Catalytic Enantioselective Nitroso Diels-Alder Reaction

Biplab Maji,* and Hisashi Yamamoto*
Molecular Catalyst Research Center, Chubu University, 487-8501 Kasugai, Japan
E-mail: biplabmaji@isc.chubu.ac.jp, hyamamoto@isc.chubu.ac.jp

Table of contents

1 General S3
2 Enantioselective nitroso Diels-Alder reaction with symmetrical dienes 2a-h S4
3 Enantioselective nitroso Diels-Alder reaction with unsymmetrical dienes 2i- S8
p.
4 Enantioselective nitroso Diels-Alder reaction with racemic 2,6-disubstituted S13
1,3-cyclohexadienes $\mathbf{2 q - u}$.
5 Kinetic resolution of racemic diene $2 \mathbf{r}$ via enantioselective NDA reaction. S16
6 Enantioselective NDA reaction of rac-2v,w. S17
7 Synthesis of benzyl ((1S,4R)-4-((tert-butyldiphenylsilyl)oxy)cyclohex-2-en- S18 1 -yl)carbamate 4a.
8 Formal synthesis tetraacetylated conduramine A-1 (5) S20
9 Formal synthesis of narciclasine 6a S22
10 Effect of steric and electronic properties of nitroso compounds on nitroso S24
Diels-Alder reaction.
11 Competition experiment S29
12 Synthesis of nitroso compounds S30
13 Synthesis of the dienes $\mathbf{2 q - u}$ S34
14 Synthesis of the dienes $\mathbf{2 v}, \mathbf{w}$ S37
15 References S38
16 Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S39
17 Copies of HPLC chromatogram S92

1. General.

Chemicals. Anhydrous THF, $\mathrm{Et}_{2} \mathrm{O}$, toluene and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried with Glass Contour solvent purification system. Dry acetonitrile, $\mathrm{EtOH}, \mathrm{MeOH}$, and n-hexane were purchased from WAKO chemicals and used as received. All other chemicals were purchased from their commercial sources and used as it received.

Analytics.
NMR spectra were recorded on a JEOL JNM LA-400 (400 MHz for ${ }^{1} \mathrm{H}$ NMR and 100 MHz for ${ }^{13} \mathrm{C}$ NMR). Chemical shifts were reported in ppm on the δ scale relative to solvent residual signal $\mathrm{CDCl}_{3}\left(\delta=7.26{ }^{1} \mathrm{H}\right.$ NMR and for 77.2 for ${ }^{13} \mathrm{C}$ NMR), DMSO ($\delta=2.50{ }^{1} \mathrm{H}$ NMR and for 39.5 for ${ }^{13} \mathrm{C}$ NMR), $\alpha, \alpha, \alpha-$ trifluorotoluene ($\delta=-63.72$ for ${ }^{19} \mathrm{~F}$ NMR) as an internal reference. Multiplicities are indicated as: br (broad), s (singlet), d (doublet), t (triplet), dd (doublet of doublet), spt (septate), td (triplet of doublet), or m (multiplet). Coupling constants (J) are reported in Hertz (Hz). High performance liquid chromatography (HPLC) was performed on Agilent Technologies 1220 Inifinity LC instruments using Daicel Chiralpak ADH, OD-H, OJ-H and AS-H $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$ column or Shimadzu HPLC instrument using IA3, IB-3, IC-3 $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$ column. Optical rotations were measured on an ATAGO CO., LTD AP-300 polarimeter. Low temperature reactions were performed on UC reactor from Techno Signa. Column chromatography was conducted with silica gel 60 N (KANTO CHEMICAL, spherical, neutral, 40-50 or 63-210 $\mu \mathrm{m}$). For thin-layer chromatography (TLC) analysis Merck precoated TLC plates (silica gel 60 F254 0.25 mm) were used. Visualization was accomplished by UV light (254 nm), $\mathrm{I}_{2}, \mathrm{KMnO}_{4}$, and cerium molybdate.
2. Enantioselective nitroso Diels-Alder reaction with symmetrical dienes 2ah.

General procedure 1:

$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}(3.1 \mathrm{mg}, 0.010 \mathrm{mmol})$ and (S)-DTBM-Segphos ($13.0 \mathrm{mg}, 0.011 \mathrm{mmol}$) were taken in an oven dried $16 \times 150 \mathrm{~mm}$ test tube equipped with a magnetic stir bar and a rubber septum. The test tube was evacuated and carefully purged with nitrogen. THF (1 mL) was added to it and the mixture was stirred for 1 h . After that the catalyst solution was placed on a $-85^{\circ} \mathrm{C}$ bath. The nitroso compound $\mathbf{1 c}, \mathbf{j}(0.1 \mathrm{mmol})$ was then added and the wall of the test tube was rinsed with THF (0.5 mL). The mixture was further stirred for 10 min before the diene $\mathbf{2 a}-\mathbf{h}(0.12 \mathrm{mmol})$ was added. Then the reaction mixture was warmed to $-40^{\circ} \mathrm{C}$ over $\sim 2 \mathrm{~h}$ and stirred at $-40^{\circ} \mathrm{C}$ overnight. It was then allowed to warm to $0^{\circ} \mathrm{C}$ before directly loaded into a column packed with silica gel and purified using EtOAc/n-hexane (1:1 to 3:1), Acetone/nhexane (1:4 to 1:3) as eluent to afford the nitroso Diels-Alder adducts 3.

All the racemic samples were prepared by mixing the nitroso compounds $\mathbf{1 c}, \mathbf{j}(0.1 \mathrm{mmol})$ with the dienes $\mathbf{2 a - h}(0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$.

3ac: According to GP $1.21 \mathrm{mg}, 97 \% .[\alpha]_{\mathrm{D}}^{24}-73.3$ ($c=1.5, \mathrm{CHCl}_{3}, 1.6: 98.4$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta=6.44-6.58(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.43-5.46(\mathrm{~m}, 1 \mathrm{H}), 4.84$ $-4.87 \mathrm{~m}, 1 \mathrm{H}), 2.10-2.40(\mathrm{~m}, 8 \mathrm{H}), 1.47-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.47(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=167.4,165.4,132.3,132.0,112.4,112.4,70.7,50.4,24.2,24.0,23.9$, 21.1 ppm . HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{Na}_{1} \mathrm{O}_{1}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$is 240.1121 , found 240.1113. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=96 / 4$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=16.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=17.4 \mathrm{~min}$.

3aj: According to GP 1. $20.3 \mathrm{mg}, 99 \% .[\alpha]_{\mathrm{D}}^{28}-164.3$ ($c=1.4, \mathrm{CHCl}_{3}$, 99.3:0.7 e.r.).
$\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3,400 \mathrm{MHz}\right): ~ \delta=7.12(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-6.36$ $(\mathrm{m}, 2 \mathrm{H}), 5.51(\mathrm{dd}, J=2.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.61(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.17(\mathrm{~m}, 2$ H), 1.69-1.54 (m, 1 H), 1.51-1.35(m, 1 H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=164.9$, 154.2, 133.3, 131.0, 128.2, 117.4, 70.1, 51.8, 24.5, 21.6, 20.3. HRMS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 204.1131, found 204.1124. HLPC analysis: Daicel Chiralpak ADH , hexane $/ i-\mathrm{PrOH}=96 / 4$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=21.8$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=24.0 \mathrm{~min}$.

3bc: According to GP $1.19 \mathrm{mg}, 93 \% .[\alpha]_{\mathrm{D}}^{24}-154.6$ ($c=1.5, \mathrm{CHCl}_{3}, 2.3: 97.7$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.48(\mathrm{~s}, 1 \mathrm{H}), 6.36$ (dt, $\left.J=5.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.28$ (dt, $J=5.5$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.47-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.36(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.15(\mathrm{dt}, J=8.5,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=167.6,166.2,135.3$, 133.4, 113.4, 83.7, 65.8, 48.0, 24.2 ppm . HRMS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{Na}_{1} \mathrm{O}_{1}$ ([M + $\mathrm{Na}]^{+}$) is 226.0951 , found 226.0942. HLPC analysis: Daicel Chiralpak AD-H, hexane/i-PrOH $=96 / 4$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=17.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ 22.2 min .

3bj: According to GP $1.18 \mathrm{mg}, 95 \%$. $[\alpha]_{\mathrm{D}}^{24}-6.7$ ($c=0.60, \mathrm{CHCl}_{3}, 95.0: 5.0$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.14(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{t}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.70(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.28(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{dt}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=164.5,154.7,136.6,132.9,128.2,118.1$, 83.0, 66.6, 48.6, 21.6. HRMS (FAB): Calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 190.0980 , found 190.0975. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=97 / 3$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=26.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=30.3 \mathrm{~min}$.

3cc: According to GP $1.22 \mathrm{mg}, 96 \% .[\alpha]_{\mathrm{D}}^{24}-50.8$ ($c=1.2, \mathrm{CHCl}_{3}, 2.6: 97.4$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.38$ (s, 1 H), 6.31 (ddd, $\left.J=9.1,6.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.15$ (ddd, $J=9.2,6.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44-5.58(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 1.86-2.06$ $(\mathrm{m}, 3 \mathrm{H}), 1.71-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.52(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 101 MHz): $\delta=167.5,164.3,130.0,127.9,111.5,74.8,54.8,31.1,28.0,24.3,18.9 \mathrm{ppm}$. HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{Na}_{1} \mathrm{O}_{1}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$is 254.1264, found 254.1259. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=96 / 4$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=12.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=16.4 \mathrm{~min}$.

3cj: According to GP $1.21 \mathrm{mg}, 97 \%$. $[\alpha]_{\mathrm{D}}^{25}-138.0\left(c=1.0, \mathrm{CHCl}_{3}, 98.1: 1.9\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.21-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.33-6.35(\mathrm{~m}, 1 \mathrm{H}), 5.99-6.03(\mathrm{~m}, 1$ H), 5.68-5.53 (m, 1 H), $4.75-4.78(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.15-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.70$ $(\mathrm{m}, 2 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.36(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=$ $164.2,153.6,132.0,128.4,126.0,116.7,74.3,56.3,31.8,27.2,21.5,18.9$. HRMS (FAB): Calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 218.1293, found 218.1292. HLPC analysis: Daicel Chiralpak IB-3, hexane $/ i-\mathrm{PrOH}=96 / 4$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=29.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=39.1 \mathrm{~min}$.

3dc: According to GP $1.22 \mathrm{mg}, 90 \% .[\alpha]_{\mathrm{D}}^{25}+90.0\left(c=1.0, \mathrm{CHCl}_{3}, 2.0: 98.0\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta=6.44(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=9.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (dd, $J=10.1$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.22(\mathrm{~m}, 1 \mathrm{H}), 5.01-5.11(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.09-2.32(\mathrm{~m}, 3 \mathrm{H})$, $1.79-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.78(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=167.7,166.3$, 132.1, 126.8, 112.4, 74.5, 55.1, 34.4, 32.1, 26.4, 24.3, 22.6, 22.6 ppm. HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{Na}_{1} \mathrm{O}_{1}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$is 268.1434 , found 268.1430. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=96 / 4$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=7.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=10.2 \mathrm{~min}$.

3dj: According to GP $1.21 \mathrm{mg}, 91 \% .[\alpha]_{\mathrm{D}}^{24}+95.0\left(c=1.0, \mathrm{CHCl}_{3}, ~ 99.9: 0.1\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.25(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.39$ (dd, $J=6.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67$ (dd, $J=4.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.52-5.37$ (m, 1 H), 4.85 (t, $J=4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{tt}, J=4.5,9.1 \mathrm{~Hz}, 1$ H), 1.80-1.56 (m, 5 H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=163.7,153.7,133.1,128.6$, $125.5,116.1,74.1,54.3,35.0,31.8,26.3,22.0$. HRMS (FAB): Calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{1}$ ([M $+\mathrm{H}]^{+}$) is 231.1450 , found 231.1446. HLPC analysis: Daicel Chiralpak IB-3, hexane $/ i-\mathrm{PrOH}=$ $96 / 4$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=26.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ 28.9 min.

3ej: According to GP $1.37 \mathrm{mg}, 94 \%$. $[\alpha]_{\mathrm{D}}^{25}-82.7$ ($c=1.5, \mathrm{CHCl}_{3}$, 99.4:0.6 e.r.).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.43-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.14(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.57(\mathrm{~m}, 1$ H), $3.57-3.43(\mathrm{~m}, 2 \mathrm{H}$), 3.41-3.29(m, 1 H), 2.57 (s, 3 H), 2.04 (br. s., 1 H), 1.91 (br. s., 1 H), 1.64 (br. s., 1 H$), 1.61-1.48(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=154.6,136.9$, $135.9,131.0,128.6,128.2,128.1,128.0,117.6,86.4,70.0,67.2,60.8,42.4,41.7,29.3,29.2$, 21.6. HRMS (FAB): Calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 393.1927, found 393.1933. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ 267 nm , retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=34.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=37.8 \mathrm{~min}$.

3fj: According to GP $1.33 \mathrm{mg}, 92 \%$. $[\alpha]_{\mathrm{D}}^{25}-93.3\left(c=1.5, \mathrm{CHCl}_{3}, 99.0: 1.0\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.26$ $(\mathrm{m}, 2 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.47-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.32(\mathrm{~m}$, $1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.96-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9$ H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=164.3,154.9,154.5,135.9,131.0,128.2,128.1$, 117.6, 86.4, 79.7, 70.1, 61.0, 29.3, 28.6, 28.6, 21.6 ppm. HRMS (FAB): Calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 359.2083 , found 359.2070 . HLPC analysis: Daicel Chiralpak ADH , hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=$ $11.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=13.0 \mathrm{~min}$.

3gj: According to GP $1.23 \mathrm{mg}, 95 \%$. $[\alpha]_{\mathrm{D}}^{25}-216.7$ ($c=1.7, \mathrm{CHCl}_{3}, 98.7: 1.3$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.10-6.29$ (m, 2 H), $5.10(\mathrm{~s}, 1 \mathrm{H}), 4.47-4.62(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.75(\mathrm{~m}$, $5 \mathrm{H}), 1.37-1.49(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=164.4,154.3$, 137.7, 133.4, 128.1, 117.6, 88.1, 73.0, 68.6, 31.9, 31.4, 26.6, 26.3, 21.6 ppm. HRMS (FAB): Calculated for
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 244.1450 , found 244.1451. HLPC analysis: Daicel Chiralpak ADH , hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=15.7$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=18.7 \mathrm{~min}$.

$\mathbf{3 h j}$: According to GP 1 . With $5 \mathrm{~mol} \%$ catalyst loading and 0.2 mmol of $\mathbf{1 j} .54 .5 \mathrm{mg}, 99 \%$. $[\alpha]_{\mathrm{D}}^{25}-130.8\left(c=1.3 \mathrm{CHCl}_{3}, 0.1: 99.9\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.16(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-6.41$ (m, 2 H), 5.82-5.84 (m, 1 H), 4.83-4.86 (m, 1 H$), 4.70(\mathrm{dd}, J=6.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.66$ $(\mathrm{m}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=163.7$, 155.0, 132.0, 128.7, 128.4, 128.4, 117.9, 110.9, 73.8, 73.3, 73.2, 70.4, 54.8, 25.8, 25.5, 21.6 ppm. HRMS (FAB): Calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 276.1348, found 276.1346. HLPC analysis: Daicel Chiralpak IB-3, hexane $/ i-\mathrm{PrOH}=93 / 7$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=19.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=35.6 \mathrm{~min}$.

3. Enantioselective nitroso Diels-Alder reaction with unsymmetrical dienes

 2i-p.

General procedure 2:

$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}(3.1 \mathrm{mg}, 0.010 \mathrm{mmol})$ and (S)-DTBM-Segphos ($13.0 \mathrm{mg}, 0.011 \mathrm{mmol}$) were taken in an oven dried $16 \times 150 \mathrm{~mm}$ test tube equipped with a magnetic stir bar and a rubber septum. The test tube was evacuated and carefully purged with nitrogen. THF (1 mL) was added to it and the mixture was stirred for 1 h . After that the catalyst solution was placed on a $-85{ }^{\circ} \mathrm{C}$ bath. Nitroso compound $\mathbf{1 c}, \mathbf{j}(0.1 \mathrm{mmol})$ was then added and the wall of the test tube was rinsed with THF (0.5 mL). The mixture was further stirred for 10 min before the diene $\mathbf{2 i -}$ $\mathbf{p}(0.12 \mathrm{mmol})$ was added. Then the reaction mixture was warmed to $-40^{\circ} \mathrm{C}$ over $\sim 2 \mathrm{~h}$ and stirred at $-40^{\circ} \mathrm{C}$ overnight. It was then allowed to warm to $0^{\circ} \mathrm{C}$ before directly loaded into a column packed with silica gel and purified using EtOAc/n-hexane (1:1 to 3:1), Acetone/nhexane ($1: 4$ to $1: 3$), or EtOAc / n-hexane/ $\mathrm{NEt}_{3}(10: 40 / 1$ to $10: 20: 1$) as eluent to afford the nitroso Diels-Alder adducts 3.

All the racemic samples were prepared by mixing the nitroso compounds $\mathbf{1 c}, \mathbf{j}(0.1 \mathrm{mmol})$ with the dienes $2 \mathbf{i}-\mathbf{p}(0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -20 to $0^{\circ} \mathrm{C}$.

3ij: According to GP $2.25 .5 \mathrm{mg}, 98 \%$. $[\alpha]_{\mathrm{D}}^{25}-74.3\left(c=1.4 \mathrm{CHCl}_{3}, 0.4: 99.6\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.09-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.09(\mathrm{~m}, 1 \mathrm{H}), 5.93-6.07(\mathrm{~m}, 1$ H), 5.28-5.42(m, 1 H), 4.70-4.72(m, 1 H$), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.00-2.30(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.65$ $(\mathrm{m}, 1 \mathrm{H}), 1.13-1.42(\mathrm{~m}, 5 \mathrm{H}), 0.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=$ $165.0,153.9,146.8,128.1,122.1,116.9,71.0,55.9,34.5,28.8,25.5,22.3,21.6,20.8,14.0 \mathrm{ppm}$. HRMS (FAB): Calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 260.1763 , found 260.1764. HLPC analysis: Daicel Chiralpak IB-3, hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=18.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=25.3 \mathrm{~min}$.

3jj: According to GP 2. 29 mg , 99%. $[\alpha]_{\mathrm{D}}^{25}-68.0\left(c=1.1 \mathrm{CHCl}_{3}, 0.3: 99.7\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.01-7.30(\mathrm{~m}, 8 \mathrm{H}), 5.87-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.43(\mathrm{~m}, 1$ H), 4.62-4.76 (m, 1 H$), 3.35-3.49(\mathrm{~m}, 2 \mathrm{H})$, $2.61(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.48$ $(\mathrm{m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=165.0,154.2,145.9,137.7,129.4,128.5$, 128.5, 128.1, 126.4, 123.4, 117.3, 71.2, 55.4, 41.6, 25.5, 21.6, 20.8 ppm. HRMS (FAB): Calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 294.1606 , found 294.1610. HLPC analysis: Daicel Chiralpak IB-3, hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=21.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=28.7 \mathrm{~min}$.

3kc: According to GP 2. $26 \mathrm{mg}, 89 \%$. $[\alpha]_{\mathrm{D}}^{26}+208.3\left(c=1.2, \mathrm{CHCl}_{3}, 96.6: 3.4\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.66-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 1$ H), $6.75(\mathrm{dd}, J=6.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{q}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-5.08(\mathrm{~m}, 1 \mathrm{H})$, 2.29-2.45 (m, 9 H$), 1.60-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.57(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101$ $\mathrm{MHz}): \delta=167.4,143.7,136.1,128.5,128.1,125.8,123.7,112.6,71.1,52.3,24.4,24.1,21.6$ ppm. HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{Na}_{1} \mathrm{O}_{1}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$is 316.1420 , found 316.1433. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=96 / 4$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ 267 nm , retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=18.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=23.0 \mathrm{~min}$.

3kj: According to GP 2. $27.5 \mathrm{mg}, 99 \%$. $[\alpha]_{\mathrm{D}}^{25}+140.0\left(c=1.5 \mathrm{CHCl}_{3}, 0.1: 99.9\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.51-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.28(\mathrm{~m}, 1$ H), 7.02-7.15 (m, 2 H), $6.67(\mathrm{dd}, J=6.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{q}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.93(\mathrm{~m}$, $1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.57(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$): $\delta=164.3,154.0,144.0,135.9,128.8,128.3,128.2,125.8,122.9$, $116.5,70.5,54.5,24.7,21.5,21.1 \mathrm{ppm}$. HRMS (FAB): Calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ is 280.1450, found 280.1458. HLPC analysis: Daicel Chiralpak IB-3, hexane $i-\operatorname{PrOH}=96 / 4$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=31.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=43.5$ min.

31c: According to GP $2.32 \mathrm{mg}, 92 \%$. $[\alpha]_{\mathrm{D}}^{26}+30.0\left(c=1.0, \mathrm{CHCl}_{3}, 1.9: 98.1\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.43(\mathrm{~s}, 1 \mathrm{H}), 5.20-5.32(\mathrm{~m}, 2 \mathrm{H}), 4.96-4.99(\mathrm{~m}, 1 \mathrm{H}), 2.33$ (s, 6 H), 2.11-2.29 (m, 2 H), 1.71-1.83(m, 1 H), 1.38-1.49 (m, 1H), $0.85(\mathrm{~s}, 10 \mathrm{H}), 0.09(\mathrm{~s}$, $3 \mathrm{H}),-0.11(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=167.4,154.6,112.5,102.0,72.8$, $56.3,25.9,25.6,25.6,24.2,21.6,18.0,-4.3,-5.3 \mathrm{ppm}$. HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{Na}_{1} \mathrm{O}_{2} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$is 370.1921 , found 370.1936. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=96 / 4$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$, retention time; t_{R} (minor) $=7.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=7.7 \mathrm{~min}$.

31j: According to GP $2.30 \mathrm{mg}, 90 \%$. $[\alpha]_{\mathrm{D}}^{26}-22.2\left(c=0.9 \mathrm{CHCl}_{3}, 99.9: 0.1\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.12(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{q}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=6.6,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.77-4.88(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.48$ $(\mathrm{m}, 2 \mathrm{H}), 1.24-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $101 \mathrm{MHz}): \delta=165.0,154.7,154.0,127.9,116.6,100.9,72.4,58.3,26.3,25.6,21.5,20.8,18.1$, -4.5 , -5.2 ppm . HRMS (FAB): Calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 334.1951, found 334.1945. HLPC analysis: Daicel Chiralpak IA-3, hexane $/ i-\mathrm{PrOH}=97 / 3$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=12.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=15.9 \mathrm{~min}$.

3mc: According to GP $2.30 \mathrm{mg}, 83 \%$. 97.8:2.2 e.r.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.39(\mathrm{~s}, 1 \mathrm{H}), 5.28-5.29(\mathrm{~m}, 1 \mathrm{H}), 4.98-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.89$ (dd, $J=6.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 2.00-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.88$ $(\mathrm{m}, 1 \mathrm{H}), 1.67-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.52(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.11$ (s, 3 H), $\left.-0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=167.4,164.7,153.6,111.8,97.9$, 74.9, 60.7, 32.4, 26.5, 25.6, 24.3, 18.9, 18.0, -4.5, -4.9 ppm . HRMS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{Na}_{1} \mathrm{O}_{2} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$is 384.2078 , found 374.2083 . HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)$ $=20.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=21.9 \mathrm{~min}$.

3mj: According to GP $2.32 \mathrm{mg}, 92 \% .[\alpha]_{\mathrm{D}}^{25}+57.1\left(c=1.4 \mathrm{CHCl}_{3}\right.$, 99.9:0.1 e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.18(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ (dd, $J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=7.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.06-$ $2.22(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.55(\mathrm{~m}$, $\left.1 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,101 \mathrm{MHz}\right): \delta=164.1$, $154.1,153.4,128.1,116.1,96.5,74.9,62.6,33.2,26.0,25.6,21.5,18.8,18.1,-4.5,-4.9 \mathrm{ppm}$. HRMS (FAB): Calculated for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 348.2107 , found 248.2103. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=15.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=21.9 \mathrm{~min}$.

3nj: According to GP $2.31 \mathrm{mg}, 89 \%$. $[\alpha]_{\mathrm{D}}^{25}+30.0\left(c=1.0 \mathrm{CHCl}_{3}, ~ 99.8: 0.2\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.07-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{q}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.94(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.85$ $(\mathrm{m}, 2 \mathrm{H}), 1.48-1.52(\mathrm{~m}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-0.16(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $101 \mathrm{MHz}): \delta=165.1,154.7,153.9,127.9,116.6,105.0,78.0,58.4,32.7,25.6,23.7,22.0,21.5$, 18.1, $-4.4,-5.1 \mathrm{ppm}$. HRMS (FAB): Calculated for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 348.2107, found 248.2103. HLPC analysis: Daicel Chiralpak IA-3, hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time $; \mathrm{t}_{\mathrm{R}}($ major $)=9.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=12.6 \mathrm{~min}$.

30j: According to GP $2.31 \mathrm{mg}, 89 \% .[\alpha]_{\mathrm{D}}^{25}-55.0\left(c=1.2 \mathrm{CHCl}_{3}, 98.5: 1.5\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.02-7.17(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=3.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.44$ $-1.52(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$: $\delta=164.3,153.9,147.3,128.2,116.4,113.3,57.6,25.7,25.3,21.6,21.6,18.3,12.1,-4.0,-4.2$ ppm. HRMS (FAB): Calculated for $\mathrm{C}_{18} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 348.2107, found 248.2103. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ 267 nm , retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=14.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=30.7 \mathrm{~min}$.

Mixture of product (>10:1 ratio).
3pc: According to GP $2.23 \mathrm{mg}, 83 \%$. $[\alpha]_{\mathrm{D}}^{24}-53.3$ ($c=1.1 \mathrm{CHCl}_{3}, 99.4: 0.6$ e.r.).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta=6.57-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.46-6.56(\mathrm{~m}, 1 \mathrm{H}), 6.05-6.19(\mathrm{~m}, 1$ H), 5.52 (br. s., 1 H), 3.62-3.88 (m, 4 H), 3.16-3.32 (m, 1 H), 2.30 (s, 6 H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 101 \mathrm{MHz}\right): \delta=168.8,166.2,131.6,131.4,131.0,114.5,77.3,76.8,53.3,52.4,45.5$, 24.1 ppm . HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{Na}_{1} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$is 299.1115, found 299.1122. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=35.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=40.6 \mathrm{~min}$.

Mixture of product ($2: 1$ ratio).
3pj: According to GP $2.12 \mathrm{mg}, 46 \%$. $[\alpha]_{\mathrm{D}}^{25}-83.5$ ($c=0.8 \mathrm{CHCl}_{3}, 97.8: 2.2$ e.r.).
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.15-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.44-6.64(\mathrm{~m}, 2$ H), 6.03-6.28 (m, 1 H), 5.61-5.79 (m, 1 H), 3.98-3.94 (m, 1 H), 3.72-3.83 (m, 3 H), 3.23 $-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=\mathrm{d}=163.3,155.3,130.6$, $130.3,129.8,128.6,117.7,76.0,75.5,53.0,51.9,51.8,44.4,21.6$ ppm. HRMS (FAB): Calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 263.1144 , found 263.1134. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=39.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=45.4 \mathrm{~min}$.

4. Enantioselective nitroso Diels-Alder reaction with racemic 2,6disubstituted 1,3-cyclohexadienes $\mathbf{2 q - u}$.

General procedure 3:
$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}(3.1 \mathrm{mg}, 0.010 \mathrm{mmol})$ and (S)-DTBM-Segphos ($13.0 \mathrm{mg}, 0.011 \mathrm{mmol}$) were taken in an oven dried $16 \times 150 \mathrm{~mm}$ test tube equipped with a magnetic stir bar and a rubber septum. The test tube was evacuated and carefully purged with nitrogen. THF (1 mL) was added to it and the mixture was stirred for 1 h . After that the catalyst solution was placed on a $-85^{\circ} \mathrm{C}$ bath. The nitroso compound $\mathbf{1} \mathbf{j}(12.3 \mathrm{mg}, 0.1 \mathrm{mmol})$ was then added and the wall of the test tube was rinsed with THF (0.5 mL). The mixture was further stirred for 10 min before the diene $\mathbf{2 q - u}(0.23 \mathrm{mmol})$ was added. Then the reaction mixture was warmed to $-40^{\circ} \mathrm{C}$ over ~ 2 h and stirred at $-40^{\circ} \mathrm{C}$ overnight. It was then allowed to warm to $0^{\circ} \mathrm{C}$ before directly loaded into a column packed with silica gel and purified using EtOAc/n-hexane/NEt ${ }_{3}$ (10:50/1 to 10:25:1) as eluent to afford the nitroso Diels-Alder adducts 3.
All the racemic samples were prepared by mixing the nitroso compound $\mathbf{1} \mathbf{j}$ (0.1 mmol) with the diene $\mathbf{2 q} \mathbf{- u}(0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -20 to $0^{\circ} \mathrm{C}$.

3qj: According to GP $3.40 \mathrm{mg}, 98 \% .[\alpha]_{\mathrm{D}}^{26}+31.0\left(c=2.0 \mathrm{CHCl}_{3}, ~ 99.6: 0.4\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.25-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.24(\mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{t}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.25(\mathrm{dd}, J=6.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-5.00(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.70(\mathrm{~m}, 1 \mathrm{H}), 2.65-3.72(\mathrm{~m}$, $1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.71(\mathrm{~m}, 1 \mathrm{H}), 0.69(\mathrm{~s}, 9 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}),-0.21(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=\mathrm{d}=164.8,154.3,153.1,142.7,128.5,128.0,128.0,127.9,126.8$, $116.8,100.4,72.2,63.7,38.2,35.3,25.3,21.5,17.9,-4.8,-5.3 \mathrm{ppm}$. HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 410.2258 , found 410.2254 . HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$, retention time; t_{R} (major) $=24.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=28.7 \mathrm{~min}$.

3rj: According to GP $3.42 \mathrm{mg}, 93 \% .[\alpha]_{\mathrm{D}}^{25}+22.2\left(c=1.8 \mathrm{CHCl}_{3}, 99.7: 0.3\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.11-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.78(\mathrm{~m}, 3 \mathrm{H}), 5.85-5.94(\mathrm{~m}, 2$ H), 5.20-5.27 (m, 2 H), 4.89-4.96(m, 1 H), 3.56-3.70(m, 1 H), 2.61-2.68 (m, 1 H), 2.57 $(\mathrm{s}, 3 \mathrm{H}), 1.56-1.60(\mathrm{~m}, 1 \mathrm{H}), 0.71(\mathrm{~s}, 9 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}),-0.19(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $101 \mathrm{MHz}): \delta=164.8,154.2,153.1,147.8,146.3,136.8,127.9,121.2,116.8,108.3,108.2$, 108.1, 101.0, 100.3, 72.1, 63.8, 38.0, 35.7, 25.6, 25.3, 21.5, 17.9, -4.9, -5.3 ppm. HRMS (FAB): Calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 454.2162 , found 454.2169 . HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=59.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=67.4 \mathrm{~min}$.

3sj: According to GP $3.39 \mathrm{mg}, 91 \%$. $[\alpha]_{\mathrm{D}}^{25}+11.1$ ($c=1.8 \mathrm{CHCl}_{3}$, 99.3:0.7 e.r. $)$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta=7.20-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-7.01$ (m, 2 H), 5.22-5.31 (m, 2 H), 4.93-4.95 (m, 1 H), 3.61-3.70 (m, 1 H), 2.64-2.70 (m, 1 H$)$, $2.58(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.74(\mathrm{~m}, 1 \mathrm{H}), 0.69(\mathrm{~s}, 9 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}),-0.21(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=164.7,163.1,160.6,154.3,153.0,138.5,138.4,129.5,129.4,127.9$, $116.8,115.3,115.1,100.5,72.1,63.6,37.5,35.4,25.3,21.5,17.8,-4.8,-5.3 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right): \delta=-116.51 \mathrm{ppm}$. HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~F}_{1} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}_{1}([\mathrm{M}+$ $\mathrm{H}]^{+}$) is 428.2164, found 428.2168. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=$ $99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=27.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ 31.8 min .

3tj: According to GP $3.37 \mathrm{mg}, 93 \%$. $[\alpha]_{\mathrm{D}}^{25}-17.5$ ($c=0.8 \mathrm{CHCl}_{3}, 99.5: 0.5$ e.r.).
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta=7.31$ (d, J=1.1 Hz, 1 H), 7.15 (s, 2 H), 6.27 (dd, J=3.2, 2.1 Hz, 1 H), $6.04-6.11$ (m, 1 H), 5.51 (t, J=2.9 Hz, 1 H), 5.15 (dd, J=6.8, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.89-4.91$ (m, 1 H), 3.69-3.77 (m, 1 H), 2.56-2.63(m, 4 H), $1.64-1.68(\mathrm{~m}, 1 \mathrm{H}), 0.73(\mathrm{~s}, 9 \mathrm{H}),-0.09$ (s, 3 H), $-0.18(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=164.7$, 155.9, 154.3, 153.0, $141.6,127.9,116.8,110.2,105.5,100.1,71.9,61.5,32.7,32.3,25.4,21.5,17.9,-4.9,-5.2 \mathrm{ppm}$. HRMS (FAB): Calculated for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 400.2056 , found 400.2042 . HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$, retention time; $\operatorname{tr}_{\mathrm{R}}($ major $)=27.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=32.1 \mathrm{~min}$.

Mixture of products (4:1 ratio).
3uj: According to GP 3.24 mg , 69%. $[\alpha]_{\mathrm{D}}^{25}-36.4\left(c=1.1 \mathrm{CHCl}_{3}\right.$, 99.9:0.1 e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.12(\mathrm{~s}, 2 \mathrm{H}), 5.04-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.80(\mathrm{~m}, 1 \mathrm{H}), 2.57$ (s, 3 H), 2.40-2.50 (m, 1 H), 2.31-2.40(m, 1 H), $1.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.97(\mathrm{~m}, 1$ H), $0.80(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=164.9$, $154.0,153.4,127.9,116.6,99.5,72.1,63.8,35.2,27.1,25.5,25.5,21.5,20.5,18.0,-4.6,-5.2$ ppm. HRMS (FAB): Calculated for $\mathrm{C}_{18} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 348.2107, found 248.2107. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ 260 nm , retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=12.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=14.9 \mathrm{~min}$

5. Kinetic resolution of racemic diene $2 r$ via enantioselective NDA reaction.

$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}(3.1 \mathrm{mg}, 0.010 \mathrm{mmol})$ and (S)-DTBM-Segphos ($13.0 \mathrm{mg}, 0.011 \mathrm{mmol}$) were taken in an oven dried $16 \times 150 \mathrm{~mm}$ test tube equipped with a magnetic stir bar and a rubber septum. The test tube was evacuated and carefully purged with nitrogen. THF (1 mL) was added to it and the mixture was stirred for 1 h . After that the catalyst solution was placed on a $-85^{\circ} \mathrm{C}$ bath. Nitroso compound $\mathbf{1 j}(12.3 \mathrm{mg}, 0.1 \mathrm{mmol})$ was then added and the wall of the test tube was rinsed with THF (0.5 mL). The mixture was further stirred for 10 min before the diene $2 \mathbf{r}(0.20 \mathrm{mmol})$ was added. Then the reaction mixture was warmed to $-40^{\circ} \mathrm{C}$ over $\sim 2 \mathrm{~h}$ and stirred at $-40^{\circ} \mathrm{C}$ overnight. It was then allowed to warm to $0^{\circ} \mathrm{C}$ before directly loaded into a column packed with silica gel and purified using EtOAc/n-hexane/NEt 3 (10:40/1 to 10:20:1) as eluent to afford the nitroso Diels-Alder adduct $\mathbf{3 r j}$ ($41.7 \mathrm{mg}, 46 \%$ yield, 99% ee) and the yield of the unreacted diene (S)-2r was 32 mg (47%).

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (2 mL) of the diene $(S)-\mathbf{2 r}(32 \mathrm{mg}, 0.094 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$, the nitroso compound $\mathbf{1} \mathbf{j}(12.3 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and the mixture was stirred at that temperature for 16 h before purified by column chromatography using EtOAc/n-hexane/ NEt_{3} (10:40/1 to 10:20:1) to yield ent-3rj ($38.4 \mathrm{mg}, 90 \%$ yield, 85% ee).
Calculation of the selectivity factor (s):
conversion $\mathrm{c}=\frac{\text { ees }}{\text { ees }+ \text { eep }}=0.4619$
ees $=$ ee of the recovered substrate
eep $=$ ee of the product
$\begin{aligned} & \text { selectivity } \\ & \text { factor }(\mathrm{s})\end{aligned}=\frac{\ln [(1-\mathrm{c})(1-\mathrm{ees})]}{\ln [(1-\mathrm{c})(1+\mathrm{ees})]}=\frac{\ln [(1-0.462)(1-0.85)]}{\ln [(1-0.462)(1+0.85)]}=\frac{\ln 0.0807}{\ln 0.9953}=\frac{-2.517}{-0.0047}=534$

6. Enantioselective NDA reaction of $\mathbf{r a c}-2 \mathrm{v}, \mathrm{w}$.

1j, pyD-NO
3wj, R = H, 96\%, 98\% ee

General procedure 4:

$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}(3.1 \mathrm{mg}, 0.010 \mathrm{mmol})$ and (S)-DTBM-Segphos ($13.0 \mathrm{mg}, 0.011 \mathrm{mmol}$) were taken in an oven dried $16 \times 150 \mathrm{~mm}$ test tube equipped with a magnetic stir bar and a rubber septum. The test tube was evacuated and carefully purged with nitrogen. THF (1 mL) was added to it and the mixture was stirred for 1 h . After that the catalyst solution was placed on a $-85^{\circ} \mathrm{C}$ bath. The nitroso compound $\mathbf{1} \mathbf{j}(12.3 \mathrm{mg}, 0.1 \mathrm{mmol})$ was then added and the wall of the test tube was rinsed with THF (0.5 mL). The mixture was further stirred for 10 min before the dienes $\mathbf{2 v}, \mathbf{w}(0.23 \mathrm{mmol})$ was added. Then the reaction mixture was warmed to $-40^{\circ} \mathrm{C}$ over ~ 2 h and stirred at $-40^{\circ} \mathrm{C}$ overnight. It was then allowed to warm to $-20^{\circ} \mathrm{C}$ before directly loaded into a column packed with silica gel and purified using EtOAc/n-hexane/NEt ${ }_{3}$ (10:40/1 to 10:20:1) as eluent to afford the nitroso Diels-Alder adducts 3 .

All the racemic samples were prepared by mixing the nitroso compounds $\mathbf{1} \mathbf{j}$ (0.1 mmol) with the dienes $2 \mathbf{v}, \mathbf{w}(0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -20 to $0^{\circ} \mathrm{C}$.

3vj: According to GP $4.39 \mathrm{mg}, 92 \%$. $[\alpha]_{\mathrm{D}}^{25}+195.0\left(c=1.0 \mathrm{CHCl}_{3}, 0.6: 99.4\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.10-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=6.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=4.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=7.1,1.4 \mathrm{~Hz}$, 2 H), 5.03 (dd, $J=6.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.85 (dd, $J=7.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.76$ (m, 1 H), 3.94 (s, $3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=163.5$, 154.9, 149.1, 143.8, 142.6, 135.7, 132.1, 128.4, 119.5, 116.9, 111.1, 106.0, 101.7, 99.9, 73.6, $73.5,70.7,58.3,56.6,26.0,25.5,21.6 \mathrm{ppm}$. HRMS (FAB): Calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6}$ ([M + $\mathrm{H}]^{+}$) is 426.1659 , found 426.1667. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=$ $80 / 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=13.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ 22.6 min .

3wj: According to GP $4.38 \mathrm{mg}, 96 \%$. $[\alpha]_{\mathrm{D}}^{25}+170.59\left(c=1.7 \mathrm{CHCl}_{3}, 1.2: 98.8\right.$ e.r. $)$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.06-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.37 (dd, $J=6.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.18 (dd, $J=4.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.91 (dd, $J=6.1,1.5 \mathrm{~Hz}$, $2 \mathrm{H}), 5.02$ (dd, $J=6.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.84 (dd, $J=6.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.68 (dd, $J=6.9,3.9 \mathrm{~Hz}, 1$ H), $2.54(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=163.3$, 154.7, 148.1, 148.1, 142.4, 131.4, 128.4, 120.2, 118.8, 117.0, 111.1, 108.6, 106.0, 101.2, 73.6, 70.7, 57.8, 26.0, 25.5, 21.5 ppm . HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 396.1554, found 396.1547. HLPC analysis: Daicel Chiralpak AD-H, hexane/i-PrOH $=80 / 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=18.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=34.7$ min.
7. Synthesis of benzyl ((1S,4R)-4-((tert-butyldiphenylsilyl)oxy)cyclohex-2-en-1yl)carbamate 4a.

$\mathrm{Mo}(\mathrm{CO})_{6}(177 \mathrm{mg}, 0.67 \mathrm{mmol})$ followed by $\mathrm{NaBH}_{4}(30 \mathrm{mg}, 0.79 \mathrm{mmol})$ were added to a solution $\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}, 9: 1,10 \mathrm{~mL}\right)$ of $\mathbf{3 a c}(145 \mathrm{mg}, 0.67 \mathrm{mmol})$ and the mixture was heated to $65^{\circ} \mathrm{C}$ and stirred at that temperature for 12 h . It was then evaporated and the crude residue
was purified by column chromatography using acetone $/ n$-hexane ($1: 1$) as eluent to obtain (1R,4S)-4-((4,6-dimethylpyrimidin-2-yl)amino)cyclohex-2-en-1-ol (133 mg, 90\%).
$[\alpha]_{\mathrm{D}}^{25}-55.0\left(c=1.6 \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.28(\mathrm{~s}, 1 \mathrm{H}), 5.85-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.15$ (d, J=8.5 Hz, 1 H), 4.52-4.56 (m, 1 H), 4.10-4.25 (m, 1 H), 3.22 (br. s., 1 H), 2.25 (s, 6 H), 1.66-1.96 (m, 4 H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=167.6,161.6,132.3,131.7,131.7$, 109.9, 64.7, 46.1, 29.3, 25.4, 24.0 ppm . HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{Na}_{1} \mathrm{O}_{1}$ ([M + $\mathrm{Na}]^{+}$) is 242.1264 , found 242.1260 .

Imidazole ($125 \mathrm{mg}, 1.82 \mathrm{mmol}$) and TBDPS-Cl ($204 \mu \mathrm{~L}, 217 \mathrm{mg}, 0.788 \mathrm{mmol}$) were added to a solution (DMF, 2 mL) of (1R,4S)-4-((4,6-dimethylpyrimidin-2-yl)amino)cyclohex-2-en-1-ol $(133 \mathrm{mg}, 0.61 \mathrm{mmol})$ and the mixture was allowed to stir at room temperature for 20 h . Saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was then added and the mixture was extracted in EtOAc. Combined organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated and then purified by column chromatography using EtOAc/n-hexane (3/1) as eluent to yield $\mathrm{N}-((1 \mathrm{~S}, 4 \mathrm{R})-4-(($ tert -butyldiphenylsilyl)oxy)cyclohex-2-en-1-yl)-4,6-dimethylpyrimidin-2-amine ($273 \mathrm{mg}, 98 \%$).
$[\alpha]_{\mathrm{D}}^{25}-5.88\left(c=1.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.62-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.52$ (m, 6 H), $6.30(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 2 \mathrm{H}), 5.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.27$ $(\mathrm{m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 1.62-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right):$ $\delta=167.6,161.8,136.0,135.9,134.5,133.1,130.3,129.7,127.7,109.8,66.6,45.8,29.3,27.1$, $25.8,24.1,19.3 \mathrm{ppm}$. HRMS (FAB): Calculated for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{1} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 458.2628 , found 458.2626 .

To a solution (THF, 6 mL) of N-((1S,4R)-4-((tert-butyldiphenylsilyl)oxy)cyclohex-2-en-1-yl)-4,6-dimethylpyrimidin-2-amine ($273 \mathrm{mg}, 0.596 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$, LiHMDS $(0.89 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added dropwise and the mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 10 min . Then Cbz$\mathrm{Cl}(0.17 \mathrm{~mL}, 203 \mathrm{mg}, 1.19 \mathrm{mmol})$ was added and the mixture was allowed to warm to room temperature. The reaction was quenched with saturated NaHCO_{3} solution (5 mL), extracted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by column chromatography using EtOAc/n-hexane (3/1) as eluent to yield 9 (293 mg, 83\%).
$[\alpha]_{\mathrm{D}}^{25}+8.57\left(c=2.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.80-8.07(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.78$ (m, 12 H), 6.10 (dd, J=10.2, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.85-5.89$ (m, 1 H$), 5.41$ - 5.62 (m, 2 H), 5.13 $5.33(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.82(\mathrm{~s}, 6 \mathrm{H}), 2.61-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.29(\mathrm{~m}, 2 \mathrm{H})$, $1.80-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=168.4,159.0,155.0$, 136.7, 135.9, 135.9, 134.6, 134.4, 131.0, 130.7, 129.7, 129.6, 128.4, 127.8, 127.7, 127.6, 118.3,
$77.5,77.2,76.8,67.4,64.5,54.8,30.3,27.0,24.0,23.4,19.3$ ppm. HRMS (FAB): Calculated for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 592.2995 , found 592.2988.

MeOTf ($13.1 \mathrm{~mL}, 19.7 \mathrm{mg}, 0.12 \mathrm{mmol}$) was added to a solution $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{~mL}\right)$ of $9(59.2 \mathrm{mg}$, 0.10 mmol) at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at that temperature for 20 h . Then the solvent was evaporated and added $\mathrm{MeOH}(1 \mathrm{~mL})$ and $\mathrm{NaOH}(0.8 \mathrm{~mL}, 2 \mathrm{M}$ solution in water) and the mixture was then heated to $50^{\circ} \mathrm{C}$ and stirred at that temperature for 5 h . Then MeOH was evaporated and the organics were extracted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by column chromatography using EtOAc/n-hexane (4/1) as eluent to yield $\mathbf{4 a}$ (42 mg, 86\%).
$[\alpha]_{\mathrm{D}}^{25}-5.0\left(c=2.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.62-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.49$ $(\mathrm{m}, 11 \mathrm{H}), 5.72(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=10.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.78$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.17 (br. s., 1 H), $4.04-4.14$ (m, 1 H), $1.62-1.84$ (m, 4 H), 1.07 ($\mathrm{s}, 9 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=155.8,136.7,136.0,135.9,134.3,134.3,133.9,129.8$, 129.2, 128.7, 128.3, 127.7, 77.5, 77.2, 76.8, 66.8, 66.4, 46.2, 29.0, 27.1, 26.1, 19.3 ppm. HRMS (ESI): Calculated for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{1} \mathrm{O}_{3} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 486.2464 , found 486.2479 .
8. Formal synthesis tetraacetylated conduramine A-1 (5).

$\mathrm{Mo}(\mathrm{CO})_{6}(116 \mathrm{mg}, 0.44 \mathrm{mmol})$ followed by $\mathrm{NaBH}_{4}(17 \mathrm{mg}, 0.45 \mathrm{mmol})$ were added to a solution $\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}, 9: 1,6 \mathrm{~mL}\right)$ of $\mathbf{3 h j}(110 \mathrm{mg}, 0.4 \mathrm{mmol})$ and the mixture was heated to
$65^{\circ} \mathrm{C}$ and stirred at that temperature for 12 h . Then the mixture was evaporated and the crude residue was purified by column chromatography using acetone/ n-hexane (1:1) as eluent to obtain (3aR,4S,7R,7aS)-2,2-dimethyl-7-((6-methylpyridazin-3-yl)amino)-3a,4,7,7a-tetrahydrobenzo[d][1,3]dioxol-4-ol (109 mg, 98%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.08(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-6.09$ (m, 1 H), $5.83-5.86$ (m, 1 H), 5.69 (br. s., 1 H), $4.21-4.42$ (m, 4 H), 2.51 (s, 3 H), 1.46 (s, 3 $\mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=157.5,151.6,131.3,129.3,128.9$, 114.8, 109.2, 79.5, 68.8, 52.5, 27.3, 25.0, 21.3 ppm . HRMS (FAB): Calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 278.1505 , found 278.1499.

Imidazole ($41 \mathrm{mg}, 0.60 \mathrm{mmol}$) and TBS-Cl ($38 \mathrm{mg}, 0.25 \mathrm{mmol}$) were added to a solution (DMF, 1 mL) of (3aR,4S,7R,7aS)-2,2-dimethyl-7-((6-methylpyridazin-3-yl)amino)-3a,4,7,7atetrahydrobenzo [d][1,3]dioxol-4-ol ($55 \mathrm{mg}, 0.20 \mathrm{mmol}$) and the mixture was allowed to stir at room temperature for 20 h . Saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was then added and the mixture was extracted in EtOAc. Combined organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated and then purified by column chromatography using EtOAc/n-hexane (3/1) as eluent to yield $\mathrm{N}-((3 \mathrm{aS}, 4 \mathrm{R}, 7 \mathrm{~S}, 7 \mathrm{aS})-7$-((tert-butyldimethylsilyl)oxy)-2,2-dimethyl-3a,4,7,7a-tetrahydrobenzo[d][1,3]dioxol-4-yl)-6-methylpyridazin-3-amine ($75 \mathrm{mg}, 96 \%$).
$[\alpha]_{\mathrm{D}}^{24}-17.65\left(c=1.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.00(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.58$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.87-6.02$ (m, 2 H), 5.09 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.69$ (m, 1 H$), 4.35$ (dd, $J=6.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.17-4.29$ (m, 2 H), $2.50(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 0.92$ (s, 10 H), $0.07-0.18(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=157.1,151.7,132.5,130.5$, $128.3,114.8,108.7,79.5,69.1,50.1,26.9,26.0,24.7,21.5,18.2,-4.6,-4.6 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=\mathrm{HRMS}$ (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 392.2369 , found 392.2363 .

LiHMDS ($0.24 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added dropwise to a stirred THF solution (1 mL) N -((3aS,4R,7S,7aS)-7-((tert-butyldimethylsilyl)oxy)-2,2-dimethyl-3a,4,7,7a-tetrahydrobenzo[d] $[1,3]$ dioxol-4-yl)-6-methylpyridazin-3-amine ($65 \mathrm{mg}, 0.17 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for another 10 min . Then $\mathrm{ClCO}_{2} \mathrm{Me}(14 \mu \mathrm{~L}, 17 \mathrm{mg}, 0.18 \mathrm{mmol})$ was added and the mixture was then allowed to warm to $0^{\circ} \mathrm{C}$ and stirred at $0^{\circ} \mathrm{C}$ for 10 h . The reaction was quenched with saturated NaHCO_{3} solution (5 mL), extracted in EtOAc, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by column chromatography using EtOAc/n-hexane (3/1) as eluent to yield 10 ($57 \mathrm{mg}, 76 \%$).
$[\alpha]_{\mathrm{D}}^{25}-6.45\left(c=1.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.61(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ (d, J=8.9 Hz, 1 H), 5.78-5.82 (m, 1 H), 5.60-5.67 (m, 1 H), 5.04 (dd, J=6.0, 2.7 Hz, 1 H), $4.50-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=7.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}$, $3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~m}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=158.1,156.3,155.3,131.5,128.0,127.9,125.9,108.7,80.5,71.7,59.6$, $53.4,27.6,26.0,25.6,21.9,18.3,-4.4,-4.8 \mathrm{ppm}$. HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{Na}_{1} \mathrm{O}_{5} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$is 472.2238 , found 472.2231.

$\mathrm{I}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OTf}(35 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added to a stirred solution $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~mL}\right)$ of $\mathbf{1 0}(33 \mathrm{mg}$, 0.073 mmol) at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture stirred at $0^{\circ} \mathrm{C}$ for $12 \mathrm{~h} . \mathrm{NaBH}_{4}(13 \mathrm{mg}, 0.35$ $\mathrm{mmol})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ were then added and it was stirred at $0^{\circ} \mathrm{C}$ for another 1 h before warm to r.t. The solvent was evaporated. $\mathrm{CH}_{3} \mathrm{CN}$ was added and the mixture was heated to 50 ${ }^{\circ} \mathrm{C}$ for 4 h . Then $\mathrm{NaOH}(0.7 \mathrm{~mL}, 2 \mathrm{M}$ in water) and $\mathrm{MeOH}(1 \mathrm{~mL})$ were added and the heating continued for another 8 h . Then the organic solvents were evaporated and the residue was extracted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, purified by column chromatography using 1:1 acetone $/ n$-hexane as eluent to yield $11(12 \mathrm{mg}, 67 \%)$.
$[\alpha]_{\mathrm{D}}^{24}-58.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$. NMR spectra matches with those in literature.

9. Formal synthesis of narciclasine 6a.

15
$\mathrm{Mo}(\mathrm{CO})_{6}(29 \mathrm{mg}, 0.11 \mathrm{mmol})$ followed by $\mathrm{NaBH}_{4}(5.7 \mathrm{mg}, 0.15 \mathrm{mmol})$ were added to a solution $\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}, 9: 1,3 \mathrm{~mL}\right)$ of $\mathbf{3 v j}(43 \mathrm{mg}, 0.1 \mathrm{mmol})$ and the mixture was heated to 65 ${ }^{\circ} \mathrm{C}$ and stirred at that temperature for 12 h . Then the mixture was evaporated and the crude
residue was purified by column chromatography using acetone/ n-hexane (1:1) as eluent to obtain 15 ($41 \mathrm{mg}, 96 \%$).
$[\alpha]_{\mathrm{D}}^{25}-200.0\left(c=0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.95-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.54-$ $6.68(\mathrm{~m}, 3 \mathrm{H}), 6.27-6.45(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.95(\mathrm{~m}, 2 \mathrm{H}), 5.05-5.20$ $(\mathrm{m}, 1 \mathrm{H}), 4.62-4.85(\mathrm{~m}, 2 \mathrm{H}), 4.39-4.62(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.82(\mathrm{~m}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}$, $3 \mathrm{H}), 1.32$ (s, 3 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$): $\delta=156.9,151.3,151.2,149.0,143.6$, 143.0, 142.7, 135.3, 135.1, 128.9, 126.1, 114.8, 108.2, 106.0, 101.6, 100.2, 77.4, 76.8, 65.7, 56.6, 51.5, 26.7, 24.6, 21.3 ppm. HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 428.1816, found 428.1822.

$\mathrm{NEt}_{3}(21 \mu \mathrm{l}, 15 \mathrm{mg}, 0.15 \mathrm{mmol})$ followed by TBSOTf ($17.2 \mu \mathrm{l}, 20 \mathrm{mg}, 0.075 \mathrm{mmol}$) were added to a stirred $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (1 mL) of $\mathbf{1 5}$ at $0^{\circ} \mathrm{C}$ stirred for 30 min . The ice bath was then removed and the mixture was stirred for 30 min before directly transferred to a column packed with SiO_{2} and purified using $1: 1 \mathrm{EtOAc} / n$-hexane as eluent to yield $\mathbf{1 5 - T B S}(27 \mathrm{mg}$, 99\%).
$[\alpha]_{\mathrm{D}}^{26}-125.0\left(c=1.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.99(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.69 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.32$ (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.93 (q, $J=1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 5.56 (dd, $J=10.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.45 (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (dd, $J=6.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.34-4.49(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 1.25-1.35(\mathrm{~m}, 6 \mathrm{H}), 0.95$ (s, 9 H), 0.19 (s, 3 H), $0.16(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=156.3,151.5,149.1$, 143.9, 143.7, 135.4, 135.0, 128.4, 125.0, 115.0, 108.2, 106.2, 101.6, 100.2, 77.6, 76.8, 67.1, $56.8,49.9,26.5,26.1,24.5,21.5,18.3,-4.3,-4.7 \mathrm{ppm}$. HRMS (ESI): Calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 542.2681, found 542.2680.

LiHMDS ($75 \mu \mathrm{~L}, 1 \mathrm{M}$ in THF) was added dropwise to a stirred THF solution (1 mL) 15-TBS $\left(27 \mathrm{mg}, 0.05 \mathrm{mmol}\right.$) at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for another 10 min . Then $\mathrm{ClCO}_{2} \mathrm{Me}(5.8 \mu \mathrm{~L}, 7.1 \mathrm{mg}, 0.075 \mathrm{mmol})$ was added and the mixture was then allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred at $0^{\circ} \mathrm{C}$ for 10 h . The reaction was quenched with saturated NaHCO_{3} solution (1 mL), extracted in EtOAc, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by column chromatography using EtOAc/n-hexane (2/1) as eluent to yield $\mathbf{1 6}$ ($22 \mathrm{mg}, 72 \%$).
$[\alpha]_{\mathrm{D}}^{26}-28.57\left(c=0.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.24$ (br. s., 1 H), 7.13 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ (br. s., 1 H), 6.39 (s, 1 H), $5.90(\mathrm{dd}, J=4.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-5.85$ (m, 1 H), 5.65 (t, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.86-5.02 (m, 1 H), 4.28-4.33 (m, 1 H), 4.22-4.27 (m, 1 H), 3.67 (s, 3 H), 3.63 (s, 3 H), 2.64 (s, 3 H), 1.36 (d, J= $=8.0 \mathrm{~Hz}, 6 \mathrm{H}$), 0.92 (s, 9 H), 0.14 (s, 3 H), 0.12 (s, 3 H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=157.3,155.0,148.5,143.2,134.5,133.6$, $130.6,127.5,125.1,108.5,106.5,101.5,101.5,77.7,76.8,71.2,59.4,56.4,53.4,28.0,26.1$,
21.8, 18.4, -4.3, -4.6 ppm. HRMS (FAB): Calculated for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$is 600.2741 , found 600.2731.

17, 61\% (2 steps)
$\mathrm{I}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OTf}(19 \mathrm{mg}, 0.06 \mathrm{mmol})$ was added to a stirred solution $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~mL}\right)$ of $\mathbf{1 6}(30 \mathrm{mg}$, $0.05 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture stirred at $0{ }^{\circ} \mathrm{C}$ for $12 \mathrm{~h} . \mathrm{NaBH}_{4}(9.5 \mathrm{mg}, 0.25$ $\mathrm{mmol})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ were then added and it was stirred at $0^{\circ} \mathrm{C}$ for another 1 h before warm to r.t. The solvent was evaporated. $\mathrm{CH}_{3} \mathrm{CN}$ was added and the mixture was heated to 50 ${ }^{\circ} \mathrm{C}$ for 4 h . Then $\mathrm{NaOH}(0.6 \mathrm{~mL}, 2 \mathrm{M}$ in water) and $\mathrm{MeOH}(1 \mathrm{~mL})$ were added and the heating continued for another 8 h . Then the organic solvents were evaporated and the residue was extracted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered through a small pad of SiO_{2} using 1:1 acetone $/ n$-hexane as eluent. The filtrate was then concentrated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. DMAP ($1.2 \mathrm{mg}, 0.01 \mathrm{mmol}$), $\mathrm{NEt}_{3}(21 \mu \mathrm{~L}, 15 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $\mathrm{PhCOCl}(14 \mathrm{mg}$, 11.6 mL) were then added and the mixture was heated to $40^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature, NaHCO_{3} solution (1 mL) was added and the organics were extracted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified using EtOAc/n-hexane (1/1) as eluent to yield 17 ($15.2 \mathrm{mg}, 61 \% 2$ steps).
$[\alpha]_{\mathrm{D}}^{26}-11.5\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right): \delta=8.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-$ $7.15(\mathrm{~m}, 3 \mathrm{H}), 6.90-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}$, $J=6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.47(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{q}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ (d, J=6.9 Hz, 1 H), $3.49(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 4 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=165.3,156.5,150.3,145.9,144.7,136.9,134.0,133.7,130.6,130.3$, $129.2,121.6,109.0,107.4,101.8,100.8,78.3,75.3,69.4,56.6,52.4,50.8,26.9,24.8 \mathrm{ppm}$. HRMS (FAB): Calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{1} \mathrm{O}_{9}\left([\mathrm{M}]^{++}\right)$is 497.1686, found 497.1678.
10. Effect of steric and electronic properties of nitroso compounds on nitroso Diels-Alder reaction.

General procedure 5:

$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}(3.1 \mathrm{mg}, 0.010 \mathrm{mmol})$ and (S)-DTBM-Segphos ($13.0 \mathrm{mg}, 0.011 \mathrm{mmol}$) were taken in an oven dried $16 \times 150 \mathrm{~mm}$ test tube equipped with a magnetic stir bar and a rubber septum. The test tube was evacuated and carefully purged with nitrogen. THF (1 mL) was added to it and the mixture was stirred for 1 h . After that the catalyst solution was placed on a $-85^{\circ} \mathrm{C}$ bath. Nitroso compound $\mathbf{1 b} \mathbf{- q}(0.1 \mathrm{mmol})$ was then added and the wall of the test tube was rinsed with THF (0.5 mL). The mixture was further stirred for 10 min before $\mathbf{2 a}(11.5 \mu \mathrm{~L}$, 0.12 mmol) was added. Then the reaction mixture was warmed to $-40^{\circ} \mathrm{C}$ over $\sim 2 \mathrm{~h}$ and stirred at $-40^{\circ} \mathrm{C}$ overnight. The mixture was then allowed to warm to $0^{\circ} \mathrm{C}$ before it was directly
loaded into a column packed with silica gel and purified using EtOAc/n-hexane (1:1 to 3:1) to afford the nitroso Diels-Alder adducts 3.
All the racemic samples were prepared by mixing the nitroso compounds $\mathbf{1 b} \mathbf{- q}(0.1 \mathrm{mmol})$ with the dienes $\mathbf{2 a}(11.5 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$.

3ab: According to GP $5.18 .7 \mathrm{mg}, 99 \%, 97: 3$ e.r.
NMR spectra matches with those reported in the literature.

3ad: According to GP $5.20 \mathrm{mg}, 77 \%$. 54.6:45.6 e.r.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.48-6.54(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.41-5.53(\mathrm{~m}, 1 \mathrm{H}), 4.82$ - 4.85 (m, 1 H), 2.87 (spt, J=6.9 Hz, 2 H), 2.18-2.34 (m, 2 H), 1.53-1.63 (m, 1 H), 1.37 $1.46(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{dd}, J=6.9,1.4 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=176.5$, 165.7, 132.8, 132.0, 106.5, 70.5, 50.4, 36.1, 24.2, 22.3, 21.8, $21.0 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=273$. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\operatorname{PrOH}=96 / 4$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=16.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=17.4 \mathrm{~min}$.

3ae: According to GP $5.31 \mathrm{mg}, 91 \%$. 67.6:32.4 e.r.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.08-8.16(\mathrm{~m}, 4 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.53(\mathrm{~m}, 6 \mathrm{H}), 6.62$ $-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.56-6.60(\mathrm{~m}, 1 \mathrm{H}), 5.64-5.75(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.97(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.46$ $(\mathrm{m}, 2 \mathrm{H}), 1.62-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.56(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=$ 166.4, 165.7, 137.9, 132.7, 132.2, 130.6, 128.8, 127.4, 105.6, 70.9, 50.5, 24.2, $21.1 \mathrm{ppm} . \mathrm{m} / \mathrm{z}$ $=341$. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=275 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=20.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=41.2 \mathrm{~min}$.

3af: According to GP $5.17 \mathrm{mg}, 90 \%$. 91.9:8.1 e.r.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.41(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.41-6.59$ $(\mathrm{m}, 2 \mathrm{H}), 5.37-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.88(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.63(\mathrm{~m}, 1 \mathrm{H})$, 1.35-1.52 (m, 1 H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=165.7,157.9,132.2,132.1,113.3$, 71.0, 50.9, 24.0, 20.8 ppm. m/z = 189. HLPC analysis: Daicel Chiralpak OD-H, hexane/i-PrOH
$=85 / 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=26.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)$ $=44.1 \mathrm{~min}$.

3ag: According to GP $5.19 \mathrm{mg}, 94 \%$. 3.1:96.9 e.r.
$\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3,400 \mathrm{MHz}\right): \delta=8.25(\mathrm{~s}, 2 \mathrm{H}), 6.50-6.54(\mathrm{~m}, 1 \mathrm{H}), 6.43-6.47(\mathrm{~m}, 1 \mathrm{H}), 5.29$ $-5.36(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.93(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.64(\mathrm{~m}, 1 \mathrm{H})$, 1.32-1.48(m, 1 H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=164.8,157.9,132.2,132.1,132.0$, 132.0, 122.4, 70.7, 51.4, 24.1, 20.8, $14.9 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=203$. HLPC analysis: Daicel Chiralpak $\mathrm{AD}-\mathrm{H}$, hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)$ $=10.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=12.0 \mathrm{~min}$.

3ah: According to GP $5.34 \mathrm{mg}, 99 \%$. Racemic.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.47-8.65(\mathrm{~m}, 2 \mathrm{H}), 8.12-8.27(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.58(\mathrm{~m}, 6$ H), 7.17 ($\mathrm{s}, 1 \mathrm{H}$), $6.44-6.59(\mathrm{~m}, 2 \mathrm{H}), 5.66-5.69(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.92(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.40$ $(\mathrm{m}, 2 \mathrm{H}), 1.61-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.55(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=$ $169.5,164.3,163.1,138.4,138.1,132.6,131.3,130.4,130.4,128.8,128.4,128.4,127.4,127.4$, 127.3, 100.7, 70.9, 51.2, 24.3, $20.6 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=341$. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}=18.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=$ 26.7 min .

3ai: According to GP $5.24 \mathrm{mg}, 96 \%$. 40.9:59.1 e.r.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta=6.45-6.49(\mathrm{~m}, 1 \mathrm{H}), 6.37-6.39(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.23$ - $5.35(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.73(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.47-$ $1.61(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.45(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=172.7,171.1$, 164.4, 131.7, 131.0, $84.8,70.6,54.5,53.9,53.8,51.4,51.4,24.2,20.4 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=249$. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ \mathrm{i}-\mathrm{PrOH}=95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=275 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ minor $)=56.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=69.1 \mathrm{~min}$.

3ak: According to GP $5.19 \mathrm{mg}, 85 \%$. 98.9:1.1 e.r.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.27(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.36-6.62$ (m, 2 H), 5.49-5.53 (m, 1 H), 4.73-4.75 (m, 1 H), 2.14-2.36 (m, 2 H), 1.59-1.71 (m, 1 H), 1.33-1.54 (m, 1 H$) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=165.4,149.8,133.3,131.2,129.1$, $119.6,70.6,70.6,51.7,24.3,20.2,20.2 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=223$. HLPC analysis: Daicel Chiralpak ADH , hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=21.1$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=25.0 \mathrm{~min}$.

3am: According to GP $5.28 \mathrm{mg}, 85 \%$. 65.4:34.6 e.r.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.43-6.57(\mathrm{~m}, 2 \mathrm{H}), 5.29-5.42(\mathrm{~m}, 1 \mathrm{H}), 4.61-4.79(\mathrm{~m}, 1$ H), 3.50 (br. s., 8 H), 2.21-2.34 (m, 1 H), 2.10-2.20(m, 1 H), 1.77-1.93 (m, 8 H), 1.50 (tt, $J=12.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.42(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=169.6,163.6$, $132.5,131.7,70.6,49.3,46.0,25.3,24.0,21.0 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=328$. HLPC analysis: Daicel Chiralpak OD-H, hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=13.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=20.5 \mathrm{~min}$.

3an: According to GP $5.18 \mathrm{mg}, 94 \%$. 61.9:38.1 e.r.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.46-6.54(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.65(\mathrm{~m}$, 2 H), 2.29 (s, 3 H), 2.16-2.26 (m, 2 H), $1.48-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.43$ (m, 1 H$) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=170.8,169.4,132.4,131.4,95.8,69.5,69.5,53.3,24.0,24.0$, $20.6,12.7 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=192$. HLPC analysis: Daicel Chiralpak AS-H, hexane $/ i-\operatorname{PrOH}=98 / 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}($ major $)=15.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=22.6$ min.

3ao: According to GP $5.22 \mathrm{mg}, 96 \%$. Racemic.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.42-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.30(\mathrm{~m}, 2$ H), 6.52-6.70 (m, 2 H), 4.92-5.12(m, 1 H), 4.75-4.92(m, 1 H), 2.16-2.46 (m, 2 H$), 1.53$ $-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.53(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=164.3,149.4$, 141.7, 132.2, 132.1, 132.0, 124.3, 122.6, 118.2, 109.7, 70.9, 52.9, 23.6, $20.2 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=228$. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\operatorname{PrOH}=98 / 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ 254 nm , retention time; $\mathrm{t}_{\mathrm{R}}=25.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=28.9 \mathrm{~min}$.

3ap: According to GP $5.21 \mathrm{mg}, 86 \%$. Racemic.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.48-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.77-6.81(\mathrm{~m}, 1$ H), $6.14-6.18(\mathrm{~m}, 1 \mathrm{H}), 4.65-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.02-4.13(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.48$ $-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.47(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=147.8,133.6$, 129.1, 128.2, 127.0, 126.9, 123.3, 119.7, 111.1, 69.8, 55.9, 23.3, $22.1 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=244$. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}=13.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=16.7 \mathrm{~min}$.

3aq: According to GP $5.23 \mathrm{mg}, 95 \%$. Racemic.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.52-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{dd}, J=7.6$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47-6.55(\mathrm{~m}, 1 \mathrm{H}), 4.86-4.97(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.68(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.18$ $-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.54(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right):$ $\delta=156.9,141.0,136.0,134.6,130.9,121.7,121.5,118.6,108.5,70.0,51.8,31.1,24.2,20.9$ ppm. m/z $=241$. HLPC analysis: Daicel Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time; $\mathrm{t}_{\mathrm{R}}=18.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=19.7 \mathrm{~min}$.

11. Competition experiment.

$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}(3.1 \mathrm{mg}, 0.010 \mathrm{mmol})$ and (S)-DTBM-Segphos ($13.0 \mathrm{mg}, 0.011 \mathrm{mmol}$) were taken in an oven dried $16 \times 150 \mathrm{~mm}$ test tube equipped with a magnetic stir bar and a rubber septum. The test tube was evacuated and carefully purged with nitrogen. THF (1 mL) was added to it and the mixture was stirred for 1 h . After that the catalyst solution was placed on a $-85{ }^{\circ} \mathrm{C}$ bath. Nitroso compounds $\mathbf{1 b}, \mathbf{c}, \mathbf{j}$ (0.1 mmol each) was added (as mixture at one time) and the wall of the test tube was rinsed with THF (1 mL). The mixture was further stirred for 10 min before the dienes $2 \mathbf{a}(10 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ was added. Then the reaction mixture was warmed to $-40^{\circ} \mathrm{C}$ over $\sim 2 \mathrm{~h}$ and stirred at $-40^{\circ} \mathrm{C}$ overnight. The mixture was then allowed to warm to $0^{\circ} \mathrm{C}$ before water was added. The organic mixture was extracted in EtOAc, dried over Na 2 SO 4 , evaporated and the ratio of the product was determined by ${ }^{1} \mathrm{H}$ NMR.

Ratio of 3ab:3ac:3aj = 17:17:66

12. Synthesis of nitroso compounds.

The nitroso compounds $\mathbf{1 c} \mathbf{-} \mathbf{n}$ were prepared by the oxidation of the corresponding aryl hydroxyl amines following the modified literature procedure by Moskalenko and coworkers. ${ }^{\text {Sla }}$ Synthesis of aryl hydroxyl amines. ${ }^{\text {S1b }}$ Aryl chloride (10 mmol) and $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}(2.38 \mathrm{~g}, 40$ $\mathrm{mmol})$ was taken in a to a two necked round bottom flask equipped with a reflux condenser. It was then added $\mathrm{EtOH}(20 \mathrm{~mL})$ and $\mathrm{NEt}_{3}(5.62 \mathrm{~mL}, 40 \mathrm{mmol})$ and the mixture was refluxed at $90{ }^{\circ} \mathrm{C}$. The reaction was monitored by TLC. After complete consumption, ethanol was evaporated and water (5 mL) was added. The organics were extracted in EtOAc, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by column chromatography.

$1.00 \mathrm{~g}, 72 \% .{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}^{6}, 400 \mathrm{MHz}$): $\delta=9.16(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H})$, $2.23(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 101 \mathrm{MHz}$): $\delta=166.8,165.6,110.9,23.4 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=$ 139. ${ }^{\text {S1b }}$

$1.56 \mathrm{~g}, 80 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=9.80$ (br. s., 1 H), 7.55 (br. s., 1 H), 6.53 (s, 1 H), 2.93 (spt, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $1.26(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=$ 177.3, 165.9, 107.0, 35.9, 21.9 ppm. m/z $=195$.

$2.02 \mathrm{~g}, 77 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.03-8.17(\mathrm{~m}, 4 \mathrm{H}), 7.62-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.45$ $-7.60(\mathrm{~m}, 7 \mathrm{H}), 6.92-7.15(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} . \mathrm{m} / \mathrm{z}=263 .{ }^{\text {Slb }}$

$0.50 \mathrm{~g}, 45 \% .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right): \delta=9.38(\mathrm{~s}, 1 \mathrm{H}), 8.61$ (s, 1 H), 8.36 (d, J=4.6 $\mathrm{Hz}, 2 \mathrm{H}$), $6.71 \mathrm{ppm}(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 101 \mathrm{MHz}$): $\delta=165.6,157.8$, 112.1 $\mathrm{ppm} . \mathrm{m} / \mathrm{z}=111$. ${ }^{\mathrm{Slb}}$

$0.81 \mathrm{~g}, 65 \% .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$): $\delta=9.10(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.16-8.28(\mathrm{~m}, 2$ H), 2.10 ($\mathrm{s}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR (DMSO-d $6,101 \mathrm{MHz}$): $\delta=164.5,157.5,120.6,14.2 \mathrm{ppm} . \mathrm{m} / \mathrm{z}$ $=125$.

$1.92 \mathrm{~g}, 73 \% .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.6,400 \mathrm{MHz}\right): ~ \delta=10.01(\mathrm{~s}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H}), 8.34-8.53(\mathrm{~m}$, 2 H), 8.22 (dd, $J=7.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.41-7.65(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (DMSO$\left.\mathrm{d}_{6}, 101 \mathrm{MHz}\right): \delta=167.8,162.5,162.4,137.9,137.4,130.4,130.4,128.9,128.4,127.8,126.7$, $95.4,40.1,39.9,39.7,39.3,39.1,38.9 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=263 .{ }^{\text {Sib }}$

$1.12 \mathrm{~g}, 66 \%$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}^{6}, 400 \mathrm{MHz}$): $\delta=9.51(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }^{2}, 101 \mathrm{MHz}\right): \delta=171.7$, 169.7, 164.2, 78.2, $53.9,53.3 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=171$.

$0.96 \mathrm{~g}, 77 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.15(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=161.2,145.5,134.9,130.2,20.7 \mathrm{ppm} . \mathrm{m} / \mathrm{z}$ $=125$.

$1.65 \mathrm{~g}, 66 \%$. ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$): $\delta=8.91$ (s, 1 H), 8.24 (br. s., 1 H), 3.41 (br. s., 8 H), $1.83 \mathrm{ppm}(\mathrm{t}, J=6.6 \mathrm{~Hz}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 101 \mathrm{MHz}$): $\delta=169.0,163.0,45.6$, $24.7 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=250$.
Synthesis of nitroso compounds. ${ }^{\text {Sla }}$ To a round bottom flash charged with $\mathrm{MnO}_{2}(3.5 \mathrm{~g})$ was added dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the black suspension was stirred for 20 min at room temperature before 0.5 mL MeOH was added. It was then cooled to $-10^{\circ} \mathrm{C}$ and corresponding hydroxyl amine (2 mmol) was added in two equal portion (as solid). The mixture was then stirred at -10 ${ }^{\circ} \mathrm{C}$ for 30 min and then at r.t. for 30 min . It was then filtered over a small pad of celite and thoroughly washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then the solution was evaporated on a rotary evaporator (bath temperature $<20^{\circ} \mathrm{C}$). Then the solid residue was washed with dry ether (3 mL) to obtain the nitroso compounds $\mathbf{1 c}-\mathbf{n}$.
$\mathbf{1 b}, \mathbf{n}, \mathbf{o}, \mathbf{q}$ were prepared similar to method described by Rampal ${ }^{\text {Slc }}$ and Miller. ${ }^{\text {Sld }} \mathbf{1 p}$ was prepared according to the report by Almeida. ${ }^{\text {Sle }}$

1c. $260 \mathrm{mg}, 95 \%$. Mixture of monomer and dimer (1:10 ratio).
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.35(\mathrm{~s}, 1 \mathrm{H})^{*}, 7.05(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 6 \mathrm{H})^{*}, 2.39(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$. * $=$ minor. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=169.6,159.8,121.1,23.8 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=137$. IR (ATR): $1602.3,1525.3,1430.6,1396.0,1372.2,1290.5,819.1 .^{\text {S1a }}$

1d. $378 \mathrm{mg}, 98 \%$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.98(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{spt}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=178.8,160.2,116.4,35.8$, $21.6 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=193$. IR (ATR): 1595.6, 1523.2, 1471.7, 1399.3, 1390.4, 1372.8, 1328.5, 1296.6, 1282.1, 793.7.

1e. $511 \mathrm{mg}, 98 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.62(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.56$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=166.7,160.1$, $134.1,132.5,129.1,127.6,113.5 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=261 . \mathrm{IR}$ (ATR): $1591.5,1576.7,1510.0,1439.1$, $1397.7,1366.1,1323.8,1306.1,1267.2,1239.4,786.1,687.0$. ${ }^{\text {S1a }}$

1f. $209 \mathrm{mg}, 96 \%$. Mixture of monomer and dimer (1:3 ratio)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=\mathrm{d}=9.10(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H})^{*}, 8.70(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{t}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.41(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} . *=$ minor. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=$ $159.4,159.2,122.6 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=109$. IR (ATR): $1576.3,1444.3,1377.3,1238.5,998.4,978.1$, 785.4, 717.3. ${ }^{\text {Sa }}$

1g. $229 \mathrm{mg}, 93 \%$. Mixture of monomer and dimer (1:6 ratio)
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.86(\mathrm{~s}, 2 \mathrm{H}) *, 8.47(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) *, 2.37(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{*}=$ minor. ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=158.9,158.5,132.9,15.6 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=123$. IR (ATR): 1572.5, 1395.2, 1290.4, 1253.1, 982.2, 787.5, 775.8, 651.0.

1h. $506 \mathrm{mg}, 97 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.30(\mathrm{dd}, J=7.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H})$, $7.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=168.6,163.9,163.4,135.8,135.6,132.4,131.9,129.4$, $128.7,128.4,127.8,106.8 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=261 . \mathrm{IR}(\mathrm{ATR}): 1589.0,1571.1,1532.2,1493.6,1413.2$, $1369.0,1339.4,1287.8,1177.4,776.6,759.3,690.4 .^{\text {S1a }}$

1i. $318 \mathrm{mg}, 94 \%$. Mixture of monomer and dimer (1:3 ratio)
 $3.63(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} . *=$ minor. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=173.5,164.0,163.3,95.1,55.5$, $55.3 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=169$. IR (ATR): 1609.6, 1567.5, 1490.0, 1470.0, 1411.0, 1357.5, 1206.7, 1100.5, 1055.3, 831.8.

1j. $234 \mathrm{mg}, 95 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.99(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 6.87(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})^{*} \mathrm{ppm} . *=$ minor. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=20.6$, ${ }^{*} 22.2,123.6,129.3,130.1^{*}, 130.6,134.8^{*}$, $158.5,161.2^{*}, 162.8,165.2^{*} \mathrm{ppm} . *=$ minor. $\mathrm{m} / \mathrm{z}=123$. IR (ATR): 1654.5, 1550.5, 1395.8, 1247.2, 1097.9, 947.7, 834.2, 807.6.

1k. $260 \mathrm{mg}, 91 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $6 \mathrm{H}), 7.74(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 8 \mathrm{H}), 6.63(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 7 \mathrm{H}) \mathrm{ppm} . \mathrm{m} / \mathrm{z}=143$. IR (ATR): 1651.1, $1551.8,1410.6,1384.5,1245.9,1137.8,1082.3,946.2,862.4,843.7,764.1$.

1m. $468 \mathrm{mg}, 94 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=3.34-3.61(\mathrm{~m}, 8 \mathrm{H}), 1.75-2.05(\mathrm{~m}, 8 \mathrm{H})$ $\mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=166.6,163.1,46.5,46.4,25.3,25.2 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=249$. IR (ATR): 2970.6, 2873.9, 1591.1, 1514.7, 1478.3, 1457.5, 1345.0, 727.9.

10. $298 \mathrm{mg}, 20 \%(10 \mathrm{mmol}$ scale $) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.12-8.27(\mathrm{~m}, 1 \mathrm{H}), 7.66$ - $7.77(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.65(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=168.1,146.6$, $140.6,132.5,127.5,125.3,112.9,77.5,76.8 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=149 . \operatorname{IR}(\mathrm{ATR}): 1452.0,1431.5,1419.6$, 1274.2, 1218.3, 1117.3, 1100.4, 943.0, 832.6, 765.3, 751.2.

1q. $354 \mathrm{mg}, 22 \%(10 \mathrm{mmol}$ scale $) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.48$ (ddd, $J=8.4,5.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $101 \mathrm{MHz}): \delta=165.3,140.5,134.1,129.2,126.8,125.7,111.8,31.2 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=161 . \operatorname{IR}(A T R):$ $1572.0,1509.2,1410.4,1269.1,1238.0,1161.4,1117.0,1079.5,884.4,856.5,777.5,745.5$.

13. Synthesis of the dienes $2 q-u$.

General procedure 6:

To a two-necked round bottom flask equipped with Dean-Stark apparatus and a magnetic stir bar was charged with the 5 -substituted cyclohexane-1,3-dione (5 mmol), TsOH. $\mathrm{H}_{2} \mathrm{O}$ (19 mg , $0.1 \mathrm{mmol}), \mathrm{EtOH}(2.5 \mathrm{~mL})$ and toluene $(10 \mathrm{~mL})$ and the mixture was heated to $125^{\circ} \mathrm{C}$ for 14 h. After cooling down to room temperature 1 mL NaOH solution (2 M in $\mathrm{H}_{2} \mathrm{O}$) was added and the organic phase was separated. The aqueous layer was extracted with EtOAc. Combined layer were washed with brine solution and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and the residue was used for next step without purification.
The residue was dissolved in THF $(10 \mathrm{~mL})$ and was added drop wise to a stirred suspension of $\mathrm{LiAlH}_{4}(190 \mathrm{mg}, 5 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 20 min the ice bath was removed and the mixture was allowed to stir at r.t. for another 2 h . It was cooled to $0^{\circ} \mathrm{C}$ again and 12 mL aq. $\mathrm{HCl}(2 \mathrm{M})$ was carefully added. Then the ice bath was removed and the mixture was stirred for another 1 h . The organic layer was then separated and the aq. layer was extracted with ether. Combined layer was washed with saturated NaHCO_{3} solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated,
and purified by column chromatography using EtOAc/n-hexane (1/4) as eluent to yield 5substituted cyclohex-2-en-1-ones.

According to GP 6 on 10 mmol scale. $1.25 \mathrm{~g}, 79 \%$.
NMR spectra in accord with the literature. ${ }^{\text {S2 }}$

According to GP 6 on 10 mmol scale. $1.65 \mathrm{~g}, 76 \%$.
NMR spectra in accord with the literature. ${ }^{53}$

According to GP $6.815 \mathrm{mg}, 86 \%$.
NMR spectra in accord with the literature. ${ }^{S 4}$

According to GP $6.649 \mathrm{mg}, 80 \%$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.34$ (dd, $J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.00 (ddd, $J=10.1,5.3,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.30(\mathrm{dd}, J=3.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-6.17(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.83(\mathrm{~m}$, $2 \mathrm{H}), 2.53-2.68(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=198.3,156.4,148.7$, 141.7, $130.0,110.3,104.8,42.4,34.3,30.8 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=162$.

According to GP $6.402 \mathrm{mg}, 73 \%$.
NMR spectra in accord with the literature. ${ }^{\text {S5 }}$

General procedure 7:

LiHMDS ($3 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added dropwise to a THF solution (3 mL) of 5 -substituted cyclohex-2-en-1-one (2 mmol) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at that temperature for another 1 h before TBSOTf ($0.69 \mathrm{~mL}, 794 \mathrm{mg}, 3 \mathrm{mmol}$) was added. The mixture was the slowly warm to $0{ }^{\circ} \mathrm{C}$ for 3 h and quenched with 3 mL saturated NaHCO_{3} solution. The organic layer was extracted with ether, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by column chromatography using $\mathrm{Et}_{2} \mathrm{O} / \mathrm{NEt}_{3} /$-pentane $(1 / 2 / 50)$ as eluent to yield the dienes $\mathbf{2 q} \mathbf{q}$.

2q, According to GP $7.516 \mathrm{mg}, 90 \%$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.27-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 1 \mathrm{H}), 5.75-5.87(\mathrm{~m}, 2$ H), 4.89-4.99 (m, 1 H), 3.67-3.71 (m, 1 H), 2.40-2.54 (m, 1 H), 2.17-2.31 (m, 1 H), 0.95 (s, 9 H), $0.18-0.17(2 \mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=128.5,127.7$, 127.7, $126.5,126.4,106.8,40.3,32.5,25.9,-4.3 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=286$.

$\mathbf{2 r}$, According to GP $7.635 \mathrm{mg}, 96 \%$.
${ }^{1} \mathrm{H}^{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.83(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 5.93(\mathrm{q}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.72$ 5.87 (m, 2 H), 4.81-4.94 (m, 1 H), 3.59-3.65 (m, 1 H), 2.38-2.51 (m, 1 H), 2.17-2.28 (m, $1 \mathrm{H}), 0.96(\mathrm{~s}, 10 \mathrm{H}), 0.18(2 \mathrm{~s}, 7 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=149.1,147.6,146.0$, $140.3,127.7,126.4,120.4,108.2,106.9,100.9,39.9,32.7,25.8,18.2,-4.3 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=330$.

2s, According to GP $7.482 \mathrm{mg}, 79 \%$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.46-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.34(\mathrm{~m}, 2 \mathrm{H}), 5.90-6.19(\mathrm{~m}, 2$ H), $5.20(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-4.04(\mathrm{~m}, 1 \mathrm{H})$, 2.68-2.86 (m, 1 H), 2.44-2.59 (m, 1 H), $1.24(\mathrm{~s}, 9 \mathrm{H}), 0.46(2 \mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=161.6(\mathrm{~d}, J=244.4 \mathrm{~Hz})$, $149.3,141.8(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 127.6,126.5,115.2(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 106.6$, 39.4, 32.5, 26.1, 25.8, 18.3, -4.3 ppm. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right): \delta=-117.1 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=$ 304.

2t, According to GP $7.448 \mathrm{mg}, 81 \%$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.30-7.37(\mathrm{~m}, 1 \mathrm{H}), 6.26-6.36(\mathrm{~m}, 1 \mathrm{H}), 6.00-6.12(\mathrm{~m}, 1$ H), $5.81-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.72-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=4.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.83(\mathrm{~m}, 1$ H), $\left.2.31-2.58(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 10 \mathrm{H}), 0.19(2 \mathrm{~s} \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$: $\delta=158.3,149.4,141.2,127.8,126.4,110.1,104.5,103.4,33.1,28.5,25.8,18.2,-4.3 \mathrm{ppm} . \mathrm{m} / \mathrm{z}$ $=276$.

2u, According to GP $7.431 \mathrm{mg}, 96 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.75-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.63-5.72(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=3.8$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=148.0,128.0$, 126.1, 109.7, 31.3, 28.3, 26.1, 25.9, 20.9, 18.2, $-4.4 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=224$.

14. Synthesis of the dienes $2 v, w$.

rac-13 was prepared in 5 steps from 1,4-cyclohexadine according to the literature procedure. ${ }^{56}$
rac-14. LiHMDS ($1.5 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added dropwise to a THF solution (3 mL) of rac$15(168 \mathrm{mg}, 1 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at that temperature for 75 min before $\mathrm{Cl}-\mathrm{PyNTf}_{2}\left(698 \mathrm{mg}, 1.5 \mathrm{mmol}\right.$) was added. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for another 10 h before warm to $-50^{\circ} \mathrm{C}$ and stirred for 10 h . Then the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, purified by column chromatography using $\mathrm{EtOAc} / \mathrm{n}$-hexane (10/1) as eluent to yield $\mathrm{rac}-14$ ($153 \mathrm{mg}, 51 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.11$ (ddd, $\left.J=10.2,3.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.91-6.00(\mathrm{~m}, 1 \mathrm{H})$, $5.83-5.90(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=8.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.70(\mathrm{~m}, 1 \mathrm{H}), 1.41(2 \mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=145.7,130.4,121.3,120.2,118.6(\mathrm{q}, J=322 \mathrm{~Hz}), 106.3,70.9$, 69.7, 26.7, $24.8 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right): \delta=-73.3 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=300$.
rac-2v. (7-methoxybenzo[d][1,3]dioxol-5-yl)magnesium bromide ($0.75 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF) was added dropwise over 20 min to a suspension of $\mathrm{rac}-\mathbf{1 4}(0.5 \mathrm{mmol})$ and $\mathrm{CuI}(9.5 \mathrm{mg}, 0.05$ $\mathrm{mmol})$ in THF (1 mL) at $-10^{\circ} \mathrm{C}$. The mixture was stirred for 2 h maintaining temperature below $0{ }^{\circ} \mathrm{C}$ before quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, purified by column chromatography using EtOAc/n-hexane (10/1) as eluent to yield rac-2v ($106 \mathrm{mg}, 70 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.57-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.28-6.31(\mathrm{~m}, 1 \mathrm{H}), 5.95-6.05(\mathrm{~m}, 4$ H), 4.77-4.82(m, 1 H$), 4.70-4.76(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 1.43(2 \mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=149.1,143.6,135.5,135.3,134.7,127.0,125.9,120.2,106.0,105.3$, $101.7,100.6,71.1,70.5,56.8,26.9,25.0 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=302$.
rac-2w. benzo[d][1,3]dioxol-5-ylmagnesium bromide ($0.75 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF) was added dropwise over 20 min to a suspension of rac-14 $(0.5 \mathrm{mmol})$ and $\mathrm{CuI}(9.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ in

THF (1 mL) at $-10{ }^{\circ} \mathrm{C}$. The mixture was stirred for 2 h maintaining temperature below $0{ }^{\circ} \mathrm{C}$ before quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, purified by column chromatography using EtOAc/n-hexane (10/1) as eluent to yield rac-2w ($89 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.87-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.30-6.34(\mathrm{~m}, 1$ H), $5.92-6.08(\mathrm{~m}, 4 \mathrm{H}), 4.80(\mathrm{dd}, J=8.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.73(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 6 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=148.0,147.6,135.3,134.0,126.9,125.9,119.9,119.8$, $108.4,106.7,105.3,101.3,71.2,70.5,27.0,25.1 \mathrm{ppm} . \mathrm{m} / \mathrm{z}=272$.

15. References

(S1) (a) Moskalenko, G. G.; Sedova, V. F.; Mamaev, V. P. Chem. Heterocycl. Compd. 1989, 25, 805. (b) Moskalenko, G. G.; Sedova, V. F.; Mamaev, V. P. Chem. Heterocycl. Compd. 1986, 22, 1232. (c) Taylor, E. C.; Tseng, C. P.; Rampal, J. B. J. Org. Chem. 1982, 47, 552. (d) Li, F.; Yang, B.; Miller, M. J.; Zajicek, J.; Noll, B. C.; Möllmann, U.; Dahse, H.-M.; Miller, P. A. Org. Lett. 2007, 9, 2923. (e) Faustino, H.; El-Shishtawy, R. M.; Reis, L. V. R.; Santos, P. F. S.; Almeida, P. A. Tetrahedron Lett. 2008, 49, 6907.
(S2) Kryshtal, G. V.; Kulganek, V. V.; Kucherov, V. F.; Yanovskaya, L. A. Synthesis 1979, 1979, 107.
(S3) Poe, S. L.; Morken, J. P. Angew. Chem. Int. Ed. 2011, 50, 4189.
(S4) Carlone, A.; Marigo, M.; North, C.; Landa, A.; Jorgensen, K. A. Chem. Commun. 2006, 4928.
(S5) Fleming, I.; Maiti, P.; Ramarao, C. Org. Biomol. Chem. 2003, 1, 3989.
(S6) Krow, G. R.; Carmosin, R.; Mancuso, A. Org. Prep. Proced. Int. 1977, 9, 285.

16. Copies of ${ }^{\mathbf{1}} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

17．Copies HPLC chromatogram

$3 a c$

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=96 / 4$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ minor $)=16.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=17.4 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nmリファレンス $360 \mathrm{~nm} /$ バンド幅： 100 nm 結果 リテンションタイム 面積 \％

	ノテフソョクタイム
16.060	面積\％
22.367	50.282

合計	

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス

合計	

3aj

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=96 / 4$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ， retention time； t_{R}（major）$=21.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=24.0 \mathrm{~min}$ ．

DAD：シグナル $A, 267 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果
$360 \mathrm{~nm} /$ バンド幅： 100 nm 結果
リテンションタイム

	エアフンヨソタイム
21.760	面積 $\%$
23.780	49.930
	50.070

合計	

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果

3bc

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=96 / 4$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ minor $)=17.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=22.2 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果 リテンションタイム

面積\％

	リテンショヨタイム
16.060	面積\％
22.367	50.282
	49.718

合計	

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

3bj

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ，retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=26.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=30.3 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4 nm リファレンス	
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果	
リテンションタイム	面積\％
26.333	50.531
29.840	49.469

合計	

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4 nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

3cc

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=96 / 4$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ，retention time $; \mathrm{t}_{\mathrm{R}}($ minor $)=12.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=16.4 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果 リテンションタイム

合訐	

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

	リテンションタイム	面積\％
12.153		2.550
16.360		97.450

合計	

3cj
Daicel Chiralpak IB－3，hexane $/ i-\mathrm{PrOH}=96 / 4$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ，retention time $; \mathrm{t}_{\mathrm{R}}($ major $)=29.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=39.1 \mathrm{~min}$ ． maU

＜ピークレポート
PDA Ch1 254nm

ビーク\＃	保持時問	高さ	面積 $\%$
1	30.625	17910	50.433
2	38.947	15472	49.567
Total		33382	100.000

mAU

PDA Ch1 254nm

ピーク\＃	保持時間	面積	高さ	面積 $\%$
1	29.674	27212735	593773	98.064
2	39.111	53715	13746	1.936
Total		27750050	607519	100.000

3dc

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=96 / 4$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ minor $)=7.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=10.2 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果 リテンジヨンタイム | 7.527 | 面梖\％ |
| :--- | ---: |
| 10.233 | 49.949 |
| | 50.051 |

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

	リテンショヨンイム	面積 $\%$
7.513	1.991	
10.193	98.009	
合計		100.000

3dj
Daicel Chiralpak IB－3，hexane $/ i-\operatorname{PrOH}=96 / 4$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ，retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=26.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=28.9 \mathrm{~min}$ ．
maU

＜ピークレポート
PDA Ch1 254nm

ビーク\＃	保持時間	面積	高さ	面積 $\%$
1	26.804	872611	29693	49.965
2	28.511	873831	27942	50.035
Total		1746442	57635	100.000

mAU

＜ピークレポート
PDA Ch1 254 nm

ビーク\＃	保持時間	面積	高さ	面積\％
1	26.435	23462447	427765	99.919
2	28.907	18906	804	0.081
Total		23481353	428569	100.000

3ej

Daicel Chiralpak AD－H，hexane $/ i-\operatorname{PrOH}=80 / 20$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ，retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=34.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=37.8 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス $360 \mathrm{~nm} /$ バンド幅： 100 nm 結果 リテンションタイム

面積\％

$360 \mathrm{~nm} /$ バンド幅：100 nm 結果	面積\％
35.707	49.942
38.207	50.058
合計	
	100.000

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4 4 nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果

$360 \mathrm{~nm} /$ バンド幅：100	
リデ	
34.907	結果
37.760	面積 $\%$

合計	

3fj

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=85 / 15$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=11.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=13.0 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅： 100 nm 結果 リテンションタイム

	面
11.047	50.103
12.867	49.897

合計	

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス
$360 \mathrm{~nm} /$ ハンド幅： 100 nm 結果

3gj

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=95 / 5$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ，retention time $; \mathrm{t}_{\mathrm{R}}($ major $)=15.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=18.7 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅： 100 nm 結果

合标	

3hj
Daicel Chiralpak IB－3，hexane $/ i-\mathrm{PrOH}=93 / 7$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ，retention time $; \mathrm{t}_{\mathrm{R}}($ minor $)=19.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=35.6 \mathrm{~min}$ ．
maU

＜ピークレポート
PDA Ch1 254nm

ピーク\＃	保持時間	面積	高さ	面積
1	19.181	2310640	108502	50.122
2	35.577	2299430	66476	49.878
Total		4610070	174978	100.000

mAU

＜ピークレポート

PDA Ch1 254nm

ピーク\＃	保持時間	面積	高さ	面積 $\%$
1	19.345	3242	171	0.099
2	35.562	3267939	92141	99.901
Total		3271181	92312	100.000

3ij

Daicel Chiralpak IB－3，hexane $/ i-\operatorname{PrOH}=95 / 5$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ，retention time； $\mathrm{t}_{\mathrm{R}}($ minor $)=18.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=25.3 \mathrm{~min}$ ． maU

＜ビークレポート

PDA Ch	保挂時			
ピーク\＃	保持時間	面積	高さ	面積 ${ }^{\text {a }}$
1	18.274	1304782	75965	50.104
2	25.555	1299368	57218	49.896
Total		2604150	133183	100.000

maU

＜ビークレポート

$\begin{aligned} & \text { PDACl } \\ & \begin{array}{l} \text { Ki-グ } \end{array} \end{aligned}$	1254 nm保持時間	面積	高さ	面積0／
1	18.184	4830	300	0.371
2	25.347	1297362	57091	99.629
Total		1302192	57390	100.000

3jj
Daicel Chiralpak IB－3，hexane $/ i-\operatorname{PrOH}=95 / 5$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ，retention time； $\mathrm{t}_{\mathrm{R}}($ minor $)=21.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=28.7 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅： 100 nm 結果

	面樍 $\%$
18.807	50.142
22.867	49.858

合計	

DAD：シグナル $A, 267 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果
リテンションタイム
面樍 $\%$

18.873	面
23.007	96.560

合計		
	100.000	

3kc

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=96 / 4$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ，retention time $; \mathrm{t}_{\mathrm{R}}($ major $)=18.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=23.0 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅： 100 nm 結果 リテンションタイム

面積\％

18.807		50.142
22.867		49.858

合計	

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス
$360 \mathrm{~nm} /$ バンド幅： 100 nm 結果

	リテンションタイム
18.873	面積\％
23.007	96.560
	3.440

合計	

3kj

Daicel Chiralpak IB－3，hexane $/ i-\operatorname{PrOH}=96 / 4$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ，retention time $; \mathrm{t}_{\mathrm{R}}($ minor $)=31.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=43.5 \mathrm{~min}$ ． maU

＜ビークレポート
PDA Ch1 254nm

ビーク\＃	保持時間	面積	高さ
1	30.247	7144850	186978
2	43.426	7223297	152007
面積	49.727		
Total		14368147	338985

mAU

＜ピークレポート
PDA Ch1 254nm

ビーク\＃	保持時間	面積	高さ
12	31.065	13765	400
2	43.490	12571889	252645
面積\％			
Total		12585654	253044

3lc
Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=96 / 4$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ minor $)=7.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=7.7 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス
$360 \mathrm{~nm} /$ バンド幅： 100 nm 結果
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

| | ファソンヨクタイム |
| :--- | ---: |\quad 面積\％

合計	

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

	リテンションタイム	面積\％
7.047	1.926	
7.660	98.074	
合計		

31j

Daicel Chiralpak IA－3，hexane $/ i-\operatorname{PrOH}=97 / 3$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ，retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=12.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=15.9 \mathrm{~min}$ ．
maU

＜ピークレポート
PDA Ch1 254nm

ピーク\#	保持時間	面積	高さ	面積\％
1	12.365	1720929	114770	51.877
2	15.924	1596372	93682	48.123
Total		3317301	208452	100.000

maU

＜ピークレポート

PDA Ch1 254nm				
ピーク\＃	保持時間	面積	高さ	面積9
1	12.546	869495	61222	99.868
2	15.943	1147	90	0.132
Total		870642	61312	100.000

3mc

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=90 / 10$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=20.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=21.9 \mathrm{~min}$ ．

DAD：シグナル A， $259 \mathrm{~nm} /$ バンド幅 4 nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果 \begin{tabular}{ll}
\& 而積 $\%$

\hline 20.633 \& 50.472

21.673 \& 49.528

\& 面積 $\%$

\hline 20.633 \& 50.472

21.673 \& 49.528
\end{tabular}

合計		100.000

DAD：シグナル A， $259 \mathrm{~nm} /$ バンド幅：4nmリファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

20.573	リテンションタイム	面積\％
21.940	97.834 2.166	
合計		100.000

3mj

Daicel Chiralpak AD－H，hexane $/ i-\operatorname{PrOH}=99 / 1$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=15.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=21.9 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果 リテンションタイム
15.187
21.360

面積\％
50.134

合計	

DAD：シグナル A， 267 nm／バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅： 100 nm 結果 リテンションタイム 面積\％

	リテンショヨンタイム
15.193	面積\％
21.907	9.884

合計	

3nj
Daicel Chiralpak IA－3，hexane $/ i-\mathrm{PrOH}=99 / 1$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ，retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=9.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=12.6 \mathrm{~min}$ ．
maU

＜ピークレポート

mAU

＜ピークレポート

PDA Ch	54nm			
ピークサ	保持時問	面積	高さ	面積9
1	9.332	5587117	487794	99.776
2	12.618	12532	905	0.224
Total		5599649	488699	100.000

30j

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=99 / 1$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ， retention time； t_{R}（major）$=14.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=30.7 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス

	面積 $\%$
14.620	537
30.847	49.763

合計	

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス
$360 \mathrm{~nm} /$／ンンド幅： 100 nm 結果

	面 14.587 30.707	98.490 リテンショョンタイム
合計	1.510	

3pc

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=90 / 10$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ，retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=35.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=40.6 \mathrm{~min}$ ．

DAD：シグナル A， $250 \mathrm{~nm} /$ バンド幅：4 4 nm 結果 リテンションタイム	面積\％
35.653	49.557
40.340	50.443
合計	
	100.000

DAD：シグナル A， $260 \mathrm{~nm} /$ バンド幅： 4 nm 結果

	リテアションタイム	面積\％
35.627		99.425
40.560		0.575
合計		
		100.000

3pj

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=90 / 10$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=39.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=45.4 \mathrm{~min}$ ．

DAD：シグナル A， $260 \mathrm{~nm} /$ バンド幅：4nm 結果

DAD：シグナル A， $260 \mathrm{~nm} /$ バンド幅： 4 nm 結果	面積\％
39.553	50.785
45.060	49.215

合計	

DAD：シグナル A， $260 \mathrm{~nm} /$ バンド幅： 4 nm 結果

3qj

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=99 / 1$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$ ， retention time； t_{R}（major）$=24.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=28.7 \mathrm{~min}$ ．

DAD：シグナル A， $260 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

	リテンションタイム	面積 $\%$
25.207	49.651	
28.333	50.349	
合計		100.000

DAD：シグナル A， $260 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

3rj

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=99 / 1$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=59.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=67.4 \mathrm{~min}$ ．

DAD：シグナル A， $260 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス $360 \mathrm{~nm} /$ バンド幅： 100 nm 結果 リテンションタイム

フォクンヨクタイム	面㥧 $\%$
60.787	50.050
68.380	49.950

合計	

DAD：シグナル A， 260 nm／バンド幅：4nm リファレンス

	リテンショョンタイム	面積\％
59.233		99.659
67.447		0.341

合計	

3sj

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=99 / 1$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$ ， retention time； t_{R}（major）$=27.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=31.8 \mathrm{~min}$ ．

DAD：シグナル A， $260 \mathrm{~nm} /$／バンド幅 4 nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果 リテンションタイム

	リテンションタイム
28.213	面積 $\%$
32.060	49.572
	50.428

合計	

DAD：シグナル A， $260 \mathrm{~nm} /$ バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果

$360 \mathrm{~nm} /$ バンド幅：100 nm リテンションタイダ結	面積\％
27.247	99.320
31.827	0.680
合計	
	100.000

3tj
Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=99 / 1$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$ ，retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=27.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=32.1 \mathrm{~min}$ ．

DAD：シグナル A， $260 \mathrm{~nm} /$ バンド幅：4 nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

	リテンショヨンタイム
27.880	面積 $\%$
31.987	55.852
	44.148
合計	

DAD：シグナル A， $260 \mathrm{~nm} /$ バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果 リテンションクイム

	リテンションタイム 27.673 面積 $\%$ 32.087 99.490

合計	

3uj

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=99 / 1$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$ ， retention time； t_{R}（major）$=12.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=14.9 \mathrm{~min}$ ．

DAD：シグナル A， $260 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス $360 \mathrm{~nm} /$ バンド幅： 100 nm 結果 リナンションタイム

面樍\％

| | コテフソヨクタイム |
| :--- | ---: |\quad 面積\％

合計	

DAD：シグナル A， $260 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果

	面積\％
12.640	9.867
14.947	0.133

合計	

3vj

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=80 / 20$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ minor $)=13.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=22.6 \mathrm{~min}$ ．

DAD：シグナル A， $260 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス
$360 \mathrm{~nm} /$／ンド幅： 100 nm 結果

DAD：シグナル A， 260 nm／バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果

	而 13.533 22.640
積 $\%$	
合計	0.647
	99.353

3wj

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=80 / 20$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ minor $)=18.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=34.7 \mathrm{~min}$ ．

DAD：シグナル A， 254 nm／バンド幅：4 nm リファレンス

合訐	

DAD：シグナル A， 254 nm／バンド幅：4nmリファレンス

	リテンションタイム	面積 $\%$
18.420	1.230	
34.693	98.770	
合計		

3ad

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=96 / 4$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ minor $)=16.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=17.4 \mathrm{~min}$ ．

DAD：シグナル A， $275 \mathrm{~nm} /$ バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ ハンド幅： 100 nm 結果

	リテンションタイム	面積\％
22.640	48.186	
25.620	51.814	
合計		

DAD：シグナル A， $275 \mathrm{~nm} /$ バンド幅：4nmリファレンス

26.960	リテンショヨタイム
面積\％	
14.599	

| 合計 | |
| :--- | ---: | ---: |

$3 a e$

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=95 / 5$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=275 \mathrm{~nm}$ ，retention time $; \mathrm{t}_{\mathrm{R}}($ major $)=20.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=41.2 \mathrm{~min}$ ．

DAD：シグナル A， $275 \mathrm{~nm} /$ バンド幅：4nm リファレンス
$360 \mathrm{nrm} /$ バンド幅：100nm 結果
リテンションタイム
面積\％

20.033	50.117
41.367	49.883

合計	

DAD：シグナル A， $275 \mathrm{~nm} /$ バンド幅：4nmリファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

	リテンションタイム
20.087	面積 $\%$
41.180	67.634
	32.366

合計	

3af

Daicel Chiralpak OD－H，hexane $/ i-\mathrm{PrOH}=85 / 15$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=26.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=44.1 \mathrm{~min}$ ．

DAD：シグナル A， $254 \mathrm{~nm} /$ バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅： 100 nm 結果

	リテンションタイム	面積\％
26.360		49.933
42.667		50.067

合計	

DAD：シグナル A， $254 \mathrm{~nm} /$ バンド幅：4nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

	而積\％ 26.767 44.073	91.916 8.084 リテンショヨンタイム
合計		

$3 a g$

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=90 / 10$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ minor $)=10.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=12.0 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果 リテンションタイム

10.153		
11.987		50.284

合計		100.000

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス
$360 \mathrm{~nm} /$ バンド幅： 100 nm 結果
$360 \mathrm{~nm} /$ バンド幅： 100 nm 結果
リテンションタイム \quad 面積 $\% ~$

| 合計 | |
| :--- | ---: | ---: |

3ah

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=99 / 1$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=260 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}=18.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=26.7 \mathrm{~min}$ ．

DAD：シグナル A， $275 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果 リテンションタイム

	リテンションタイム	面積\％
18.480		49.931
26.020		50.069
合計		
		100.000

DAD：シグナル A， $260 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

	リテンションタイム	面積 $\%$
18.527	50.126	
26.700		49.874
合計		100.000

3ai

Daicel Chiralpak AD－H，hexane $/ i-\operatorname{PrOH}=95 / 5$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=275 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ minor $)=56.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=69.1 \mathrm{~min}$ ．

DAD：シグナル A， 254 nm／バンド幅：4nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果 リテンションタイム

面積\％

	リテンショヨタイム
56.740	面積\％
70.780	49.833

合計	

DAD：シグナル A， $254 \mathrm{~nm} /$ バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果 リテンションタイム
69.073 59.091

合計	

3ak

Daicel Chiralpak AD－H，hexane $/ i-\operatorname{PrOH}=98 / 2$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=21.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=25.0 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス
$360 \mathrm{~nm} /$ バンド幅： 100 nm 結果 リテンションタイム

	リテンショコンタム
21.253	面積 $\%$
24.960	5.156
	49.844

合計	

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅：4nm リファレンス
$360 \mathrm{~nm} /$ バンド幅： 100 nm 結果

	リテンションタイム	面積\％
21.113		98.907
25.013		1.093
合計		
		100.000

3am

Daicel Chiralpak OD－H，hexane $/ i-\mathrm{PrOH}=90 / 10$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=13.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=20.5 \mathrm{~min}$ ．

DAD：シグナル A， 254 nm／バンド幅：4nmリファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果
20.473

合訐	

3an

Daicel Chiralpak AS－H，hexane $/ i-\operatorname{PrOH}=98 / 2$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}($ major $)=15.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=22.6 \mathrm{~min}$ ．

DAD：シグナル A， 254 nm／バンド幅：4nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果 リテンジヨンタイム

$360 \mathrm{~nm} /$Mン゙幅：100 nm 結果 リテンションタイム	面積 $\%$
15.453	49.892
22.553	50.108

合計	

DAD：シグナル A， 254 nm／バンド幅： 4 nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果

$3 a 0$

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=98 / 2$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}=25.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=28.9 \mathrm{~min}$ ．

DAD：シグナル A， $254 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス

合計	

DAD：シグナル A， $254 \mathrm{~nm} /$ バンド幅：4nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

	リテゾョンタイム	面積\％
25.833		49.867
28.900		50.133
合計		
		100.000

3ap

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=99 / 1$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}=13.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=16.7 \mathrm{~min}$ ．

DAD：シグナル A， 254 nm／バンド幅： 4 nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

リテンションタイム 13.560	面積 $\%$
16.333	50.406
合計	49.594

DAD：シグナル A， 254 nm／バンド幅： 4 nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果

	リテンショヨソイム	面積\％
13.893	50.296	
16.680	49.704	
合計		
		100.000

$3 a q$

Daicel Chiralpak AD－H，hexane $/ i-\mathrm{PrOH}=98 / 2$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ， retention time； $\mathrm{t}_{\mathrm{R}}=18.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=19.7 \mathrm{~min}$ ．

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅： 4 nm リファレンス $360 \mathrm{~nm} /$ バンド幅：100 nm 結果 リテンションタイム

面積\％

	リテンショコタイム
18.120	面積\％
19.673	50.061
	49.939

合計	

DAD：シグナル A， $267 \mathrm{~nm} /$ バンド幅 4 nm リファレンス
$360 \mathrm{~nm} /$ バンド幅：100 nm 結果

	リテンショヨンタイム	面積\％
18.120	50.061	
19.673	49.939	
合計		

