Supporting Information:

Plasmonic ELISA using nanospherical brushes as a catalase container for colorimetric detection of ultralow concentrations of *Listeria monocytogenes* Rui Chen^{a,b1}, Xiaolin Huang^{b1}, Hengyi Xu^b, Yonghua Xiong*^{a,b}, Yanbin Li^c

^a College of Life Science, Nanchang University, Nanchang 330031, P. R. China;.

^b State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China;

^c Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701

¹These authors contributed equally to this work.

*Correspondence to: Dr. Yonghua Xiong, College of Life Science, and State Key Laboratory of Food Science and Technology, Nanchang University Address: 235 Nanjing East Road, Nanchang 330047, P.R. China Phone: +86-791-8833-4578. Fax: +86-791-8833-3708.

E-mail: yhxiongchen@163.com

1. The molecules of CAT immobilization on the SiO₂@PAA

The molecular weight of silica core (80nm) in SiO₂@PAA is calculated assuming that the silica core is uniform solid sphere with a density of 2 g/cm⁻³. The molecular weight of silica core is 5.359×10^{-16} g with the following equation: $m=\rho V$. The content of PAA chains relative to the silica core is 121.6% determined by thermogravimetric analysis. The molecular weight of the SiO₂@PAA is 1.1875×10^{-17} g. Therefore, the number of the SiO₂@PAA is 8.44×10^{11} per milligram. The weight loss of SiO₂@PAA@CAT in comparison with SiO₂@PAA is 365.4μ g/mg. Thus the mole of CAT is 1.035×10^{-15} . By this way, we can calculate the molecules of CAT on single SiO₂@PAA, which is 1018.

2. The change of enzymatic activity of the SiO₂@PAA@CAT after anti-Listeria monocytogenes and biotin immobilization

Figure S-1. The enzymatic activity of the SiO₂@PAA@CAT@pAb and the SiO₂@PAA@CAT@Biotin. Note that the enzymatic activity of SiO₂@PAA@CAT before the immobilization was set as 100%.

3. Synthesis and characterization biotinylated CAT (CAT@Biotin) and biotinylated

HRP (HRP@Biotin)

3.1 Synthesis of CAT@Biotin and HRP@Biotin

1.0 mg of CAT or HRP were dissolved in 1 mM phosphate buffer solution (PBS, pH = 8.6) containing biotin-N-hydroxysuccinimide ester with mole ratios of CAT and biotin at 1:50, and HRP and biotin at 1:10, respectively. After reaction for 3 h at ambient temperature, the obtained CAT@Biotin and HRP@Biotin complex were purified by dialysis with PBS buffer (pH = 7.4) for three days, and then stored in the mixture of glycerol and water (1:1) at -20 °C for further use.

3.2 Characterization of SiO₂@PAA@CAT@Biotin, CAT@Biotin and HRP@Biotin

Figure S-2. Characterization of SiO₂@PAA@CAT@Biotin (A), CAT@Biotin (B) and HRP@Biotin (C) based on pELISA or conventional ELISA. In Figure S-2A and 2B, the color of the well in the microplate will change from red to blue, and then to colorless with the biotinylated SiO₂@PAA@CAT or CAT concentration increasing,

whereas the OD₅₆₂ value will decrease with the increasement of CAT concentration. In Figure S-2C, the color of conventional ELISA will increase with the HRP concentration increasement. The above results indicated that the biotin was successfully covalently attached onto the surfaces of SiO₂@PAA@CAT, CAT, and HRP, respectively.

4. Checkerboard method for the concentrations optimization of anti-Listeria monocytogenes mAbs and biotinylated anti-Listeria monocytogenes pAbs

Figure S-3. Photograph showing the selection for the working conditions of $SiO_2@PAA@CAT@Biotin-based pELISA$ using the checkerboard method. The corresponding absorbances are shown in Table S-1. The highlighted well was selected as the optimal experimental condition.

Table S-1: Absorbances of the wells in Figure	: S-3
---	-------

	mAbs			
biotin-pAbs	0.625	1.25	2.5	5
10	0.152	0.13	0.128	0.093
5	0.186	0.155	0.137	0.101
2.5	0.185	0.174	0.151	0.139
1.25	0.187	0.184	0.179	0.141

5. CAT@Biotin-based pELISA for detection of Listeria monocytogenes

96-well polystyrene plates were modified with 100 µL of anti-L. monocytogenes mAb (5 µg/mL) in PBS (pH 8.6) at 4 °C overnight. After washing the plates three times with PBST, the plates were blocked with blocking buffer (1 mg/mL BSA in PBS) for 1 h at 37 °C. Subsequently, the plates were washed three times with PBST, and L. monocytogenes at desired final concentrations were added to the plates. After incubation for 1 h at 37 °C, the plates were washed three times with PBST, and then 100 μ L of biotinylated anti-L. monocytogenes pAb (5 μ g/mL) was added to the plates for 1 h at 37 °C. After washing the plates three times with PBST, 100 µL of streptavidin (15 µg/mL) was added. After reaction for 30 min at 37 °C and washing the plates three times with PBST, 100 µL of CAT@Biotin (150 µg/mL) was added for 30 min at 37 °C. After washing the plates twice with PBST, twice with PBS and once with deionized water, 100 µL of H₂O₂ (240 µM) in 1 mM MES buffer (pH 6.5) was added to each well of the plates. After 30 min, 100 µL of freshly prepared HAuCl₄ (0.2 mM) in MES buffer was added to each well. The absorbance at 562 nm was recorded after 10 min with a SpectraMax M5 plate reader (Molecular Devices).

Figure S-4. CAT@Biotion-based pELISA for the detection of various concentrations of *Listeria monocytogenes* (8×10^{0} – 8×10^{8} CFU/mL) diluted in PBS.

6. HRP@Biotin-based conventional ELISA for Listeria monocytogenes detection

96-well polystyrene plates were coated with 100 μ L of anti-*Listeria monocytogenes* mAbs (5 μ g/mL) at 4 °C overnight. After washing the plates three times with PBST (PBS, pH 7.4, 0.01 M, containing 0.05% Tween 20), the plates were blocked with blocking buffer (1 mg/mL of BSA in PBS) for 1 h at 37 °C. After washing the plates three times with PBST, 100 μ L of biotinylated anti-*L. monocytogenes* pAbs (2.59 μ g/mL) was added to the plates for 1 h at 37 °C. After washing the plates three times with PBST, 100 μ L of streptavidin (3 μ g/mL) was added. After reaction for 30 min at 37 °C and washing the plates three times with PBST, 100 μ L of HRP@Biotin (0.665 μ g/mL) was added for 30 min at 37 °C. After washing the plates twice with PBST, twice with PBS and once with deionized water, 100 μ L of TMB solution was added. After incubation for 15 min at room temperature, the reaction was terminated with 50 μ L of 2 M H₂SO₄, and the absorbance was measured at 450 nm using a microplate reader.

Figure S-5. HRP-based conventional ELISA for the detection of various concentrations of *Listeria monocytogenes* (8×10^{0} CFU/mL – 8×10^{8} CFU/mL) diluted in PBS.

7. Application of Poisson-Binomial model in the interpretation of single bacteria detection of plasmonic ELISA

According to the previous report, the Poisson-Binomial model has been widely used in the interpretation of serial dilution experiments, especially in single molecule detection.¹ Therefore, we introduce this method to interpretation of single bacteria. According the well-known mathematical formula, i.e., $p(X = r|R) = C_R^r(p_0)^{R-r}(1-p_0)^r$, where p(X = r|R) is the probability of *r* out of *R* wells containing at least one bacteria, *R* is the well numbers at a given dilution (in this study R=3), *r* is the well numbers containing at least one bacteria of solute (r = 0, 1, 2,or 3 in this work), and p_0 is the probability of obtaining no bacteria in a single well. Additionally, $p_0 = e^{-\overline{n}}$, where \overline{n} is the mean number of bacteria in a volume *v* (100 µL) and e is the base of natural logarithms. For a nominal concentration of 10^{-n} CFU/mL, the expected number of bacteria per well can be determined using the viable bacteria plate count. Thus, in 100 µL, we have on average 0.8 bacterium cell per well at 8×10^{0} CFU/mL. Then, the probability of a given number of wells containing at least one bacterium can be derived from the Poisson-Binomial distribution.

For three replicates, the probability of r wells containing at least one bacterium cell at the nominal concentration ranged from 8×10^{0} CFU/mL to 8×10^{4} CFU/mL was calculated according to the previous mathematical formula. These results are summarized in Table S2.

Table S-2 Probability distribution of wells with at least one bacterium cell.

Probabilities calculated using the Poisson-Binomial model and based on nominal concentrations at the 8×10^{0} CFU/mL dilution of 0.8 per well for *Listeria monocytogenes*. Probabilities of the most likely outcome corresponding to results observed here for *Listeria monocytogenes* has been highlighted in red, and they are precisely the outcome under three conditions.

Target	Wells	Dilution (CFU/mL)				
bacteria	biomarker	4	3	2	1	0
	0	0	0	0	0	0.090
Listeria	1	0	0	0	0	0.334
monocytogenes	2	0	0	0	0	0.409
	3	1	1	1	1	0.167

8. Verification of individual bacterial with plate count

Plate count was used to estimate the accuracy of the detection for a single *L*. *monocytogenes*. Desired concentrations of *L. monocytogenes* solutions were prepared

by tenfold dilution as previously described. 2 mL of target solutions containing living *L. monocytogenes* (10^0 or 10^1 CFU/mL) were divided into two sections: one for the viable bacteria plate counting as previously described and another for sandwich plasmonic ELISA.

9. Repeatability of qualitative detection

Table S-3: Results of 10 measurements of *Listeria monocytogenes* at 8×10^{0} CFU/mL from three independent experiments, respectively.

Experiment	Positive	Negative
Replicate 1	4	6
Replicate 2	4	6
Replicate 3	5	5

Figure S-6. The *L. monocytogenes* concentration was 8×10^{0} CFU/mL, 4 positive and 6 negative in replicate 1 and 2, 5 positive and 5 negative in replicate 3 were observed in three independent experiments.

Reference:

 Cochran W G. Estimation of Bacterial Densities by Means of the "Most Probable Number". *Biometrics* 1950, *6*, 105-116.