1 | 0.7 ± 0.2 | 0.54 ± 0.03 | 0.7 ± 0.1 | $0.8 {\pm} 0.2$ | | | | 1.5-3.0 nm | 0.9 ± 0.1 | 0.88 ± 0.03 | 1.0 ± 0.2 | 0.89 ± 0.08 | 0.9 ± 0.2 | 0.88 ± 0.07 | 0.88 ± 0.08 | 0.93 ± 0.07 | | | | 3.0-5.0 nm | 0.9 ± 0.1 | 0.99 ± 0.04 | 0.9 ± 0.1 | 1.0 ± 0.03 | 0.99 ± 0.06 | 0.95 ± 0.02 | 1.0 ± 0.2 | 0.94 ± 0.02 | | | *bulk values: $\beta_r(KWW) = 0.99 \pm 0.09$ ps for PE and $\beta_r(KWW) = 0.9 \pm 0.1$ ps for PEO Figure S4: Stretching exponent β_s characteristic for the segmental relaxation in nanocomposites divided by the same observable measured in bulk polymer and plotted as a function of distance from the graphene sheet. Figure S5: Stretching exponent β_r obtained from the end-to-end relaxation functions of the polymer matrices in nanocomposites normalized by the bulk value.