Role of Na^+ Interstitials and Dopants in Enhancing the Na^+ Conductivity of the Cubic Na_3PS_4 Superionic Conductor

Zhuoying Zhu, Iek-Heng Chu, Zhi Deng, and Shyue Ping Ong*

Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive,

Mail Code 0448, La Jolla, CA 92093, USA

E-mail: ongsp@eng.ucsd.edu

Table S1: Average site occupancies for pristine t-Na₃PS₄, pristine and doped c-Na₃PS₄ compounds with different dopant concentrations x at 800K. To compare with the case of c-Na₃PS₄, we artificially label the Na sites in t-Na₃PS₄ as Na1, whereas the middle points between any two neighboring Na sites are labeled as Na2.

	Structures	x	Na1 site occupancy	Na2 site occupancy
$t-Na_3PS_4$	pristine		0.88	0.06
	pristine		0.84	0.08
$\text{c-Na}_3 \text{PS}_4$	Na ⁺ excess		0.68	0.17
	Si-doped	0.0625	0.76	0.13
	Ge-doped	0.0625	0.62	0.20
	Sn-doped	0.0625	0.79	0.12

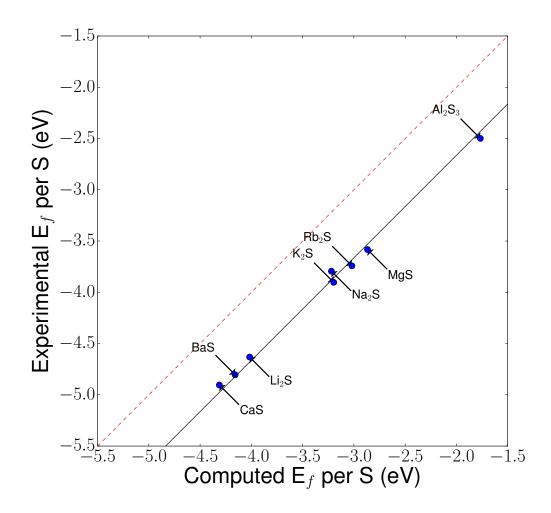


Figure S1: (Color online) Determination of energy difference constant (0.66 eV per S atom) between the DFT and experimental formation energies for sulfides.

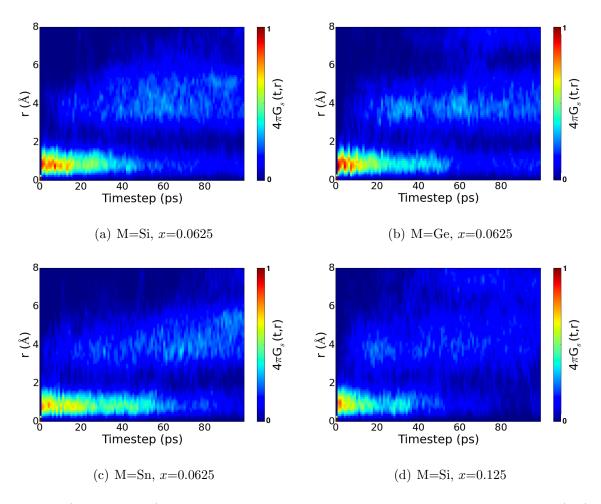


Figure S2: (Color online) Plots of the self-part of the van Hove correlation function (G_s) for $Na_{3+x}M_xP_{1-x}S_4$ at 800 K. G_s is a function of the Na-Na pair distance r and time t.