Supporting Information for

Access to Difluoromethylated Arenes by Pd-Catalyzed Reaction of Arylboronic Acids with Bromodifluoroacetate

Zhang Feng, Qiao-Qiao Min, and Xingang Zhang*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China <u>xgzhang@mail.sioc.ac.cn</u>

List of Contents

1)	Screening for Pd-Catalyzed Difluoromethylation of Aryl Boronic Acid 1a with
	Bromodifluoroacetate 2 (Table S1-S8)
2)	Kinetic Studies of the Reaction of 1a with 2 or V (Scheme S1, Figure S1)S8
3)	Reaction of Compound 4 or 4' with Hydroquinone under Standard Reaction Conditions (Scheme
	S2)
4)	The Role of Hydroquinone for the Reaction (Scheme S3)S11
5)	The Role of Fe(acac) ₃ for the Reaction (Schemes S4-S5, Figures S2-S3)S11
6)	Identification of Difluorocarbene: Reaction of $1a$ with V under Standard Reaction Conditions in
	the Presence of Pyridine-2-thiol (Scheme S6)
7)	Reaction of $1a$ with V in the Presence of Palladium Complex VI (Scheme
	S7)S17
8)	Cross-Coupling Reaction between $1a$ and 2 in the Presence of Pd(PPh ₃) ₄ with or without Fe(acac) ₃
	(Scheme S8)
9)	X-Ray Photoelectron Spectroscopy (XPS) Analysis of the Reaction (Scheme S9, Figure
	S4)S18
10)	General Procedure for Pd-Catalyzed Difluoromethylation of Aryl Boronic Acids with
	Bromodifluoroacetate 2
11)	Data for Compounds 3-36
12)	Data for Compounds 37-40
13)	Copies of ¹⁹ F NMR and ¹³ C NMR spectra of compound VS36
14)	Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of 3a S37
15)	Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of 3-36
16)	Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of 37-40

General information: ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM400 and AM500 spectrometer. ¹⁹F NMR was recorded on a Bruker AM400 spectrometer (CFCl₃ as an external standard and low field is positive). Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. NMR yield was determined by ¹⁹F NMR using fluorobenzene as an internal standard before working up the reaction.

Materials: All reagents were used as received from commercial sources, unless specified otherwise. Anhydrous K₂CO₃ was purchased from Alfa. DMF, DMSO, and DCE were distilled under reduced pressure from CaH₂. 1,4-Dioxane and xylene were distilled from sodium and benzophenone immediately before use.

Table S1. Pd-Catalyzed Reaction of Arylboronic Acid 1a with Bromodifluoroacetate 2 in the Presence of Different Oxidants.^{*a*}

B(OH) ₂ + Ph 1a	BrCF ₂ CO ₂ Et 2	Pd(PPh ₃) ₄ (5 mol %) Xantphos (10 mol %) hydroquinone (2.0 equiv) [M] (5 mol %) K ₂ CO ₃ , dioxane, 80 °C	$\begin{array}{c} CF_2H & CF_2CO_2Et \\ & & \\ Ph & Ph \\ 3 & 4 \end{array}$
entry		oxidant	3 / 4 yield (%) ^{<i>b</i>}
1		Cu(OTf) ₂	Trace/79
2		$Cu(acac)_2$	17/43
3		Cu(OAc) ₂	6/61
4		$Co(acac)_3$	32/12
5		Fe(acac) ₃	39/43
6 °		Fe(acac)3	48/46

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.3 mmol, 1.0 equiv), **2** (2.0 equiv), K_2CO_3 (4.0 equiv), dioxane (2 mL), 80 °C, 24 h. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard. ^{*c*}Fe(acac)₃ (3.5 mol %).

Table S2.	Screening	of Palladium	Sources. ^{<i>a</i>}
-----------	-----------	--------------	------------------------------

B(OH) ₂ + Ph 1a	[Pd] (5 mol %) Xantphos (10 mo hydroquinone (2.0 Fe(acac) ₃ (3.5 r K ₂ CO ₃ , dioxane	0 equiv) nol %) + ↓	it
entry	[Pd](mol %)	ligand (y) 3/4 yield	$(\%)^{b}$
1	$Pd(PPh_3)_4(5)$	10 48/4	6
2	Pd ₂ (dba) ₃ (2.5)	10 20/ tra	ice
3	$Pd(OAc)_2(5)$	10 38/tra	ce
4	$PdCl_2(5)$	10 30/4	ŀ
5	$PdCl_2(PPh_3)_2(5)$	10 58/1.	3
6	$PdCl_2(dppf)(5)$	10 18/12	2
7	$PdCl_2(MeCN)_2(5)$	10 55/9)
8	[PdCl(C ₃ H ₅)] ₂ (2.5)	10 35/5	5
9	$PdCl_2(PhCN)_2(5)$	10 62/3	;
10	$Pd(acac)_2(5)$	10 36/1	-

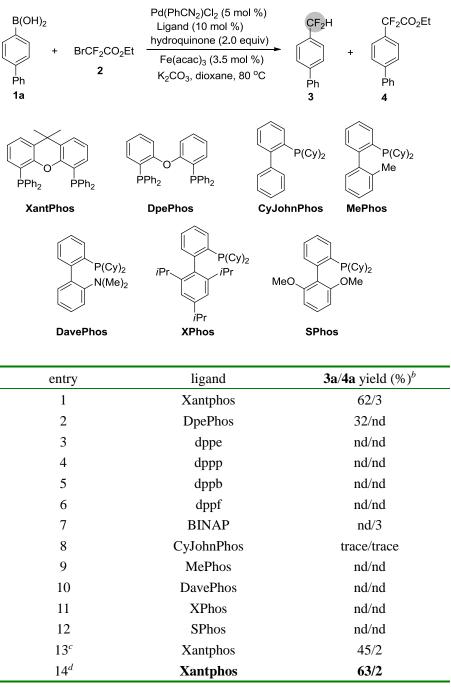

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.3 mmol, 1.0 equiv), **2** (2.0 equiv), K₂CO₃ (4.0 equiv), dioxane (2 mL), 80 °C, 24 h. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard.

Table S3. Screening of Bases.^a

$B(OH)_2$ + BrCF_2CO_2Et Ph 1a	Pd(PhCN ₂)Cl ₂ (5 mol %) Xantphos (10 mol %) hydroquinone (2.0 equiv) Fe(acac) ₃ (3.5 mol %) Base, dioxane, 80 °C	$\begin{array}{c} CF_2H & CF_2CO_2Et \\ \hline \\ Ph & Ph \\ 3 & 4 \end{array}$
entry	base (equiv)	3a/4a yield (%) ^b
1	$K_2CO_3(4.0)$	62/3
2	K ₃ PO ₄ (4.0)	16/11
3	KOAc (4.0)	Trace/4
4	C _s OAc (4.0)	Trace/1
5	NaOAc (4.0)	nd/2
6	Na ₂ CO ₃ (4.0)	nd/17
7	K ₂ CO ₃ (3.5)	50/6
8	K ₂ CO ₃ (3.0)	49/7
9	K ₂ CO ₃ (2.5)	46/10
12	K ₂ CO ₃ (2.0)	10/23
13	K ₂ CO ₃ (1.5)	Trace/3

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.3 mmol, 1.0 equiv), **2** (2.0 equiv), dioxane (2 mL), 80 °C, 24 h. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard.

Table S4. Screening of Ligands.^a

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.3 mmol, 1.0 equiv), **2** (2.0 equiv), K₂CO₃ (4.0 equiv), dioxane (2 mL), 80 °C, 24 h. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard. ^{*c*}Xantphos (5 mol %). ^{*d*}Xantphos (7.5 mol %).

Table S5. Screening of Solvents.^a

B(OH) ₂ + BrCl Ph 1a	$\begin{array}{c} Pd(PhCN_2)Cl_2 \ (5 \ mol \ \%) \\ Xantphos \ (7.5 \ mol \ \%) \\ hydroquinone \ (2.0 \ equiv) \\ 2 \qquad \qquad$	CF ₂ CO ₂ Et Ph 4
entry	solvent	3a/4a yield (%) ^b
1	dioxane	63/1
2	DMSO	nd/nd
3	Dimethoxyethane	3/nd
4	DMF	nd/nd
5	Xylene	nd/40
6	DCE	trace/nd
7	Diglyme	2/nd

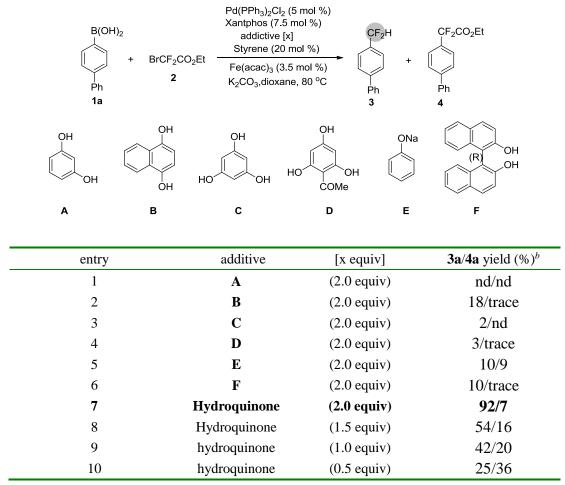

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.3 mmol, 1.0 equiv), **2** (2.0 equiv), K₂CO₃ (4.0 equiv), solvent (2 mL), 80 °C, 24 h. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard.

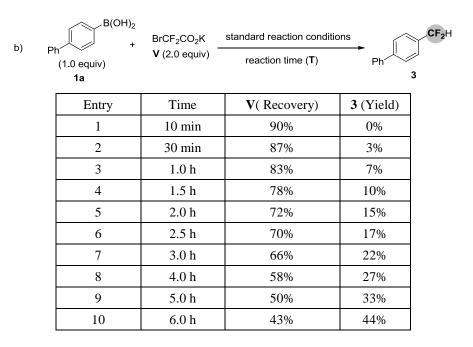
Table S6. Screening of Different Amount of Styrene.^a

$H(OH)_{2}$ $+ BrCF_{2}CO_{2}Et$ Ph $1a$	[Pd] (5 mol %) Xantphos (7.5 m hydroquinone (2.0 Styrene (x mol Fe(acac) ₃ (3.5 r K ₂ CO ₃ ,dioxane,	ol %)) equiv) %) mol %) CF ₂ H +	CF ₂ CO ₂ Et Ph 4
entry	styrene (x)	[Pd]	3a/4a yield (%) ^b
1	10	Pd(PhCN) ₂ Cl ₂	49/3
2	20	Pd(PhCN) ₂ Cl ₂	61/trace
3	40	Pd(PhCN) ₂ Cl ₂	61/1
4	10	Pd(PPh ₃) ₄	60/30
5	20	Pd(PPh ₃) ₄	79/15
6	40	Pd(PPh ₃) ₄	5/3
7	10	Pd(MeCN) ₂ Cl ₂	52/2
8	20	Pd(MeCN) ₂ Cl ₂	60/2
9	40	Pd(MeCN) ₂ Cl ₂	61/4
10	10	Pd(PPh ₃) ₂ Cl ₂	81/15
11	20	Pd(PPh ₃) ₂ Cl ₂	82/12
12	40	Pd(PPh ₃) ₂ Cl ₂	81/8
13 ^c	20	Pd(PPh ₃) ₂ Cl ₂	92(85)/7

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.3 mmol, 1.0 equiv), **2** (2.0 equiv), [Pd] (5 mol %), K₂CO₃ (4.0 equiv), dioxane (2 mL), 80 °C, 24 h. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard and number in parenthesis is isolated yield. ^{*c*}2.5 mL of dioxane was used.

Table S7. Screening of Phenols.^a

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.3 mmol, 1.0 equiv), **2** (2.0 equiv), K₂CO₃ (4.0 equiv), dioxane (2.5 mL), 80 °C, 24 h. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard.


Table S8. Control Experiments of Pd-Catalyzed Reaction of Arylboronic Acid 1a with Bromodifluoroacetate.^a

	B(OH) ₂ Ph 1a	+ BrCF ₂ CO ₂ Et ⁻ 2	Pd(PPh ₃) ₂ Cl ₂ (5 mol Xantphos (7.5 mol % hydroquinone (2.0 eq Styrene (20 mol % Fe(acac) ₃ (3.5 mol % K ₂ CO ₃ ,dioxane, 80	x) uiv) CF₂H (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	CF ₂ CO ₂ Et Ph 4	
entry	[Fe]	[Pd]	ligand	additive	alkene	3 / 4 yield $(\%)^b$
1	none	none	none	hydroquinone	styrene	nd/nd
2	Fe(acac) ₃	none	none	hydroquinone	styrene	nd/nd
3	none	$Pd(PPh_3)_2Cl_2$	none	hydroquinone	styrene	nd/7
4	none	none	Xantphos	hydroquinone	styrene	nd/nd
5	Fe(acac) ₃	none	Xantphos	hydroquinone	styrene	nd/nd
6	Fe(acac) ₃	Pd(PPh ₃) ₂ Cl ₂	none	hydroquinone	styrene	nd/6%
7	none	Pd(PPh ₃) ₂ Cl ₂	Xantphos	hydroquinone	styrene	45/trace
8	none	Pd(PPh ₃) ₂ Cl ₂	Xantphos	hydroquinone	none	65/trace
9	Fe(acac) ₃	Pd(PPh ₃) ₂ Cl ₂	Xantphos	hydroquinone	none	45/39
10	Fe(acac) ₃	Pd(PPh ₃) ₂ Cl ₂	Xantphos	none	styrene	nd/33%
11	Fe(acac) ₃	Pd(PPh ₃) ₂ Cl ₂	Xantphos	hydroquinone	styrene	92/7

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.3 mmol, 1.0 equiv), **2** (2.0 equiv), K₂CO₃ (4.0 equiv), dioxane (2.5 mL), 80 °C, 24 h. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard.

Mechanistic Studies Scheme S1. Kinetic Studies of the Reaction of 1a with 2 or V.

a)	Ph (1.0 equiv) 1a	 BrCF₂CO₂Et _ 2 (2.0 equiv) 	standard reaction condition reaction time (T)	ns → BrCF ₂ CO ₂ I V	K + CF ₂ H
	Entry	Time	2 (Conversion)	V (Yield)	3 (Yield)
	1	10 min	29%	23%	0%
	2	30 min	64%	60%	1%
	3	1.0 h	80%	76%	3%
	4	1.5 h	99%	83%	13%
	5	2.0 h	99%	79%	20%
	6	2.5 h	99%	76%	25%
	7	3.0 h	99%	72%	26%
	8	4.0 h	100%	63%	32%
	9	5.0 h	100%	56%	39%
	10	6.0 h	100%	49%	49%

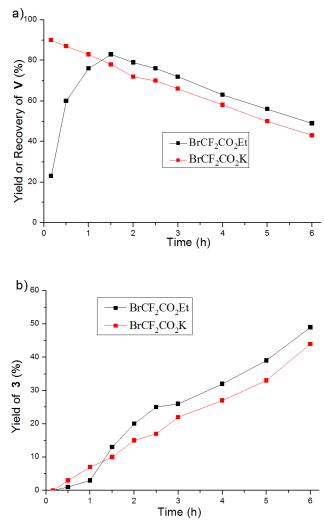
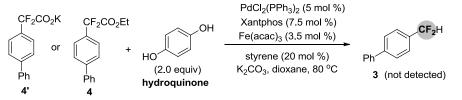
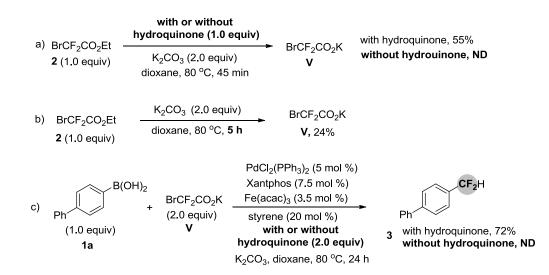



Figure S1. a) Yield (black line) or Recovery (red line) of V and b) Yield of 3 with $BrCF_2CO_2Et$ (black line) or $BrCF_2CO_2K$ (red line) as a Starting Material.

Procedure: To a 25 mL of Schlenk tube were added anhydrous K_2CO_3 (powder, 4.0 equiv), and hydroquinone (2.0 equiv) in glove box, followed by $Fe(acac)_3$ (3.5 mol %), $PdCl_2(PPh_3)_2$ (5 mol %), Xantphos (7.5 mol %), aryl boronic acid **1a** (0.3 mmol), styrene (20 mol %), ethyl bromodifluoroacetate **2** (2.0 equiv) or $BrCF_2CO_2K$ (2.0 equiv), and fresh distilled dioxane (2.5 mL). The reaction mixture was heated to 80 °C (oil bath). The reaction was monitored by ¹⁹F NMR using fluorobenzene as an internal standard.


Note: Attempt to isolation of pure V failed. The structure of V was characterized by ¹⁹F NMR, ¹³C NMR, IR, and MS from a mixture of V and hydroquinone. All of these data are consistence with the data of BrCF₂CO₂K. It also should be mentioned that the ¹H NMR spectroscopy of the mixture of V and hydroquinone only showed the spectrum of hydroquinone. Therefore, compound V was assigned to be BrCF₂CO₂K. Compound V: ¹⁹F NMR (376 MHz, DMSO) δ -52.5 (s, 2 F); ¹³C NMR (100 MHz, DMSO) δ 160.9 (t, *J* = 22.9 Hz), 117.2 (t, *J* = 325.2 Hz). IR (thin film) v_{max} 1687, 1385, 1143 cm⁻¹; MS (ESI): *m/z* (%), 172.8 (M⁺-K⁺), 174.9 (M⁺-K⁺).

Scheme S2. Reaction of Compound 4 or 4' with Hydroquinone under Standard Reaction Conditions

Procedure: To a 25 mL of Schlenk tube were added anhydrous K_2CO_3 (powder, 4.0 equiv), and hydroquinone (2.0 equiv) in glove box, followed by $Fe(acac)_3$ (3.5 mol %), $PdCl_2(PPh_3)_2$ (5 mol %), Xantphos (7.5 mol %), compound **4** or **4'** (0.3 mmol, 1.0 equiv), styrene (20 mol %) and fresh distilled dioxane (2.5 mL). The reaction mixture was heated to 80 °C (oil bath). After stirring for 24 h, the reaction was cooled to room temperature. ¹⁹F NMR spectroscopy showed no compound **3** was formed.

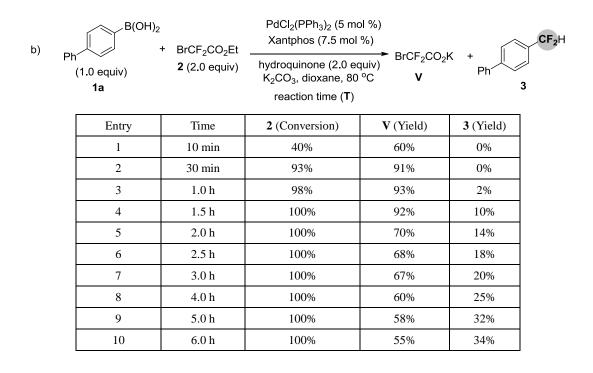
The Role of Hydroquinone for the Reaction


Scheme S3. The Roles of Hydroquinone for the Reaction

Procedure for the reaction of bromodifluoroacetate 2 with K₂CO₃ in the presence of hydroquinone: To a 25 mL of Schlenk tube were added anhydrous K₂CO₃ (powder, 2.0 equiv), hydroquinone (1.0 equiv), ethyl bromodifluoroacetate 2 (1.0 equiv, 0.6 mmol) and fresh distilled dioxane (2.5 mL) under N₂. The reaction mixture was heated to 80 °C (oil bath). The reaction was monitored by ¹⁹F NMR using fluorobenzene as an internal standard.

The Role of Fe(acac)₃ for the Reaction

The comparisons of reaction of **1a** with **2** or **V** in the presence of hydroquinone with or without $Fe(acac)_3$ and styrene (Scheme S5-S6 and Figure S2-S3) revealed that the iron species could facilitate the transformation of **V** into final product **3**.


Scheme S4. Cross-Coupling Reaction between Arylboronic Acid 1a and Bromodifluoroacetate 2 with or without Fe(acac)₃ and Styrene.

With Fe(acac)₃ and Styrene

Entry	Time	2 (Conversion)	V (Yield)	3 (Yield)
1	10 min	29%	23%	0%
2	30 min	64%	60%	1%
3	1.0 h	80%	76%	3%
4	1.5 h	99%	83%	13%
5	2.0 h	99%	79%	20%
6	2.5 h	99%	76%	25%
7	3.0 h	99%	72%	26%
8	4.0 h	100%	63%	32%
9	5.0 h	100%	56%	39%
10	6.0 h	100%	49%	49%

Without Fe(acac)₃ and Styrene

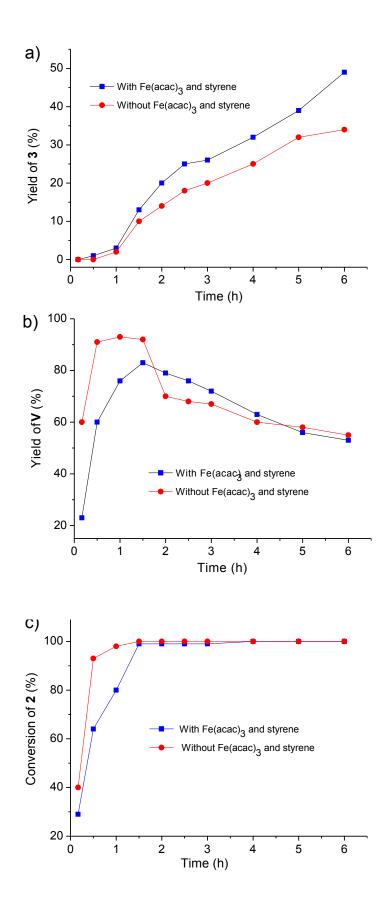
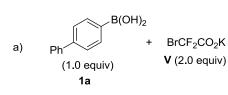
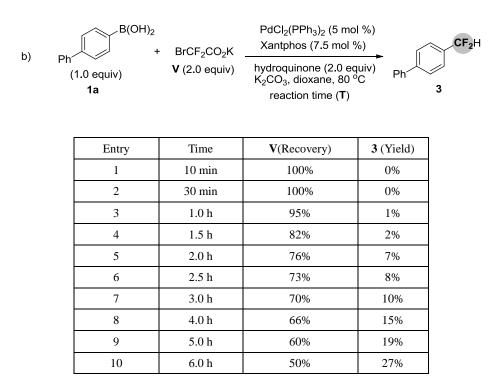



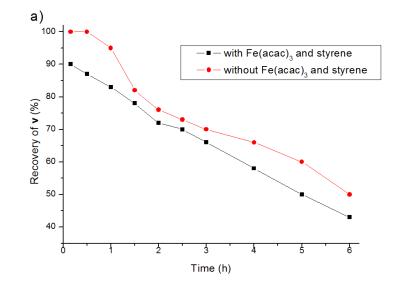
Figure S2. a) Yield of 3; b) Yield of V; c) Conversion of 2

Procedure (with Fe(acac)³ and styrene): To a 25 mL of Schlenk tube were added anhydrous K₂CO₃ (powder, 4.0 equiv), and hydroquinone (2.0 equiv) in glove box, followed by Fe(acac)₃ (3.5 mol %), PdCl₂(PPh₃)₂ (5 mol %), Xantphos (7.5 mol %), aryl boronic acid **1a** (0.3 mmol), styrene (20 mol %), ethyl bromodifluoroacetate **2** (2.0 equiv), and fresh distilled dioxane (2.5 mL). The reaction mixture was heated to 80 °C (oil bath). The reaction was monitored by ¹⁹F NMR using fluorobenzene as an internal standard.

Scheme S5. Cross-Coupling Reaction between Arylboronic Acid 1a and BrCF₂CO₂K V with or without Fe(acac)₃ and Styrene.

With Fe(acac)₃ and Styrene


 $\begin{array}{c} \operatorname{PdCl}_2(\operatorname{PPh}_3)_2 \ (5 \ \operatorname{mol}\ \%) \\ \operatorname{Xantphos} \ (7.5 \ \operatorname{mol}\ \%) \\ \overline{Fe(acac)_3} \ (3.5 \ \operatorname{mol}\ \%) \\ \hline \\ \operatorname{Styrene} \ (20 \ \operatorname{mol}\ \%) \\ \operatorname{hydroquinone} \ (2.0 \ \operatorname{equiv}) \\ \operatorname{K}_2CO_3, \ \operatorname{dioxane}, \ 80 \ ^{\circ}C \\ \operatorname{reaction time} \ (T) \end{array} \end{array} \xrightarrow{Ph}$


CF₂H

3

Entry	Time	V(Recovery)	3 (Yield)
1	10 min	90%	0%
2	30 min	87%	3%
3	1.0 h	83%	7%
4	1.5 h	78%	10%
5	2.0 h	72%	15%
6	2.5 h	70%	17%
7	3.0 h	66%	22%
8	4.0 h	58%	27%
9	5.0 h	50%	33%
10	6.0 h	43%	44%

Without Fe(acac)₃ and Styrene

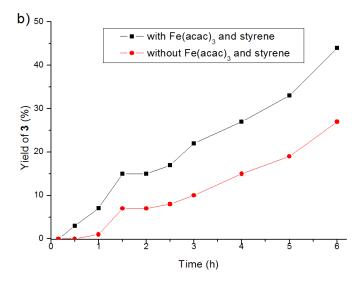
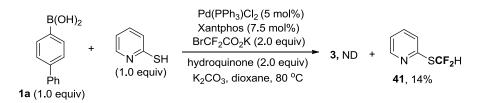
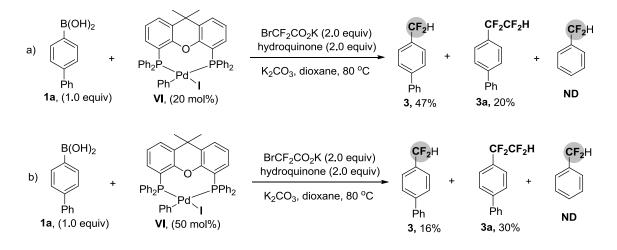
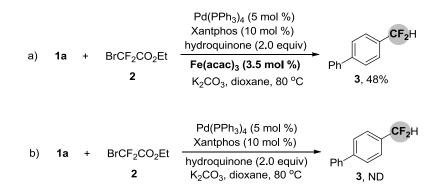



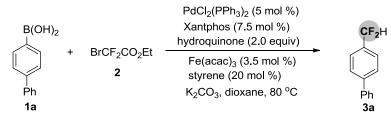
Figure S3. a) Recovery of V; b) Yield of 3.


Identification of Difluorocarbene

Scheme S6. Reaction of 1a with V under Standard Reaction Conditions in the Presence of Pyridine-2-thiol


Procedure: To a 25 mL of Schlenk tube were added anhydrous K₂CO₃ (powder, 4.0 equiv), hydroquinone (2.0 equiv), 2-mercaptopyridine, BrCF₂CO₂K V (0.6 mmol), PdCl₂(PPh₃)₂ (5 mol %), Xantphos (7.5 mol %), aryl boronic acid **1a** (0.3 mmol), and fresh distilled dioxane (2.5 mL) under N₂. The reaction mixture was heated to 80 °C (oil bath) for 24 h and provided **41** in 14% yield (determined by ¹⁹F NMR using fluorobenzene as an internal standard). Compound **41:** This compound is known.¹ ¹⁹F NMR (376 MHz, CDCl₃) δ -97.3 (d, *J* = 56.1 Hz, 2 F). MS (EI): *m/z* (%) 161 (M⁺).

Procedure: To a 25 mL of Schlenk tube were added anhydrous K₂CO₃ (powder, 4.0 equiv), hydroquinone (2.0 equiv), BrCF₂CO₂K V (0.6 mmol), [PhPd(Xantphos)I]² (20 mol% or 50 mol%), aryl boronic acid **1a** (0.3 mmol), and fresh distilled dioxane (2.5 mL) under N₂. The reaction mixture was heated to 80 °C (oil bath) for 24 h and provided compound **3** and 4-(1,1,2,2-tetrafluoroethyl)-1,1'-biphenyl **3a** (the yields were determined by ¹⁹F NMR using fluorobenzene as an internal standard). **4-(1,1,2,2-tetrafluoroethyl)-1,1'-biphenyl (3a).** This compound is known.³ ¹H NMR (400 MHz, CDCl₃) δ 7.12-7.69 (m, 2 H), 7.64-7.59 (m, 4 H), 7.49-7.45 (m, 2 H), 7.43-7.38 (m, 1 H), 5.96 (tt, *J* = 54.4 Hz, *J* = 2.4 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.4 (m, 2 F), -134.1 (dt, *J* = 54.4 Hz, *J* = 3.8 Hz, 2 F). MS (EI): *m*/*z* (%) 254 (M⁺), 203 (100). HRMS calcd. for C₁₄H₁₀F₄ (M⁺): 254.0719; Found: 254.0718.


Scheme S8. Cross-Coupling Reaction between 1a and 2 in the Presence of Pd(PPh₃)₄ with or without Fe(acac)₃.

Procedure (with Fe(acac)₃): To a 25 mL of Schlenk tube were added anhydrous K₂CO₃ (powder, 4.0 equiv) and hydroquinone (2.0 equiv) in glove box, followed by Fe(acac)₃ (3.5 mol %), Pd(PPh₃)₄ (5 mol %), Xantphos (10 mol %), aryl boronic acid **1a** (0.3 mmol), ethyl bromodifluoroacetate **2** (2.0 equiv), and fresh distilled dioxane (2.0 mL). The reaction mixture was heated to 80 °C (oil bath). The reaction was monitored by ¹⁹F NMR using fluorobenzene as an internal standard.

X-Ray Photoelectron Spectroscopy (XPS) Analysis of the Reaction

Scheme S9a. X-Ray Photoelectron Spectroscopy (XPS) Analysis of Reaction of 1a with 2 under Standard Reaction Conditions

Procedure: To a 25 mL of Schlenk tube were added anhydrous K_2CO_3 (powder, 4.0 equiv), and hydroquinone (2.0 equiv) in glove box, followed by Fe(acac)₃ (3.5 mol %), PdCl₂(PPh₃)₂ (5 mol %), Xantphos (7.5 mol %), aryl boronic acid **1a** (0.3 mmol), styrene (20 mol %), ethyl bromodifluoroacetate **2** (2.0 equiv), and fresh distilled dioxane (2.5 mL). The reaction mixture was heated to 80 °C (oil bath). After stirring for 24 h, the reaction was cooled to room temperature and concentrated under N₂. The resulting mixture was analyzed by X-ray photoelectron spectroscopy (XPS) (**Note:** all the experiments were carried out under N₂). The XPS showed that peak corresponding to Pd^{II} 3d_{5/2} was observed with the binding energy at 336.65 ev, which was negatively shifted by 0.85 ev compared with free Pd(PPh₃)₂Cl₂ (Pd^{II} 3d_{5/2} at 337.5 ev).⁴

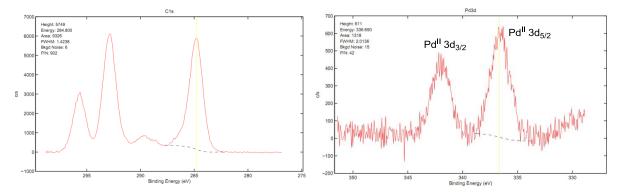
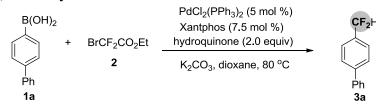
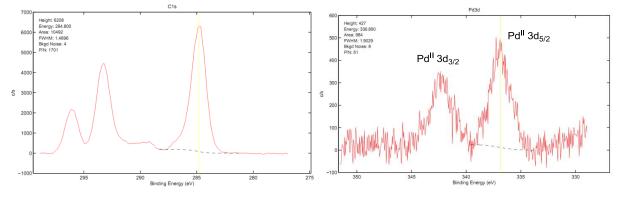
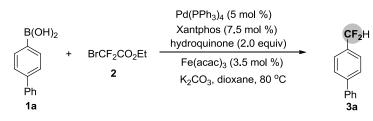




Figure S4a. XPS Analysis of Reaction of 1a with 2 under Standard Reaction Conditions


Scheme S9b. X-Ray Photoelectron Spectroscopy (XPS) Analysis of Reaction of 1a with 2 in the Absence of Fe(acac)₃ and Styrene.

Procedure: To a 25 mL of Schlenk tube were added anhydrous K_2CO_3 (powder, 4.0 equiv), and hydroquinone (2.0 equiv) in glove box, followed by $PdCl_2(PPh_3)_2$ (5 mol %), Xantphos (7.5 mol %), aryl boronic acid **1a** (0.3 mmol), ethyl bromodifluoroacetate **2** (2.0 equiv), and fresh distilled dioxane (2.5 mL). The reaction mixture was heated to 80 °C (oil bath). After stirring for 24 h, the reaction was cooled to room temperature and concentrated under N₂. The resulting mixture was analyzed by X-ray photoelectron spectroscopy (XPS) (**Note:** all the experiments were carried out under N₂). The XPS showed that peak corresponding to Pd^{II} 3d_{5/2} was observed with the binding energy at 336.85 ev, which was negatively shifted by 0.65 ev compared with free Pd(PPh_3)₂Cl₂ (Pd^{II} 3d_{5/2} at 337.5ev).⁴

Figure S4b. XPS Analysis of Reaction of **1a** with **2** in the Absence of Fe(acac)₃ and Styrene Scheme S10c. X-Ray Photoelectron Spectroscopy (XPS) Analysis of Reaction of **1a** with **2** in the Presence of Pd(PPh₃)₄ and Fe(acac)₃.

Procedure: To a 25 mL of Schlenk tube were added anhydrous K_2CO_3 (powder, 4.0 equiv), and hydroquinone (2.0 equiv) in glove box, followed by $Fe(acac)_3$ (3.5 mol %), $Pd(PPh_3)_4$ (5 mol %), Xantphos (7.5 mol %), aryl boronic acid **1a** (0.3 mmol), ethyl bromodifluoroacetate **2** (2.0 equiv), and fresh distilled dioxane (2.5 mL). The reaction mixture was heated to 80 °C (oil bath). After stirring for 24 h, the reaction was cooled to room temperature. After stirring for 24 h, the reaction was cooled to

room temperature and concentrated under N_2 . The resulting mixture was analyzed by X-ray photoelectron spectroscopy (XPS) (**Note:** all the experiments were carried out under N_2). The XPS showed that peak corresponding to $Pd^{II} 3d_{5/2}$ was observed with the binding energy at 336.80 ev, which was negatively shifted by 0.70 ev compared with free $Pd(PPh_3)_2Cl_2$ ($Pd^{II} 3d_{5/2}$ at 337.5 ev).⁴

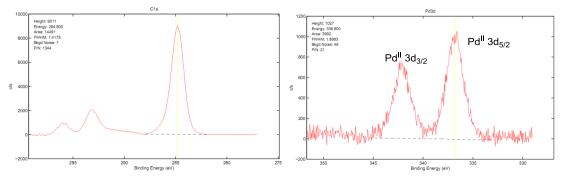
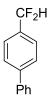
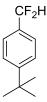



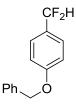
Figure S4c. XPS Analysis of Reaction of 1a with 2 in the Presence of Pd(PPh₃)₄ and Fe(acac)₃

General Procedure for Pd-Catalyzed Difluoromethylation of Arylboronic Acids with Bromodifluoroacetate

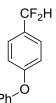
To a 25 mL of Schlenk tube were added anhydrous K_2CO_3 (powder, 4.0 equiv), and hydroquinone (2.0 equiv) in glove box, followed by Fe(acac)₃ (3.5 mol %), PdCl₂(PPh₃)₂ (5 mol %), Xantphos (7.5 mol %), aryl boronic acid **1** (0.3 mmol), styrene (20 mol %), ethyl bromodifluoroacetate **2** (2.0 equiv), and fresh distilled dioxane (2.5 mL). The reaction mixture was heated to 80 °C (oil bath). After stirring for 24 h, the reaction was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered with a pad of cellite. The filtrate was concentrated, and the residue was purified with silica gel chromatography to give product.


4-(Difluoromethyl)-1,1'-biphenyl (3). The product (52 mg, 85% yield) as a white solid (m.p. 78-82 °C) was purified with silica gel chromatography (Petroleum ether). This compound is known.⁵ ¹H NMR (300 MHz, CDCl₃) δ 7.69-7.67 (m, 2 H), 7.62-7.58 (m, 4 H), 7.49-7.45 (m, 2 H), 7.41-7.37 (m, 1 H), 6.71 (t, *J* = 56.4 Hz, 1 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -110.7 (d, *J* = 56.4 Hz, 2 F). ¹³C NMR (125.7 MHz, CDCl₃) δ 143.7 (t, *J* = 2.0 Hz), 140.2, 133.2 (t, *J* = 22.4 Hz), 128.9, 127.9, 127.4, 127.2, 126.0 (t, *J* = 6.0 Hz), 114.7 (t, *J* = 238.3 Hz). MS (EI): *m/z* (%) 204 (M⁺), 204 (100). HRMS calcd. for

2-(Difluoromethyl)-1,1'-biphenyl (5). The product (39 mg, 64% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, *J* = 6.8 Hz, *J* = 2.0 Hz, 1 H), 7.54-7.48 (m, 2 H), 7.47-7.41 (m, 3 H), 7.36-7.34 (m, 3 H), 6.54 (t, *J* = 54.8 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.4 (d, *J* = 54.8 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 141.4 (t, *J* = 6.6 Hz), 138.6, 131.7 (t, *J* = 22.2 Hz), 130.5 (t, *J* = 1.8 Hz), 130.2, 129.4, 128.4, 127.9, 127.8, 125.6 (t, *J* = 5.2 Hz), 113.1 (t, *J* = 234.6 Hz). MS (EI): *m/z* (%) 204 (M⁺), 183, 154, 58 (100). HRMS calcd. for C₁₃H₁₀F₂ (M⁺): 204.0751; Found: 204.0753.

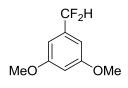


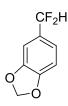
3-(Difluoromethyl)-1,1'-biphenyl (6). The product (54 mg, 89% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1 H), 7.73-7.71 (m, 1 H), 7.63-7.62 (m, 1 H), 7.61-7.60 (m, 1 H), 7.55 (t, *J* = 7.2 Hz, 1 H), 7.52-7.46 (m, 3 H), 7.40 (tt, *J* = 7.2 Hz, 1 H), *J* = 1.2 Hz, 1 H), 6.72 (t, *J* = 56.4 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.6 (d, *J* = 56.4 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 141.9, 140.2, 134.9 (t, *J* = 22.0 Hz), 129.5 (t, *J* = 1.9 Hz), 129.2, 128.9, 127.8, 127.2, 124.4 (t, *J* = 5.9 Hz), 124.3 (t, *J* = 5.9 Hz), 114.8 (t, *J* = 237.6 Hz). MS (EI): *m*/*z* (%) 204 (M⁺), 204 (100). HRMS calcd. for C₁₃H₁₀F₂ (M⁺): 204.0751; Found: 204.0754.



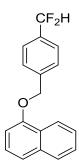
1-(Tert-butyl)-4-(difluoromethyl)benzene (7). The product (33 mg, 60% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether). This compound is known.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.8 Hz, 2 H), 7.45 (d, *J* = 8.8 Hz, 2 H), 6.64 (t, *J* = 56.8 Hz, 1 H), 1.35 (s,

9 H). ¹⁹F NMR (375 MHz, CDCl₃) δ -109.9 (d, J = 56.8 Hz, 2 F). ¹³C NMR (125.7 MHz, CDCl₃) δ 153.9 (t, J = 2.0 Hz), 131.6 (t, J = 22.4 Hz), 125.6, 125.3 (t, J = 5.8 Hz), 114.9 (t, J = 237.9 Hz), 34.8, 31.2. MS (EI): m/z (%) 184 (M⁺), 169 (100). HRMS calcd. for C₁₁H₁₄F₂ (M⁺): 184.1064; Found:184.1063.


1-(Benzyloxy)-4-(difluoromethyl)benzene (8). The product (47 mg, 67% yield) as a wihte solid (m.p. 78-80 °C) was purified with silica gel chromatography (Petroleum ether/EtOAc = 40:1). This compound is known.⁵¹H NMR (400 MHz, CDCl₃) δ 7.45-7.43 (m, 4 H), 7.42-7.38 (m, 2 H), 7.36-7.32 (m, 1 H), 7.03 (d, *J* = 8.8 Hz, 2 H), 6.61 (t, *J* = 56.8 Hz, 1 H), 5.11 (s, 2 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.3 (d, *J* = 56.8 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 160.5 (t, *J* = 1.4 Hz), 136.5, 128.7, 128.2, 127.5, 127.2 (t, *J* = 6.0 Hz), 127.0, 114.9, 114.8 (t, *J* = 236.0 Hz), 70.1. MS (EI): *m/z* (%) 234 (M⁺), 91 (100). HRMS calcd. for C₁₄H₁₂OF₂ (M⁺): 234.0856; Found: 234.0859. IR (thin film) v_{max} 3032, 2940, 1615, 1598 cm⁻¹.


1-(Difluoromethyl)-4-phenoxybenzene (9). The product (41 mg, 62% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 40:1). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.4 Hz, 2 H), 7.39-7.35 (m, 2 H), 7.17 (tt, *J* = 7.2 Hz, *J* = 1.2 Hz, 1 H), 7.06 (m, 2 H), 7.03 (s, 2 H), 6.63 (t, *J* = 56.4 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -109.1 (d, *J* = 56.4 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 159.6 (t, *J* = 2.0 Hz), 156.2, 129.9, 128.9 (t, *J* = 22.6 Hz), 127.3 (t, *J* = 6.0 Hz), 124.1, 119.6, 118.3, 114.6 (t, *J* = 236.8 Hz). MS (EI): *m/z* (%) 220 (M⁺), 220 (100). HRMS calcd. for C₁₃H₁₀OF₂ (M⁺): 220.0700; Found: 220.0698. IR (thin film) v_{max} 3041, 2963, 1765, 1590 cm⁻¹.

1-(Difluoromethyl)-4-methoxybenzene (10). The product (33 mg, 70% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 30:1). This compound is known.⁶ ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.4 Hz, 2 H), 6.95 (d, *J* = 8.4 Hz, 2 H), 6.60 (t, *J* = 56.8 Hz, 1 H), 3.84 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.3 (d, *J* = 56.4 Hz, 2 F). ¹³C NMR (125.7 MHz, CDCl₃) δ 161.4, 127.1 (t, *J* = 6.0 Hz), 126.8 (t, *J* = 22.8 Hz), 114.9 (t, *J* = 237.3 Hz), 113.9, 55.3. MS (EI): *m/z* (%) 158 (M⁺), 158 (100). HRMS calcd. for C₈H₈OF₂ (M⁺): 158.0543; Found: 158.0541.

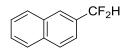


1-(Difluoromethyl)-3,5-dimethoxybenzene (**11**). The product (41 mg, 73% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 6.64 (m, 2 H), 6.54 (m, 1 H), 6.56 (t, *J* = 56.4 Hz, 1 H), 3.82 (s, 6 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.9 (d, *J* = 56.4 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 136.4 (t, *J* = 22.0 Hz), 114.5 (t, *J* = 238.1 Hz), 103.4 (t, *J* = 6.2 Hz), 102.7 (t, *J* = 1.4 Hz), 55.5. MS (EI): *m/z* (%) 188 (M⁺), 188 (100). HRMS calcd. for C₉H₁₀O₂F₂ (M⁺): 188.0649; Found: 188.0651.

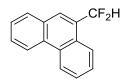
5-(Difluoromethyl)benzo[*d*][1,3]dioxole (12). The product (34 mg, 65% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 30:1). This compound is known.⁶ ¹H NMR (300 MHz, CDCl₃) δ 6.99-6.96 (m, 2 H), 6.84 (d, *J* = 8.4 Hz, 1 H), 6.55 (t, *J* = 56.4 Hz, 1 H), 6.02 (s, 2 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -108.3 (d, *J* = 56.4 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 149.6 (t, *J* = 1.4 Hz), 148.1, 128.3 (t, *J* = 22.6 Hz), 120.1 (t, *J* = 7.2 Hz), 114.6 (t, *J* = 236.6 Hz), 108.2, 105.8 (t, *J* = 5.4 Hz), 101.6. MS (EI): *m/z* (%) 172 (M⁺), 171 (100). HRMS calcd. for C₈H₆O₂F₂ (M⁺):

172.0336; Found: 172.0337.

1-((4-(Difluoromethyl)benzyl)oxy)naphthalene (13). The product (55 mg, 65% yield) as a solid (m.p. 76-80 °C) was purified with silica gel chromatography (Petroleum ether/EtOAc = 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.37-8.35 (m, 1 H), 7.84-7.82 (m, 1 H), 7.63 (d, *J* = 8.4 Hz, 2 H), 7.57 (d, *J* = 8.4 Hz, 2 H), 7.54-7.50 (m, 2 H), 7.47 (d, *J* = 8.4 Hz, 1 H), 7.37 (t, *J* = 8.4 Hz, 1 H), 6.87 (d, *J* = 7.6 Hz, 1 H), 6.69 (t, *J* = 56.4 Hz, 1 H), 5.30 (s, 2 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.7 (d, *J* = 56.4 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 140.0 (t, *J* = 2.0 Hz), 134.6, 133.9 (t, *J* = 22.3 Hz), 127.6, 127.4, 126.6, 125.9 (t, *J* = 5.9 Hz), 125.8 (t, *J* = 7.9 Hz), 125.4, 122.1, 120.8, 114.7 (t, *J* = 237.1 Hz), 105.2, 69.4. MS (EI): *m*/*z* (%) 284 (M⁺), 141 (100). HRMS calcd. for C1₈H₁₄OF₂ (M⁺): 284.1013; Found: 284.1010



2-(Difluoromethyl)-1,4-dimethylbenzene (14). The product (19 mg, 41% yield; ¹⁹F NMR yield 71%) as a colorless oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (300 MHz, CDCl₃) δ 7.32 (s, 1 H), 7.17 (d, *J* = 7.8 Hz, 1 H), 7.11 (d, *J* = 7.8 Hz, 1 H), 6.73 (t, *J* = 55.5 Hz, 1 H), 2.39 (s, 3 H), 2.35 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -113.3 (d, *J* = 55.5 Hz, 2 F). MS (EI): *m/z* (%) 156 (M⁺), 141, 105 (100). HRMS calcd. for C₉H₁₀F₂ (M⁺): 156.0751; Found:156.0747.



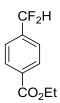
1-(Difluoromethyl)naphthalene (15). The product (45 mg, 84% yield) as a colorless oil was purified

with silica gel chromatography (Petroleum ether). This compound is known.^{7 1}H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1 H), 7.94 (d, *J* = 8.4 Hz, 1 H), 7.90 (d, *J* = 8.4 Hz, 1 H), 7.68 (d, *J* = 6.8 Hz, 1 H), 7.60-7.52 (m, 2 H), 7.49 (t, *J* = 7.6 Hz, 1 H), 7.12 (t, *J* = 55.2 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.9 (d, *J* = 55.2 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 133.8, 131.5 (t, *J* = 1.6 Hz), 129.7 (t, *J* = 2.8 Hz), 129.5 (t, *J* = 20.6 Hz), 128.8, 127.2, 126.4, 124.8 (t, *J* = 8.6 Hz), 124.7, 123.6, 115.4 (t, *J* = 237.0 Hz). MS (EI): *m*/*z* (%) 178 (M⁺), 178 (100). HRMS calcd. for C₁₁H₈F₂ (M⁺): 178.0594; Found: 178.0590.

2-(Difluoromethyl)naphthalene (16). The product (41 mg, 77% yield) as a white solid was purified with silica gel chromatography (Petroleum ether). This compound is known.⁶ ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1 H), 7.95-7.89 (m, 3 H), 7.62 (d, *J* = 9.2 Hz, 1 H), 7.59-7.54 (m, 2 H), 6.82 (t, *J* = 56.4 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -109.9 (d, *J* = 56.4 Hz, 2 F). ¹³C NMR (125.7 MHz, CDCl₃) δ 134.3 (t, *J* = 1.3 Hz), 132.6, 131.6 (t, *J* = 22.2 Hz), 128.9, 128.5, 127.9, 127.4, 126.8, 125.9 (t, *J* = 7.7 Hz), 122.0 (t, *J* = 4.8 Hz), 115.1 (t, *J* = 238.4 Hz). MS (EI): *m/z* (%) 178 (M⁺), 178 (100). HRMS calcd. for C₁₁H₈F₂ (M⁺): 178.0594; Found: 178.0596.

9-(Difluoromethyl)phenanthrene (17). The product (49 mg, 72% yield) as a white solid (m.p. 116-118 °C) was purified with silica gel chromatography (Petroleum ether).¹H NMR (400 MHz, CDCl₃) $\delta 8.70$ (dd, J = 8.4 Hz, J = 1.6 Hz, 1 H), 8.64 (d, J = 8.4 Hz, 1 H), 8.20-8.18 (m, 1 H), 7.93 (s, 1 H), 7.89 (d, J = 8.4 Hz, 1 H), 7.72-7.58 (m, 4 H), 7.12 (t, J = 55.2 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.7 (d, J = 55.2 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 131.4, 130.9, 130.2, 129.5, 128.3, 128.0 (t, J = 20.5 Hz), 127.9 (t, J = 1.8 Hz), 127.2, 127.15, 127.13, 126.8 (t, J = 9.4 Hz), 124.5 (t, J = 1.6 Hz), 123.3, 122.7, 115.7 (t, J = 237.1 Hz). MS (EI): m/z (%) 228 (M⁺), 228 (100). HRMS calcd. for C₁₅H₁₀F₂ (M⁺): 228.0751; Found: 228.0753.

4-(Difluoromethyl)benzaldehyde (18). The product (27 mg, 57% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1). This compound is known.^{7 1}H NMR (300 MHz, CDCl₃) δ 10.08 (s, 1 H), 7.98 (d, *J* = 7.8 Hz, 2 H), 7.69 (d, *J* = 7.8 Hz, 2 H), 6.72 (t, *J* = 56.1 Hz, 1 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -112.9 (d, *J* = 56.1 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 191.5, 139.8 (t, *J* = 22.3 Hz), 137.9, 129.9, 126.3 (t, *J* = 6.1 Hz), 113.8 (t, *J* = 238.6 Hz). MS (EI): *m/z* (%) 156 (M⁺), 156 (100). HRMS calcd. for C₈H₆OF₂ (M⁺): 156.0387; Found: 156.0384.



3-(Difluoromethyl)benzaldehyde (19). The product (26 mg, 55% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1 H), 8.02 (s, 1 H), 7.99 (d, *J* = 7.6 Hz, 1 H), 7.78 (d, *J* = 7.6 Hz, 1 H), 6.65 (t, *J* = 7.6 Hz, 1 H), 6.72 (t, *J* = 56.4 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.7 (d, *J* = 56.4 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 136.6, 135.5 (t, *J* = 23.1 Hz), 131.8 (t, *J* = 1.4 Hz), 131.3 (t, *J* = 5.7 Hz), 129.6, 126.8 (t, *J* = 6.3 Hz), 113.8 (t, *J* = 238.4 Hz). MS (EI): *m*/*z* (%) 156 (M⁺), 155 (100). HRMS calcd. for C₈H₆OF₂ (M⁺): 156.0387; Found: 156.0390.

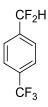
2-(Difluoromethyl)benzaldehyde (20). The product (25 mg, 52% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1). This compound is known.⁷ ¹H NMR (300 MHz, CDCl₃) δ 10.18 (s, 1 H), 7.95-7.93 (m, 1 H), 7.83-7.81 (m, 1 H), 7.75-7.70 (m, 2 H), 7.43 (t, *J* = 54.9 Hz, 1 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -112.1 (d, *J* = 54.9 Hz, 2 F). ¹³C NMR (125.7 MHz, CDCl₃) δ 191.7, 134.6, 134.1, 133.4, 131.1 (t, *J* = 1.9 Hz), 128.9, 126.5 (t, *J* = 8.3 Hz), 111.9 (t, *J* = 1.9 Hz).

J = 238.2 Hz). IR (thin film) $v_{\text{max}} 2959, 2926, 1732, 1715 \text{ cm}^{-1}$. MS (EI): m/z (%) 156 (M⁺), 155 (100). HRMS calcd. for C₈H₆OF₂ (M⁺): 156.0387; Found: 156.0385.

Ethyl 4-(difluoromethyl)benzoate (21). The product (48 mg, 80% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1). This compound is known.⁶ ¹H NMR (300 MHz, CDCl₃) δ 8.12 (d, J = 8.4 Hz, 2 H), 7.57 (d, J = 8.4 Hz, 2 H), 6.69 (t, J = 56.1 Hz, 1 H), 4.39 (q, J = 7.2 Hz, 2 H), 1.40 (t, J = 7.2 Hz, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -112.2 (d, J = 56.1 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 138.3 (t, J = 22.3 Hz), 132.6, 129.9, 125.6 (t, J = 5.9 Hz), 114.0 (t, J = 238.4 Hz), 61.4, 14.3. IR (thin film) v_{max} 2983, 2930, 1767, 1723 cm⁻¹. MS (EI): m/z (%) 200 (M⁺), 199, 172, 155 (100). HRMS calcd. for C₁₀H₁₀O₂F₂ (M⁺): 200.0649; Found: 200.0648.

Ethyl 3-(difluoromethyl)benzoate (22). The product (45 mg, 75% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.15 (m, 2 H), 7.71 (d, J = 7.6 Hz, 1 H), 7.55 (t, J = 7.6 Hz, 1 H), 6.69 (t, J = 56.0 Hz, 1 H), 4.41 (q, J = 6.8 Hz, 2 H), 1.41 (t, J = 6.8 Hz, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.1 (d, J = 56.0 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 134.7 (t, J = 22.5 Hz), 131.7 (t, J = 1.3 Hz), 131.1, 129.7 (t, J = 5.6 Hz), 128.9, 126.9 (t, J = 6.1 Hz), 114.2 (t, J = 238.1 Hz), 61.4, 14.3. IR (thin film) v_{max} 2983, 1766, 1615 cm⁻¹. MS (EI): m/z (%) 200 (M⁺), 193, 172, 155 (100). HRMS calcd. for C₁₀H₁₀O₂F₂ (M⁺): 200.0649; Found: 200.0652.

1-(4-(Difluoromethyl)phenyl)ethanone (23). The product (28 mg, 55% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1). This compound is known.⁷ ¹H NMR (300 MHz, CDCl₃) δ 8.02 (d, *J* = 8.1 Hz, 2 H), 7.59 (d, *J* = 8.1 Hz, 2 H), 6.68 (t, *J* = 56.1 Hz, 1 H), 2.62 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -112.7 (d, *J* = 56.1 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 138.8, 138.5 (t, *J* = 22.1 Hz), 128.6, 125.9 (t, *J* = 6.0 Hz), 113.9 (t, *J* = 238.2 Hz), 26.8. IR (thin film) ν_{max} 3064, 2967, 1767, 1689 cm⁻¹. MS (EI): *m/z* (%) 170 (M⁺), 155 (100). HRMS calcd. for C₉H₈OF₂ (M⁺): 170.0543; Found: 170.0542.

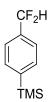


1-(3-(Difluoromethyl)phenyl)ethanone (24). The product (37 mg, 73% yield) was purified with silica gel chromatography (Petroleum ether/EtOAc = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1 H), 8.04 (d, *J* = 7.6 Hz, 1 H), 7.69 (d, *J* = 7.6 Hz, 1 H), 7.55 (t, *J* = 7.6 Hz, 1 H), 6.68 (t, *J* = 56.0 Hz, 1 H), 2.61 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.2 (d, *J* = 56.0 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 137.5, 134.9 (t, *J* = 22.8 Hz), 130.5, 129.9 (t, *J* = 5.8 Hz), 129.2, 125.5 (t, *J* = 6.3 Hz), 114.1 (t, *J* = 238.0 Hz), 26.7. MS (EI): *m/z* (%) 170 (M⁺), 155 (100). HRMS calcd. for C₉H₈OF₂ (M⁺): 170.0543; Found:170.0542.

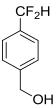
3-(Difluoromethyl)benzonitrile (25). The reaction was conducted in 0.6 mmol scale. The product (41 mg, 45% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1). This compound is known.^{8 1}H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1 H), 7.77 (t, *J* = 8.0 Hz, 2 H), 7.60 (t, *J* = 8.0 Hz, 1 H), 6.68 (t, *J* = 56.1 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -112.8 (d, *J* = 56.1 Hz, 2 F). ¹³C NMR (125.7 MHz, CDCl₃) δ 134.2 (t, *J* = 1.5 Hz), 129.9 (t, *J* = 5.9 Hz), 129.8, 129.3

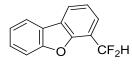
(t, J = 6.2 Hz), 117.8 (t, J = 12.7 Hz), 113.2, 113.1 (t, J = 240.3 Hz), 109.9. IR (thin film) v_{max} 2924, 2234, 1766 cm⁻¹. MS (EI): m/z (%) 153 (M⁺), 152 (100). HRMS calcd. for C₈H₅NF₂ (M⁺): 153.0390; Found: 153.0388.

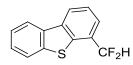
1-(Difluoromethyl)-4-(trifluoromethyl)benzene (26). Due to the low biol point of the product, the yield (84%) was determined by ¹⁹F NMR using fluorobenzene as an internal standard. This compound is known.⁶ The product was characterized by ¹⁹F NMR and GC-MS analysis.


1-(Difluoromethyl)-3-(trifluoromethyl)benzene (27). Due to the low biol point of the product, the yield (78% yield) was determined by ¹⁹F NMR using fluorobenzene as an internal standard. The product was characterized by ¹⁹F NMR and GC-MS analysis.

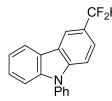
1,3-dichloro-5-(difluoromethyl)benzene (28). The product (26 mg, 43% yield; ¹⁹F NMR yield 54%) was purified with silica gel chromatography (Petroleum ether). This compound is known.⁹ ¹H NMR (300 MHz, CDCl₃) δ 7.46 (m, 1 H), 7.39 (s, 2 H), 6.58 (t, *J* = 56.1 Hz, 1 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -112.7 (d, *J* = 56.1 Hz, 2 F). MS (EI): *m/z* (%) 195 (M⁺), 186, 177, 161 (100). HRMS calcd. for C₇H₄Cl₂F₂ (M⁺): 195.9658; Found:195.9653.


1-Bromo-2-(difluoromethyl)benzene (29). The product (20 mg, 33% yield; ¹⁹F NMR yield 38%) as a colorless oil was purified with silica gel chromatography (Petroleum ether). This compound is known.¹⁰ ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.6 Hz, 1 H), 7.62-7.60 (m, 1 H), 7.43 (t, J = 7.6 Hz, 1 H), 7.34 (t, J = 7.6 Hz, 1 H), 6.92 (t, J = 54.8 Hz, 1 H). ¹⁹F NMR (375 MHz, CDCl₃) δ -114.6 (d, J = 54.8 Hz, 2 F). MS (EI): m/z (%) 206 (M⁺), 206 (100). HRMS calcd. for C₇H₅BrF₂ (M⁺): 205.9543; Found: 205.9540.

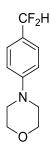

(4-(Difluoromethyl)phenyl)trimethylsilane (30). The product (43 mg, 72% yield) was purified with silica gel chromatography (Petroleum ether/EtOAc = 30:1). This compound is known.⁶¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, *J* = 7.5 Hz, 2 H), 7.49 (d, *J* = 7.5 Hz, 2 H), 6.64 (t, *J* = 56.7 Hz, 1 H), 0.3 (s, 9 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -111.2 (d, *J* = 56.7 Hz, 2 F). ¹³C NMR (125.7 MHz, CDCl₃) δ 143.9, 134.6 (t, *J* = 22.2 Hz), 133.6, 124.7 (t, *J* = 6.0 Hz), 114.8 (t, *J* = 238.5 Hz), -1.3. MS (EI): *m/z* (%) 200 (M⁺), 185 (100). HRMS calcd. for C₁₀H₁₄SiF₂ (M⁺): 200.0833; Found: 200.0838.


(4-(Difluoromethyl)phenyl)(ethyl)sulfane (31). The product (49 mg, 87% yield) was purified with silica gel chromatography (Petroleum ether/EtOAc = 30:1). ¹H NMR (300 MHz, CDCl₃) δ 7.41 (d, *J* = 8.4 Hz, 2 H), 7.35 (d, *J* = 8.4 Hz, 2 H), 6.61 (t, *J* = 56.7 Hz, 1 H), 2.98 (q, *J* = 7.5 Hz, 2 H), 1.35 (t, *J* = 7.5 Hz, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -110.5 (d, *J* = 56.7 Hz, 2 F). ¹³C NMR (125.7 MHz, CDCl₃) δ 140.7 (t, *J* = 2.0 Hz), 131.3 (t, *J* = 22.4 Hz), 127.8, 125.9 (t, *J* = 5.9 Hz), 114.6 (t, *J* = 238.3 Hz), 26.8, 14.1. MS (EI): *m*/*z* (%) 188 (M⁺), 160 (100). HRMS calcd. for C₉H₁₀SF₂ (M⁺): 188.0471; Found: 188.0469.

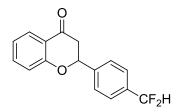
(4-(Difluoromethyl)phenyl)methanol (32). The product (36 mg, 76% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). This compound is known.¹¹ ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.4 Hz, 2 H), 7.45 (d, *J* = 8.4 Hz, 2 H), 6.65 (t, *J* = 56.4 Hz, 1 H), 4.76 (s, 2 H), 1.76 s, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.4 (d, *J* = 56.4 Hz, 2 F). MS (EI): *m*/*z* (%) 158 (M⁺), 127, 107 (100). IR (thin film) v_{max} 3332, 1759, 1620, 1508 cm⁻¹. HRMS calcd. for C₈H₈OF₂ (M⁺):158.0543; Found: 158.0540.

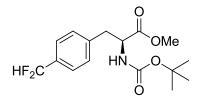


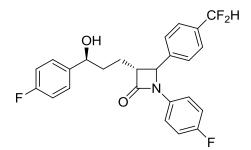
4-(Difluoromethyl)dibenzo[*b,d*]**furan (33).** The product (50 mg, 77% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, *J* = 7.6 Hz, *J* = 0.8 Hz, 1 H), 7.94 (d, *J* = 7.6 Hz, 1 H), 7.67 (d, *J* = 7.6 Hz, 1 H), 7.62 (d, *J* = 8.4 Hz, 1 H), 7.50 (td, *J* = 8.4 Hz, *J* = 1.2 Hz, 1 H), 7.41 (t, *J* = 8.0 Hz, 1 H), 7.38 (t, *J* = 8.0 Hz, 1 H), 7.23 (t, *J* = 55.2 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.0 (d, *J* = 55.2 Hz, 2 F). ¹³C NMR (125.7 MHz, CDCl₃) δ 156.3, 127.8, 125.1, 123.7 (t, *J* = 5.8 Hz), 123.4, 123.2, 123.1 (t, *J* = 1.6 Hz), 122.7, 120.8, 118.5 (t, *J* = 24.0 Hz), 111.9, 111.8 (t, *J* = 237.4 Hz). MS (EI): *m*/*z* (%) 218 (M⁺), 218 (100). HRMS calcd. for C₁₃H₈OF₂ (M⁺): 218.0543; Found: 218.0538.



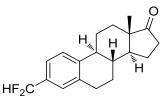
4-(Difluoromethyl)dibenzo[*b,d*]**thiophene (34).** The product (55 mg, 79% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether).¹H NMR (300 MHz, CDCl₃) δ 8.23-8.20 (m, 1 H), 8.17-8.14 (m, 1 H), 7.89-7.86 (m, 1 H), 7.63-7.60 (m, 1 H), 7.53-7.47 (m, 3 H), 6.93 (t, *J* = 55.4 Hz, 1 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -113.7 (d, *J* = 55.4 Hz, 2 F). ¹³C NMR (125.7 MHz, CDCl₃) δ 139.5 (t, *J* = 1.0 Hz), 136.9, 136.6 (t, *J* = 3.3 Hz), 134.6, 128.5 (t, *J* = 22.8 Hz), 127.3, 124.7, 124.4, 124.3 (t, *J* = 7.0 Hz), 123.7 (t, *J* = 1.8 Hz), 122.7, 121.7, 114.5 (t, *J* = 239.4 Hz). MS (EI): *m/z*


(%) 234 (M⁺), 234 (100). HRMS calcd. for $C_{13}H_8SF_2$ (M⁺): 234.0315; Found: 234.0320. IR (thin film) v_{max} 3067, 2963, 1457 cm⁻¹.


3-(Difluoromethyl)-9-phenyl-9*H***-carbazole (35).** The product (49 mg, 56% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether).¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1 H), 8.18 (d, *J* = 8.0 Hz, 1 H), 7.64 (t, *J* = 6.8 Hz, 2 H), 7.57-7.55 (m, 3 H), 7.52-7.42 (m, 4 H), 7.35 (t, *J* = 7.2 Hz, 1 H), 6.88 (t, *J* = 56.8 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -106.3 (d, *J* = 56.8 Hz, 2 F). ¹³C NMR (125.7 MHz, CDCl₃) δ 142.0, 141.5, 137.2, 130.0, 127.9, 127.2, 126.6, 126.1 (t, *J* = 22.4 Hz), 123.2 (t, *J* = 5.7 Hz), 123.1, 122.9, 120.49, 120.48, 118.1 (t, *J* = 6.4 Hz), 115.8 (t, *J* = 237.3 Hz), 110.1, 109.9. MS (EI): *m*/*z* (%) 292 (M⁺-H), 271 (100). HRMS calcd. for C₁₉H₁₃NF₂ (M⁺): 293.1016; Found: 293.1017. IR (thin film) v_{max} 3062, 1761, 1686 cm⁻¹.


4-(4-(Difluoromethyl)phenyl)morpholine (36). The product (40 mg, 62% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.8 Hz, 2 H), 6.93 (d, *J* = 8.8 Hz, 2 H), 6.58 (t, *J* = 57.2 Hz, 1 H), 3.87 (t, *J* = 4.8 Hz, 4 H), 3.21 (t, *J* = 4.8 Hz, 4 H). ¹⁹F NMR (375 MHz, CDCl₃) δ -108.1 (d, *J* = 57.2 Hz, 2 F). ¹³C NMR (125.7 MHz, CDCl₃) δ 152.9 (t, *J* = 1.5 Hz), 126.7 (t, *J* = 5.9 Hz), 125.3 (t, *J* = 22.9 Hz), 115.1 (t, *J* = 236.8 Hz), 114.8, 66.7, 48.5. MS (EI): *m/z* (%) 213 (M⁺), 206, 191 (100). HRMS calcd. for C₁₁H₁₃NOF₂ (M⁺): 213.0965; Found: 213.0970. IR (thin film) v_{max} 2963, 2853, 1686, 1600cm⁻¹.

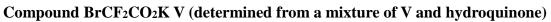
(2-(4-(Difluoromethyl)phenyl)chroman-4-one (37). The product (63 mg, 76% yield) as a white solid (m.p. 61-63 °C) was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, *J* = 8.4 Hz, *J* = 0.8 Hz, 1 H), 7.59 (s, 4 H), 7.52 (td, *J* = 8.4 Hz, *J* = 1.6 Hz, 1 H), 7.08-7.05 (m, 2 H), 6.67 (t, *J* = 56.4 Hz, 1 H), 5.53 (dd, *J* = 12.8 Hz, *J* = 2.8 Hz, 1 H), 3.06 (dd, *J* = 16.8 Hz, *J* = 13.2 Hz, 1 H), 2.90 (dd, *J* = 16.8 Hz, *J* = 2.8 Hz, 1 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.9 (d, *J* = 56.4 Hz, 2 F). ¹³C NMR (125.7 MHz, CDCl₃) δ 191.4, 161.3, 141.5 (t, *J* = 1.9 Hz), 136.3, 134.7 (t, *J* = 22.6 Hz), 127.1, 126.4, 126.1 (t, *J* = 6.2 Hz), 121.9, 120.9, 118.1, 114.4 (t, *J* = 238.8 Hz), 79.0, 44.6. IR (thin film) v_{max} 3066, 1763, 1690, 1606 cm⁻¹. MS (EI): *m*/*z* (%) 274 (M⁺), 147, 120 (100). HRMS calcd. for C₁₆H₁₂O₂F₂: 274.0805; Found: 274.0806.

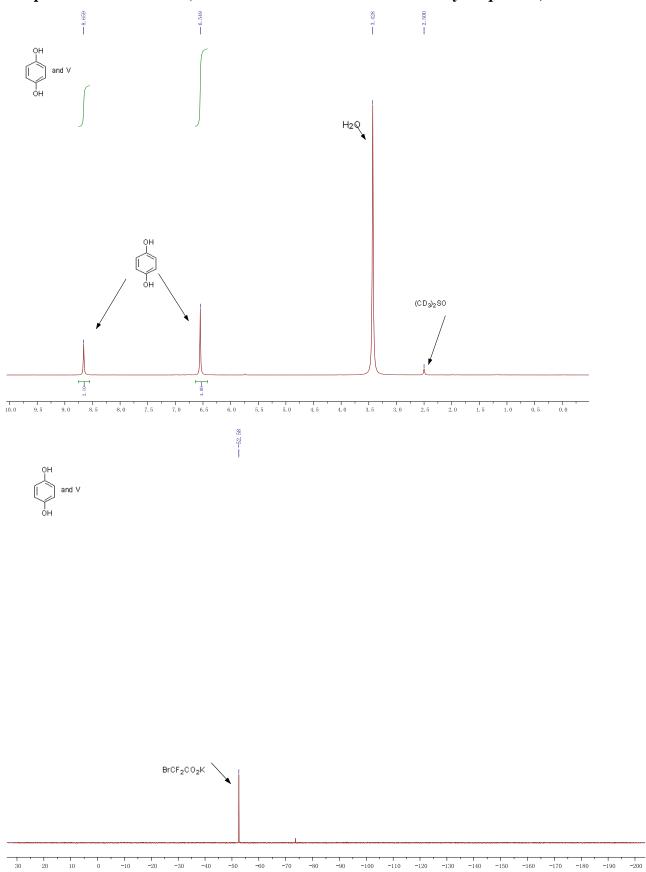


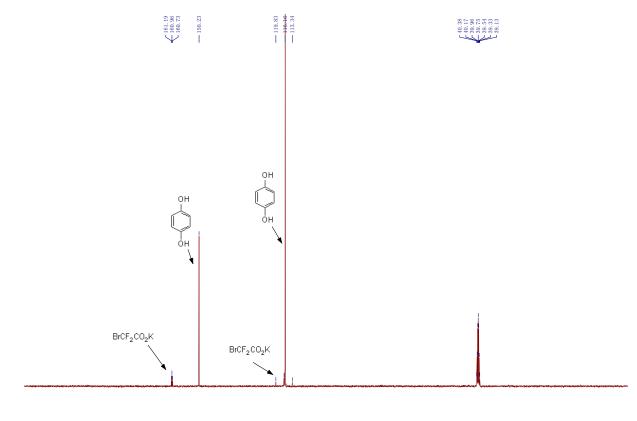
(*S*)-Methyl 2-((tert-butoxycarbonyl)amino)-3-(4-(difluoromethyl)phenyl)propanoate (38). The product (60 mg, 61% yield) as a white solid (m.p. 70-73 °C) was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.0 Hz, 2 H), 7.21 (d, *J* = 8.0 Hz, 2 H), 6.61 (t, *J* = 56.4 Hz, 1 H), 5.01 (d, *J* = 6.8 Hz, 1 H), 4.61 (dd, *J* = 13.2 Hz, *J* = 6.4 Hz, 1 H), 3.71 (s, 3 H), 3.17 (dd, *J* = 13.6 Hz, *J* = 5.6 Hz, 1 H), 3.06 (dd, *J* = 13.6 Hz, *J* = 5.6 Hz, 1 H), 1.40 (s, 9 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.5 (d, *J* = 56.4 Hz, 2 F). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 155.0, 139.0 (t, *J* = 2.0 Hz), 133.2 (t, *J* = 22.1 Hz), 129.7, 125.8 (t, *J* = 5.9 Hz), 114.6 (t, *J* = 237.1 Hz), 80.1, 54.3, 52.3, 38.2, 28.3. IR (thin film) v_{max} 3372, 2978, 1748, 1714, 1508 cm⁻¹. MS (EI): *m*/*z* (%) 328 (M⁺-H), 212, 88, 57 (100). HRMS calcd. for C₁₆H₂₁NO₄F₂: 329.1439; Found: 329.1436.

(3R)-4-(4-(Difluoromethyl)phenyl)-1-(4-fluorophenyl)-3-((S)-3-(4-fluorophenyl)-3-

hydroxypropyl)azetidin-2-one (39). The product (77 mg, 58% yield) as a white solid (m.p. 141-146 °C) was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.6 Hz, 2 H), 7.41 (d, J = 7.6 Hz, 2 H), 7.31-7.28 (m, 2 H), 7.23-7.19 (m, 2 H), 7.02 (t, J = 8.4 Hz, 2 H), 6.94 (t, J = 8.4 Hz, 2 H), 6.64 (t, J = 56.4 Hz, 1 H), 4.72 (m, 1 H), 4.67 (d, J = 2.4 Hz, 1 H), 3.08 (td, J = 6.8 Hz, J = 2.4 Hz, 1 H), 2.11 (d, J = 3.6 Hz, 1 H), 2.04-1.90 (m, 4 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.9 (d, J = 56.4 Hz, 2 F), -114.7 (m, 1 F), -117.6 (m, 1 F). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 162.2 (d, J = 244.3 Hz), 159.1 (d, J = 242.5 Hz), 140.4 (t, J = 2.0 Hz), 139.9 (d, J = 3.1 Hz), 134.8 (t, J = 22.5 Hz), 133.6 (d, J = 2.3 Hz), 127.3 (d, J = 8.0 Hz), 126.6 (t, J = 6.0 Hz), 126.2, 118.3 (d, J = 7.8 Hz), 115.9 (d, J = 22.8 Hz), 115.4 (d, J = 20.1 Hz), 114.2 (t, J = 237.7 Hz), 73.2, 60.9, 60.5, 36.6, 25.1. IR (thin film) v_{max} 3432, 2928, 1739, 1714, 1507 cm⁻¹. MS (EI): *m*/*z* (%) 443 (M⁺), 333, 292, 250 (100). HRMS calcd. for C₂₅H₂₁NO₂F₄: 443.1508; Found: 443.1512.

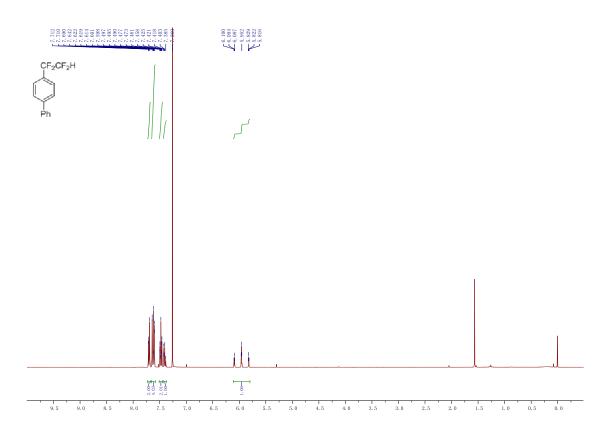

(8R,9S,13S,14S)-3-(Difluoromethyl)-13-methyl-7,8,9,11,12,13,15,16-octahydro-6H-


cyclopenta[*a*]phenanthren-17(14*H*)-one (40). The product (69 mg, 76% yield) as a white solid (m.p. 59-62 °C) was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.4 Hz, 1 H), 7.27 (d, *J* = 8.4 Hz, 1 H), 7.24 (s, 1 H), 6.58 (t, *J* = 56.4 Hz, 1 H), 2.97-2.94 (m, 2 H), 2.51 (q, *J* = 8.8 Hz, 1 H), 2.47-2.42 (m, 1 H), 2.32 (t, *J* = 10.0 Hz, 1 H), 2.19-2.12 (m, 1 H), 2.10-2.03 (m, 2 H), 1.99-1.96 (m, 1 H), 1.67-1.42 (m, 6 H), 0.91 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -109.9 (dd, *J* = 56.4 Hz, *J* = 5.3 Hz, 2 F). ¹³C NMR (125.7 MHz, CDCl₃) δ 220.6, 142.6 (t, *J* = 1.9 Hz), 137.1, 131.9 (t, *J* = 22.4 Hz), 126.1 (t, *J* = 5.9 Hz), 125.7, 122.8 (t, *J* = 16.6 Hz), 114.9 (t, *J* = 237.9 Hz), 50.5, 47.9, 44.4, 37.9, 35.8, 31.5, 29.3, 26.2, 25.6, 21.5, 13.8. IR (thin film)

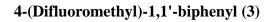

 v_{max} 2984, 1734, 1616 cm⁻¹. MS (EI): m/z (%) 304 (M⁺), 304 (100). HRMS calcd. for C₁₉H₂₂OF₂: 304.1639; Found: 304.1634.

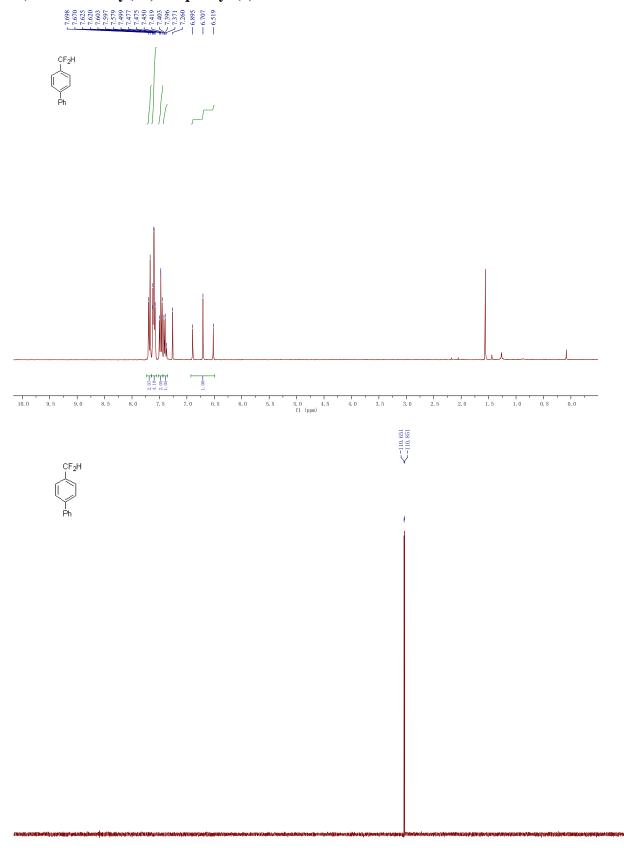
References:

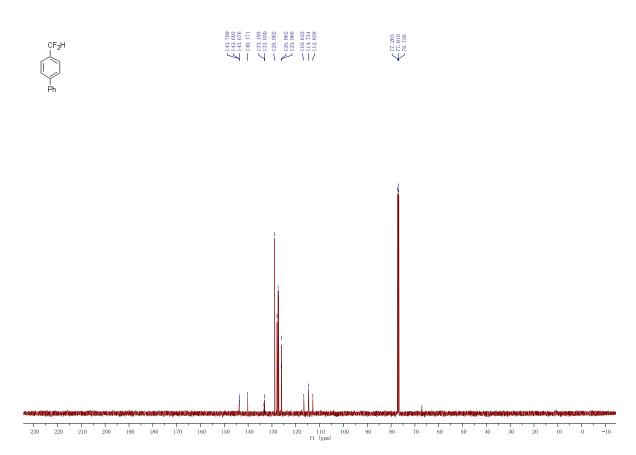
- 1) Mehta, V. P. & Greaney, M. F. S-, N-, and Se-Difluoromethylation using sodium chlorodifluoroacetate. *Org. Lett*, **15**, 5036-5039 (2013).
- Grushin, V. V. & Marshall, W. J. Facile Ar-CF₃ Bond Formation at Pd. Strikingly Different Outcomes of Reductive Elimination from [(Ph₃P)₂Pd(CF₃)Ph] and [(Xantphos)Pd(CF₃)Ph]. *J. Am. Chem. Soc.* **128**, 12644-12645 (2006).
- 3) Singh, R.P. & Shreeve, J. M. Concentration-dependent reactions of deoxofluor with arylglyoxal hydrates: a new route to polyfluoro ethers. *Org.Lett.* **3**, 2713-2715 (2001).
- Moulder, J. F.; Stickle, W. F.; Sobol, P. E. & Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Perkin-Elmer, Eden Prairie, Minn, USA (1992).
- 5) Fier, P. S. & Hartwig, J. F. Copper-mediated difluoromethylation of aryl and vinyl iodides. *J. Am. Chem. Soc.* **134**, 5524-5527 (2012).
- Ge, S.; Chaładaj, W. & Hartwig, J. F. Pd-catalyzed α-arylation of α, α-difluoroketones with aryl bromides and chlorides. A route to difluoromethylarenes. J. Am. Chem. Soc. 136, 4149-4152 (2014).
- Prakash, G. K. S.; Ganesh, S. K.; Jones, J.-P.; Kulkarni, A.; Masood, K.; Swabeck, J. K. & Olah,
 G. A. Copper Mediated Difluoromethylation of (Hetero) aryl Iodides and β-Styryl Halides with
 Tributyl (difluoromethyl) stannane. *Angew. Chem., Int. Ed.* 51, 12090-12094 (2012).
- Fujikawa, K.; Fujioka, Y.; Kobayashi, A. & Amii, H. A new method for aromatic difluoromethylation: copper-catalyzed cross-coupling and decarboxylation sequence from aryl iodides. *Org. Lett.* 13, 5560-5563 (2011).
- Rowbotham, J. B.; Janzen, A. F.; Peeling, J. & Schaefer, T. Proton Magnetic Resonance Studies of Rotational Isomerism in Halotoluenes. X. Estimates of Conformational Preferences and Rotational Barriers in Benzal Fluoride and Some Dichloro Derivatives. *Can. J. Chem.* 52, 481-488 (1974).
- 10) Sharma, R.; Halder, S. & Kumar, S. PCT Int. Appl. WO 2014170842 (2014).
- 11) Kori. M.; Hamamura. M.; Fuse. H. & Yamamoto.T. PCT Int. Appl. WO 2002059077 (2002).

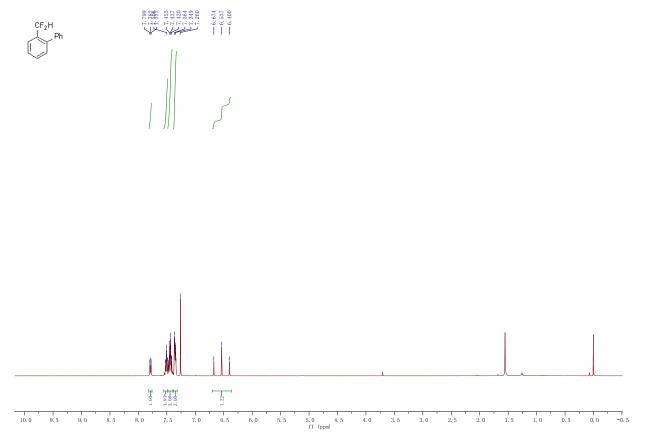


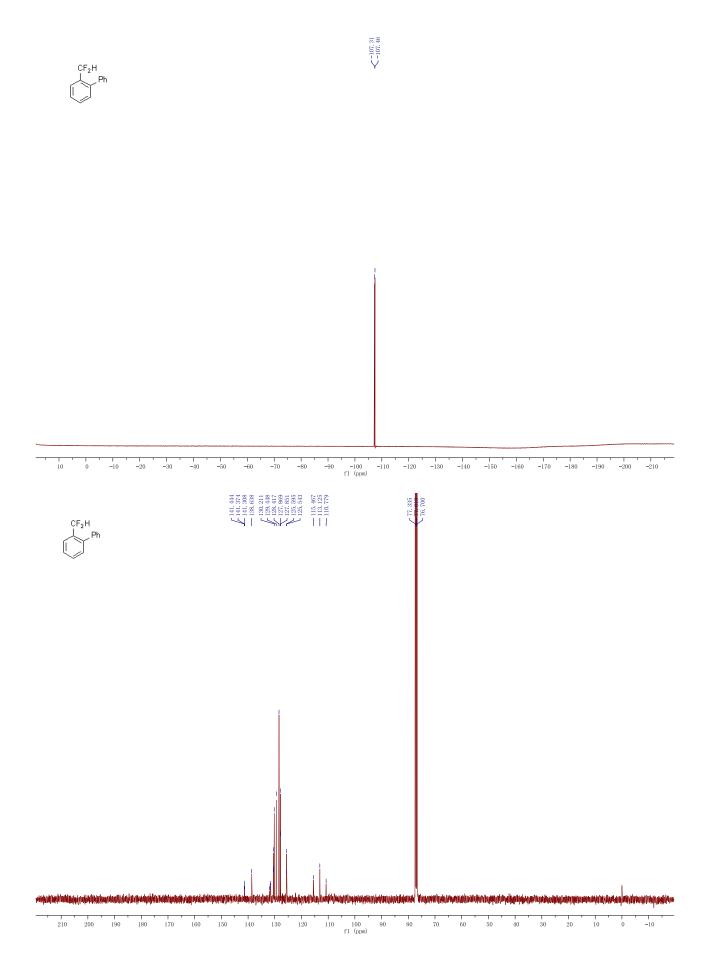


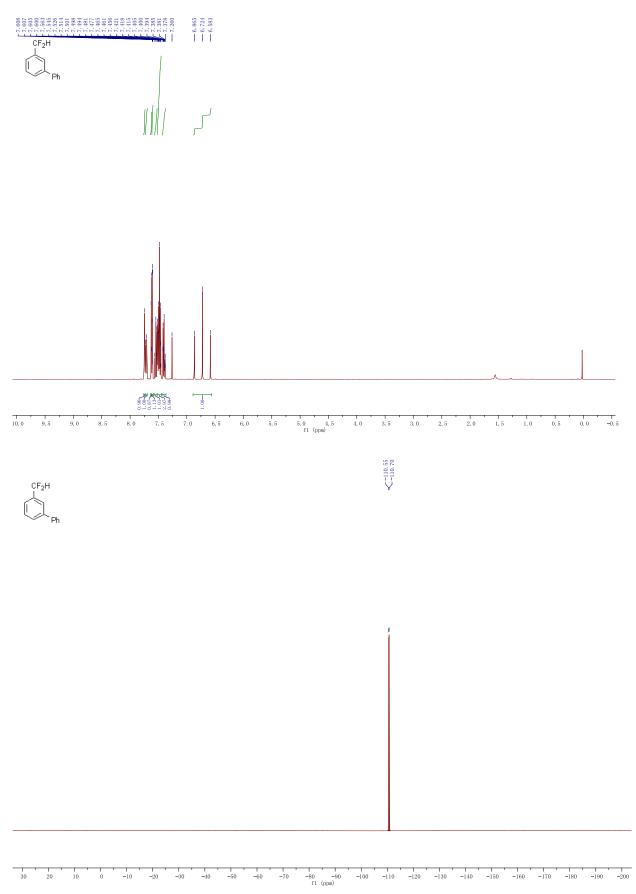

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

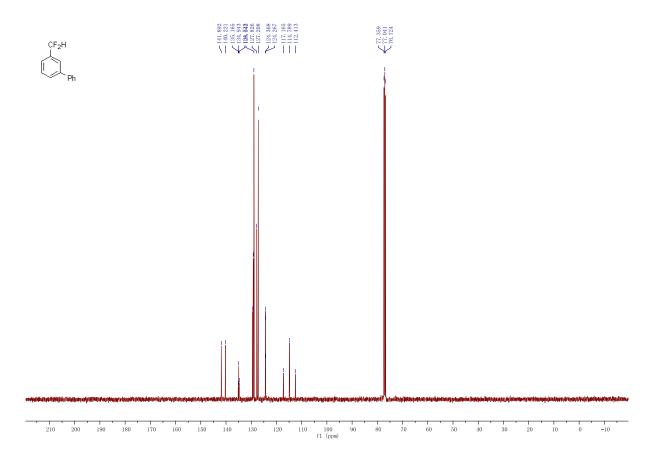

4-(1,1,2,2-Tetrafluoroethyl)-1,1'-biphenyl (3a)

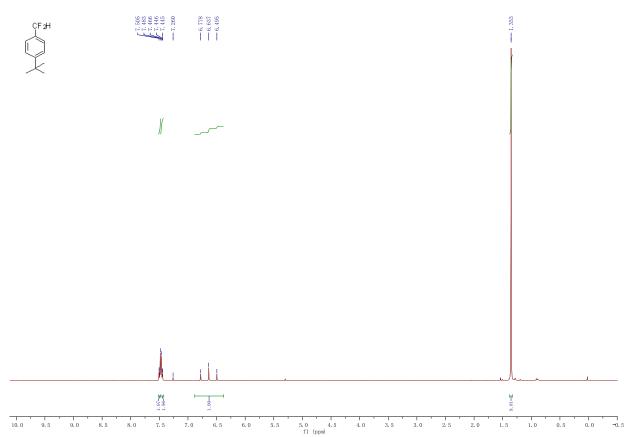


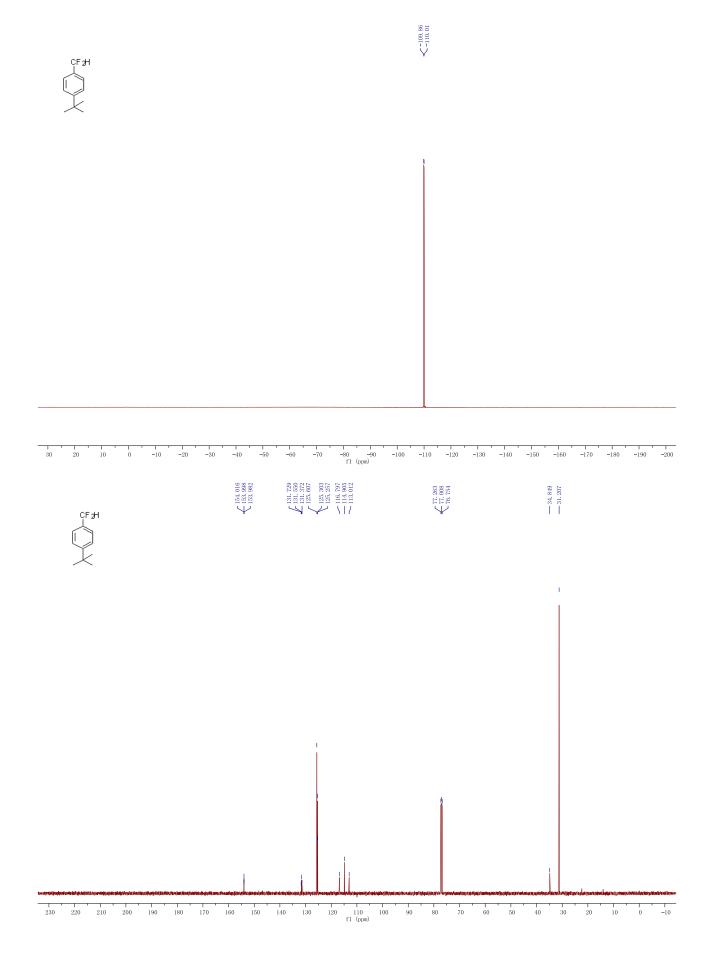

-80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175

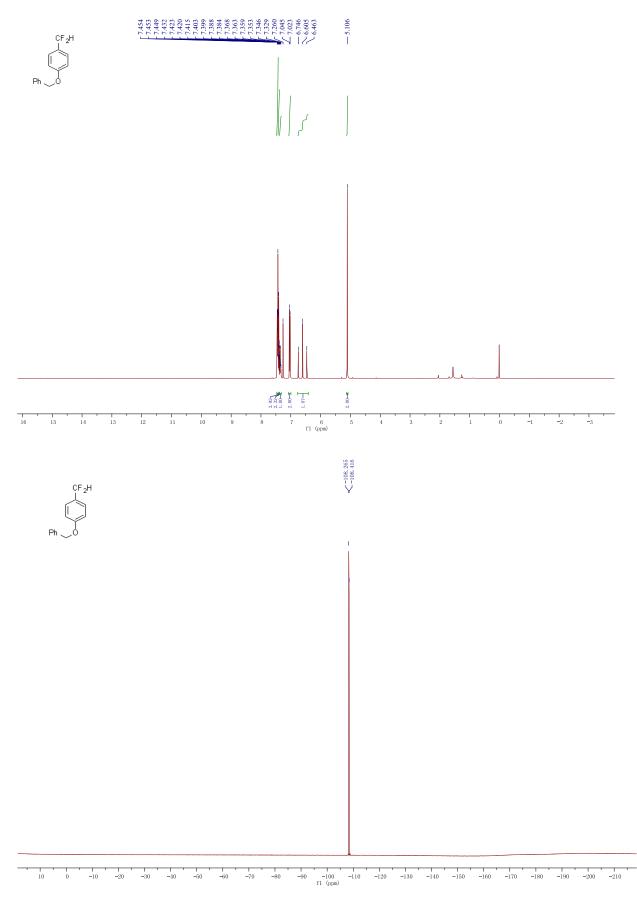


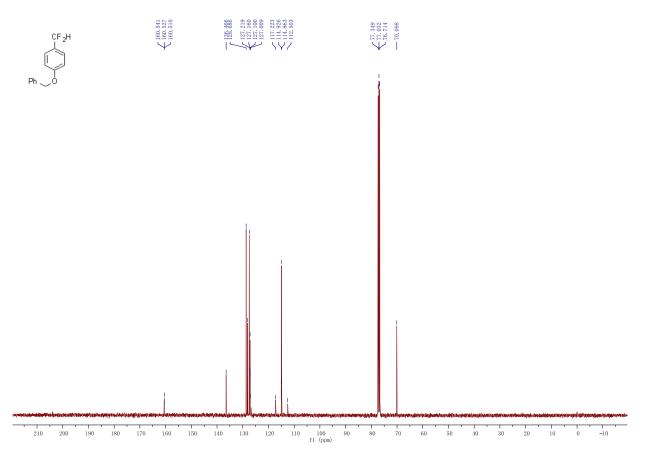


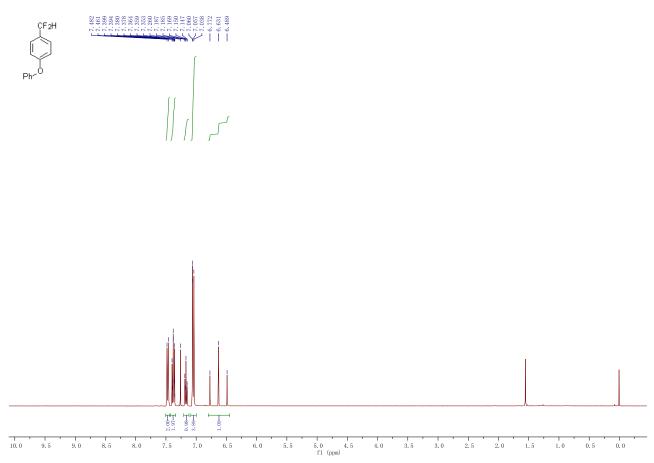

2-(Difluoromethyl)-1,1'-biphenyl (5).

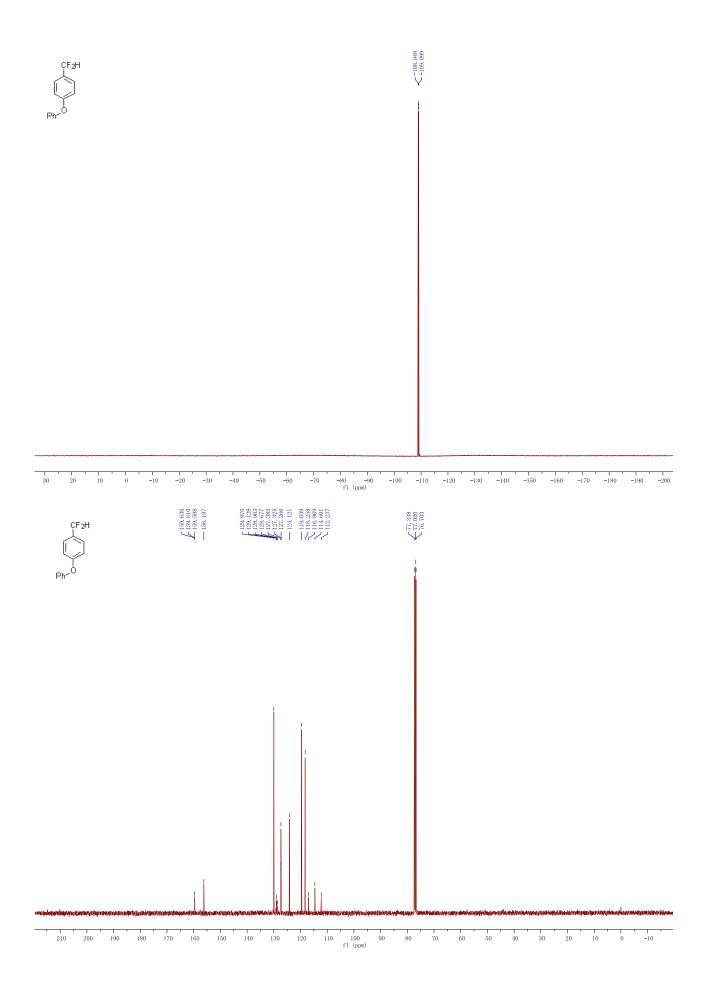


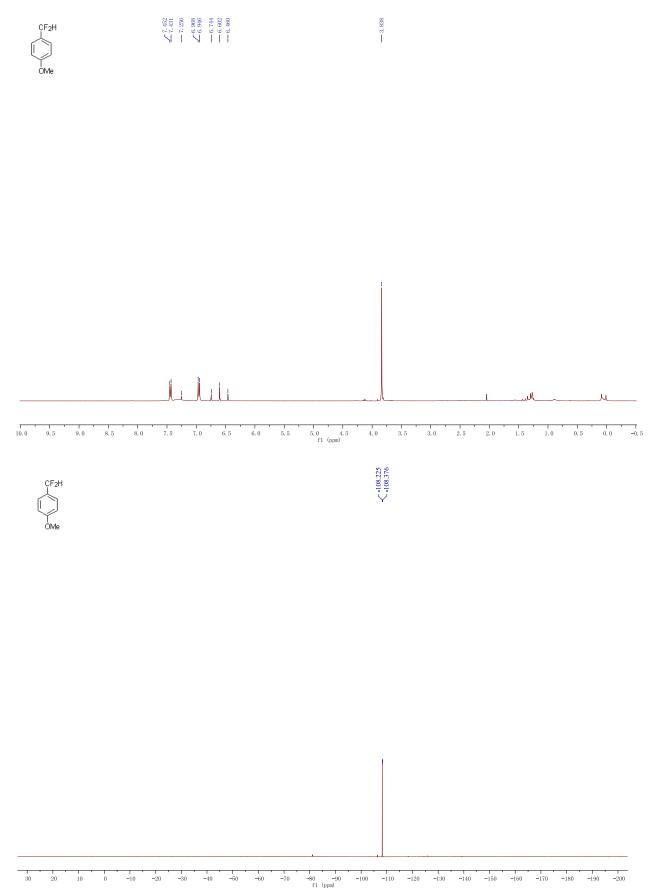

3-(Difluoromethyl)-1,1'-biphenyl (6).

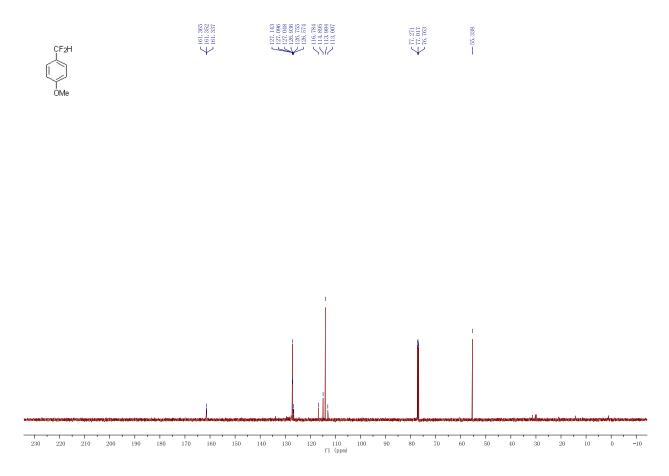



1-(Tert-butyl)-4-(difluoromethyl)benzene (7)



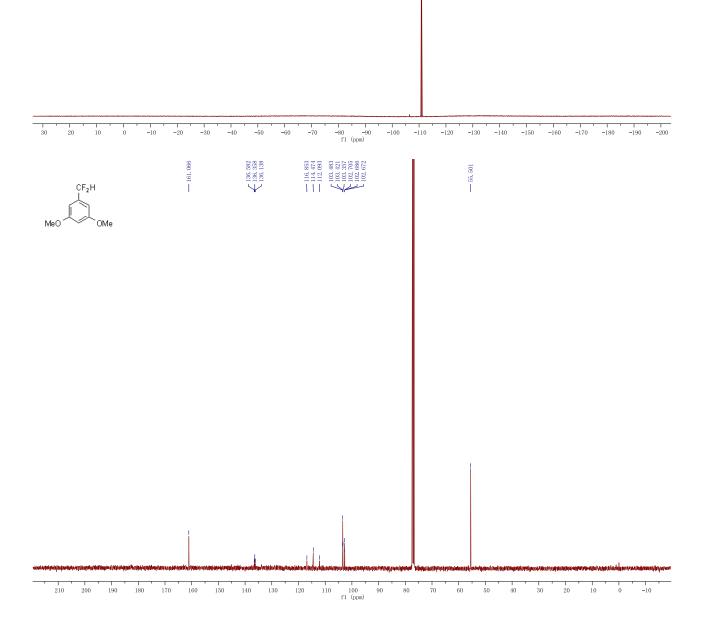

1-(Benzyloxy)-4-(difluoromethyl)benzene (8).



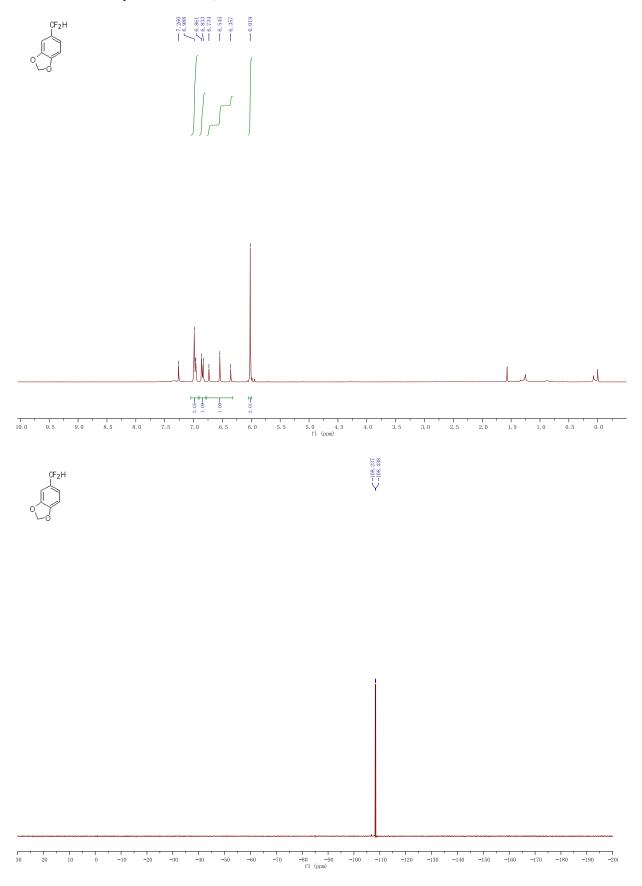

1-(Difluoromethyl)-4-phenoxybenzene (9).

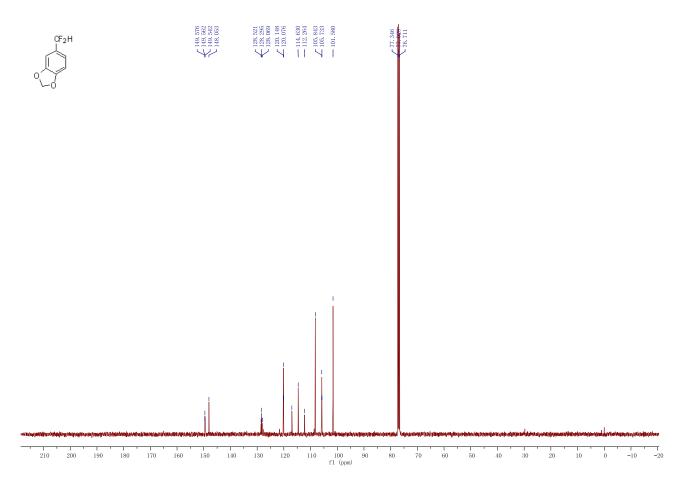


1-(Difluoromethyl)-4-methoxybenzene (10).

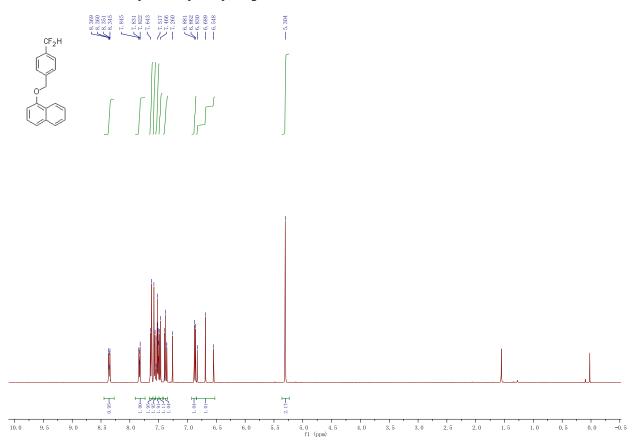


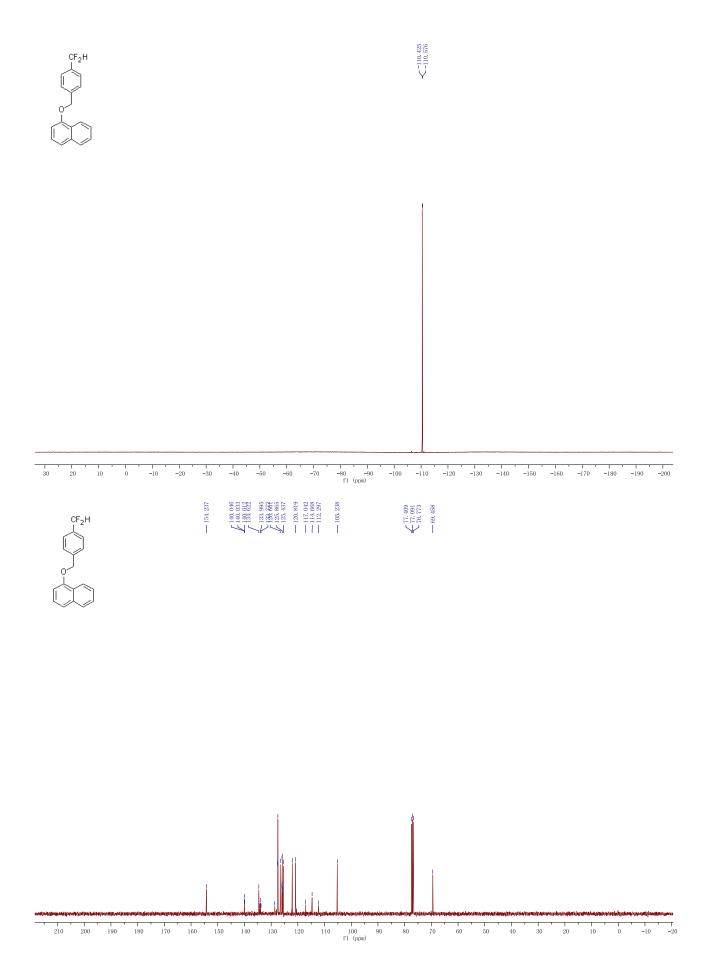
1-(Difluoromethyl)-3,5-dimethoxybenzene (11).

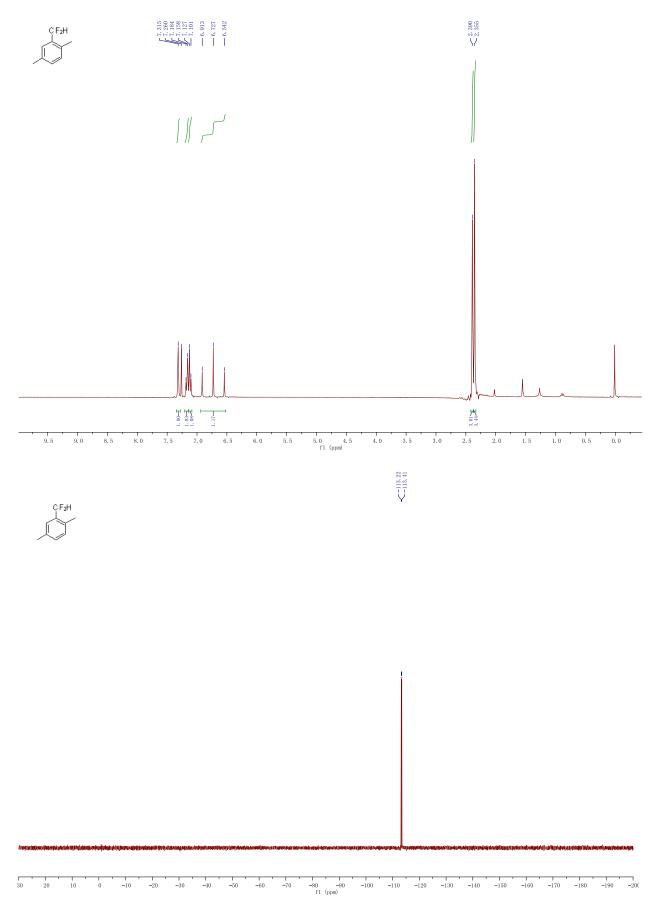




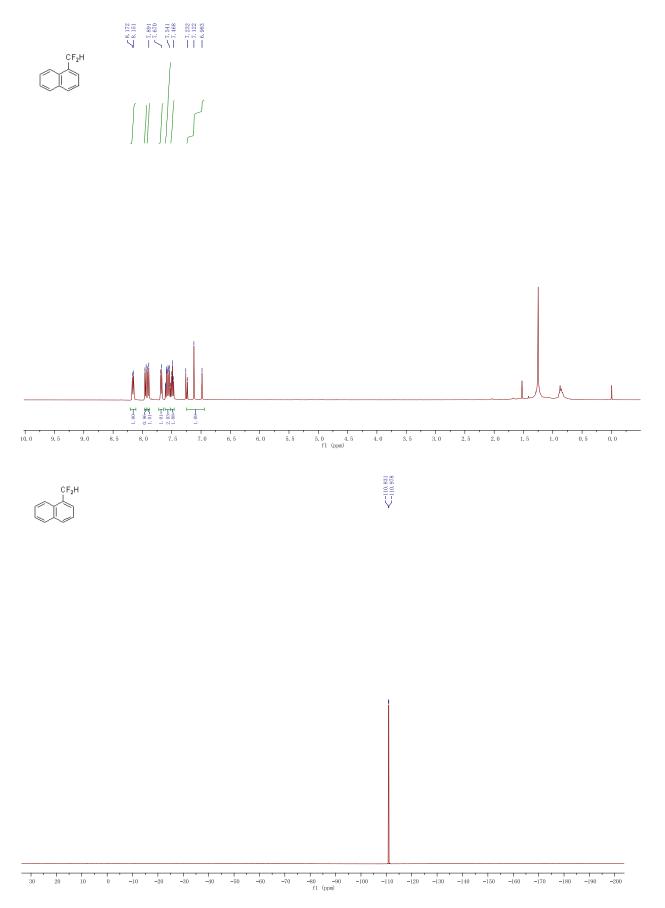
 $<^{-110.821}_{-110.971}$

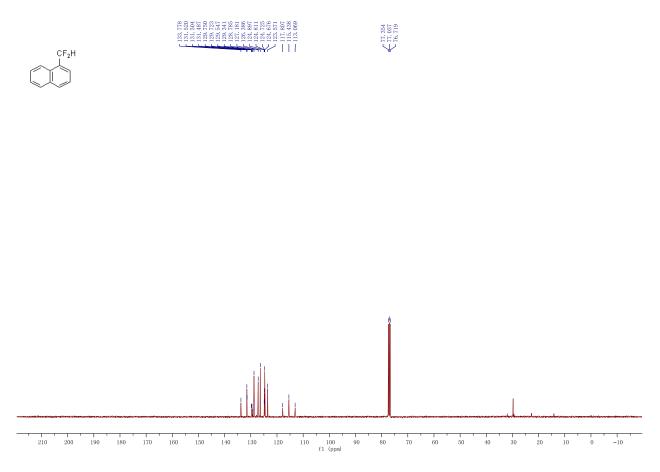



5-(Difluoromethyl)benzo[d][1,3]dioxole (12).

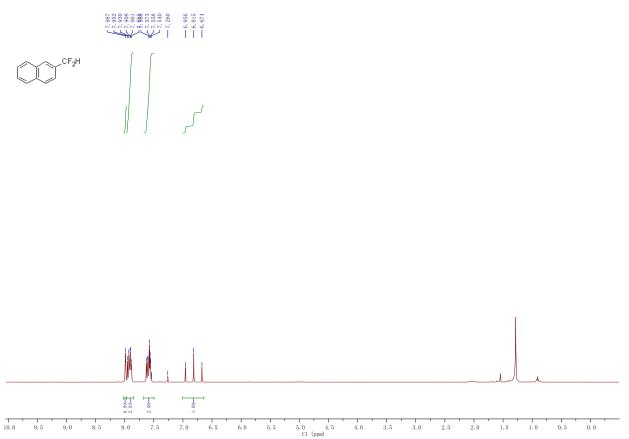


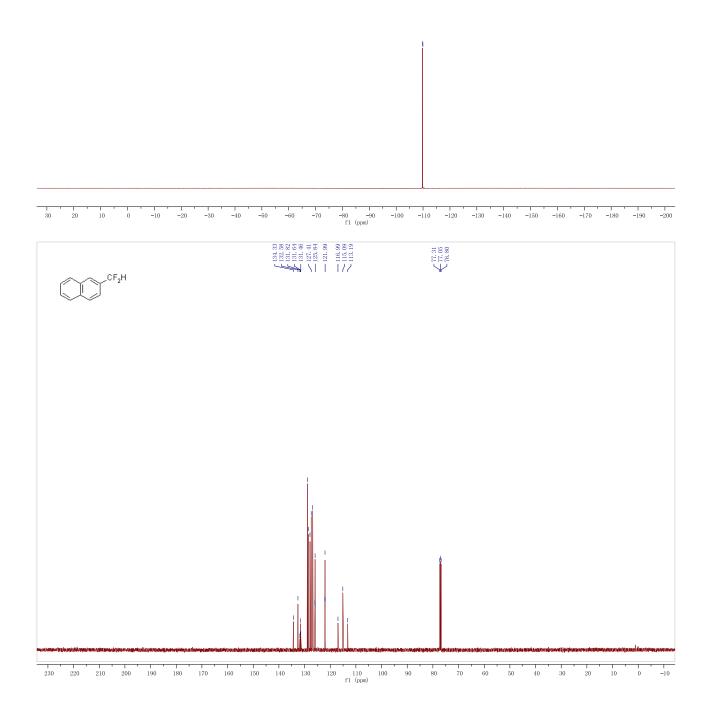
1-((4-(Difluoromethyl)benzyl)oxy)naphthalene (13).

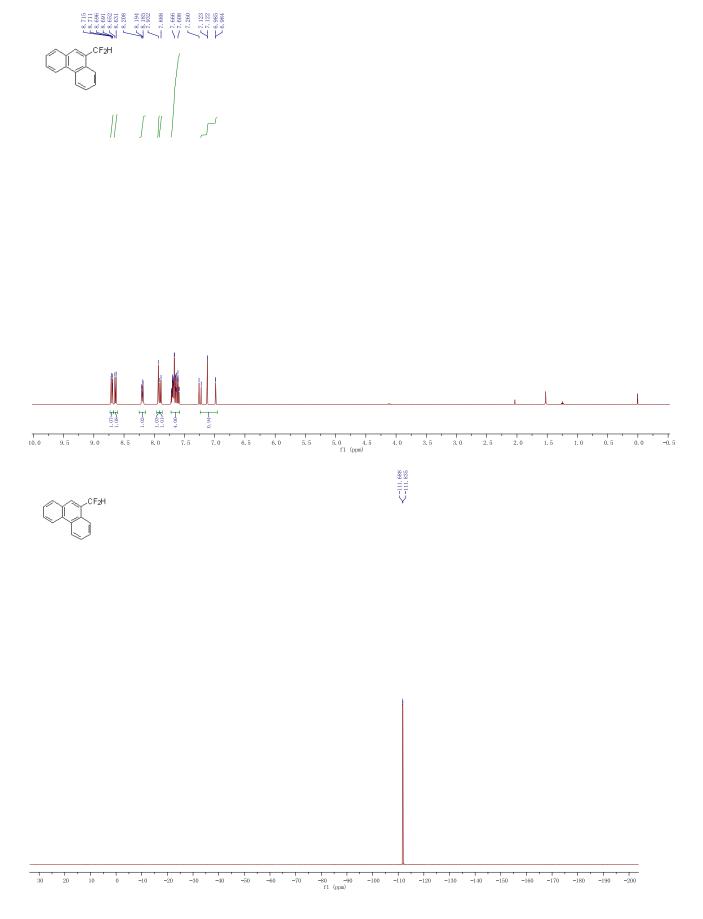


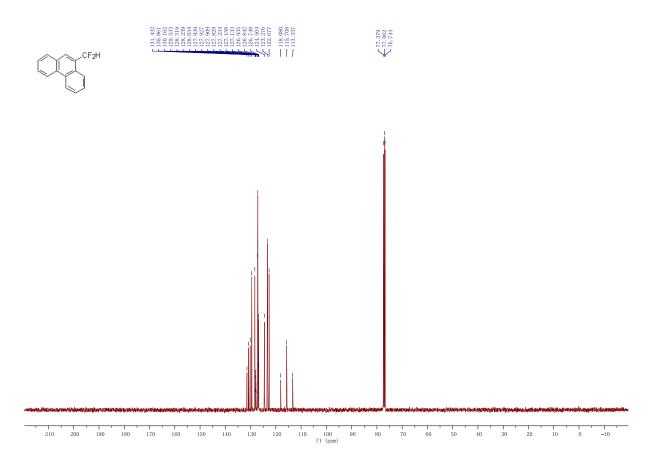


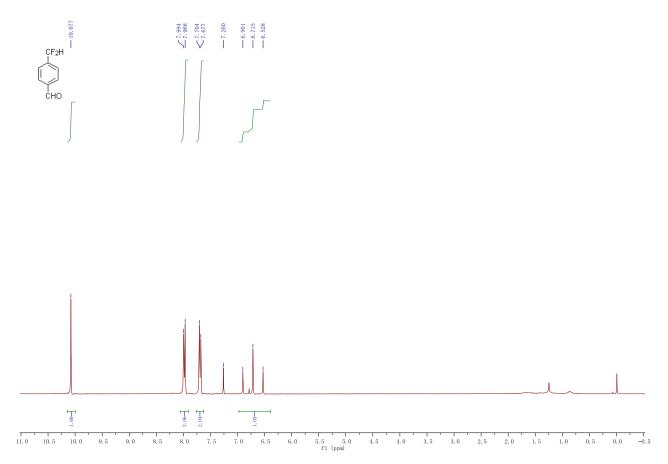
2-(Difluoromethyl)-1,4-dimethylbenzene (14).

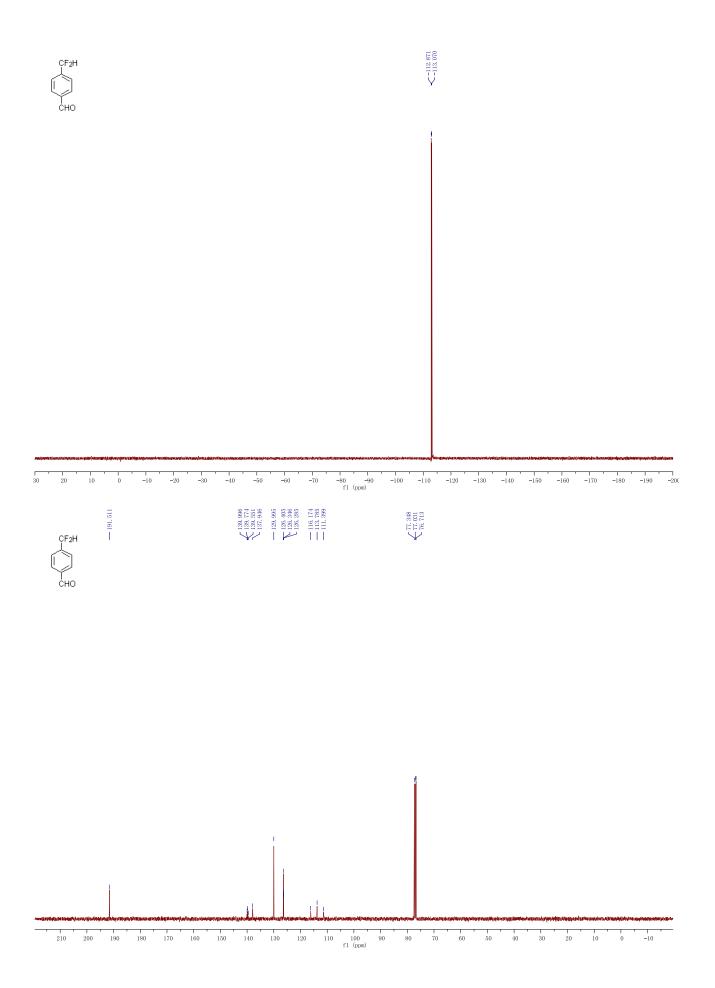


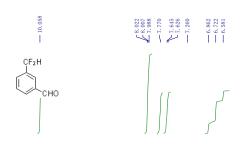

1-(Difluoromethyl)naphthalene (15).

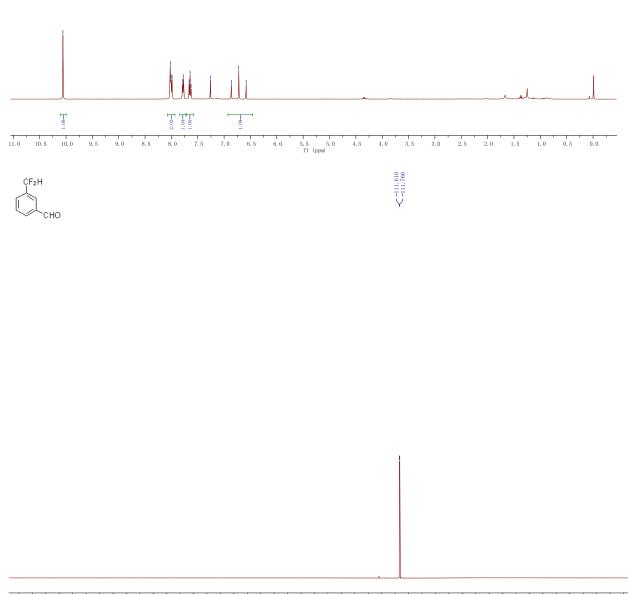

2-(Difluoromethyl)naphthalene (16).

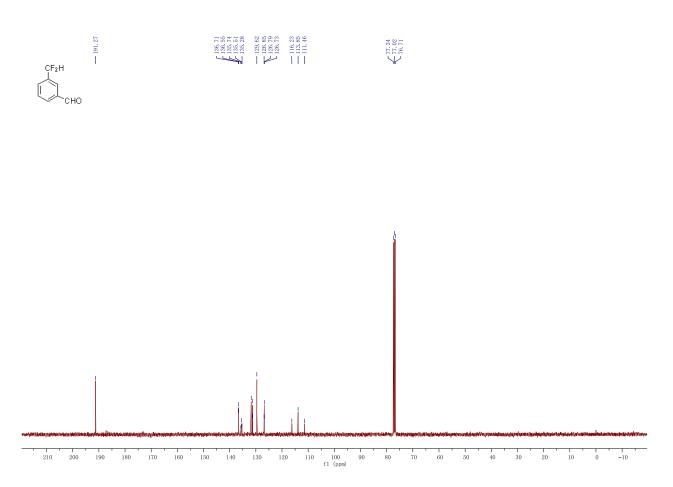


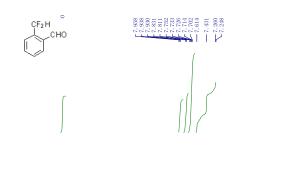


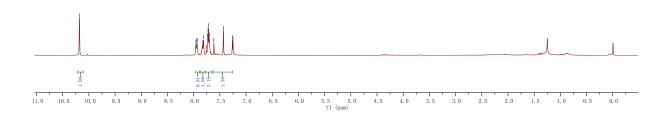

9-(Difluoromethyl)phenanthrene (17).

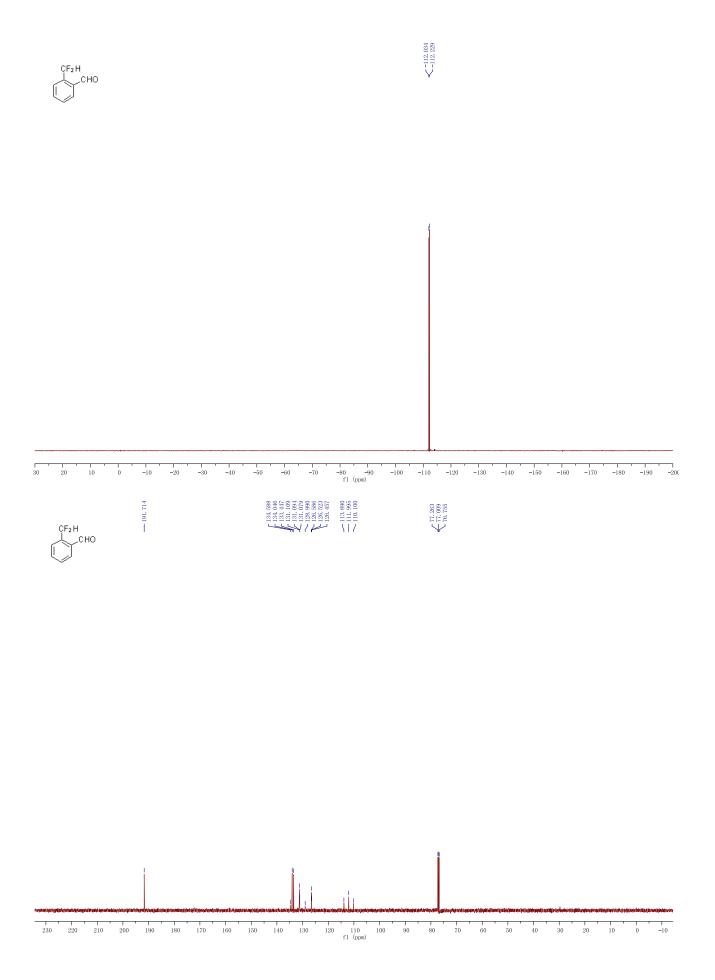


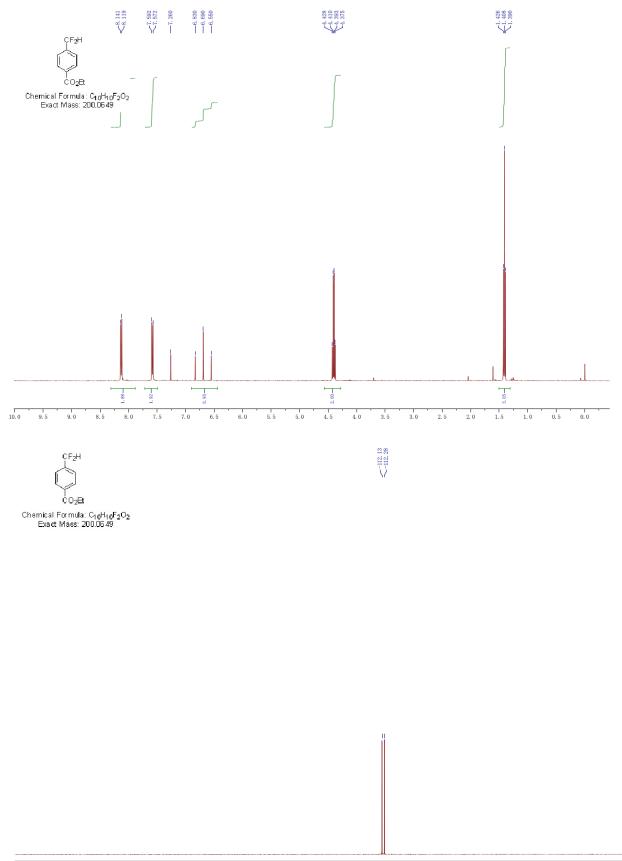

4-(Difluoromethyl)benzaldehyde (18).

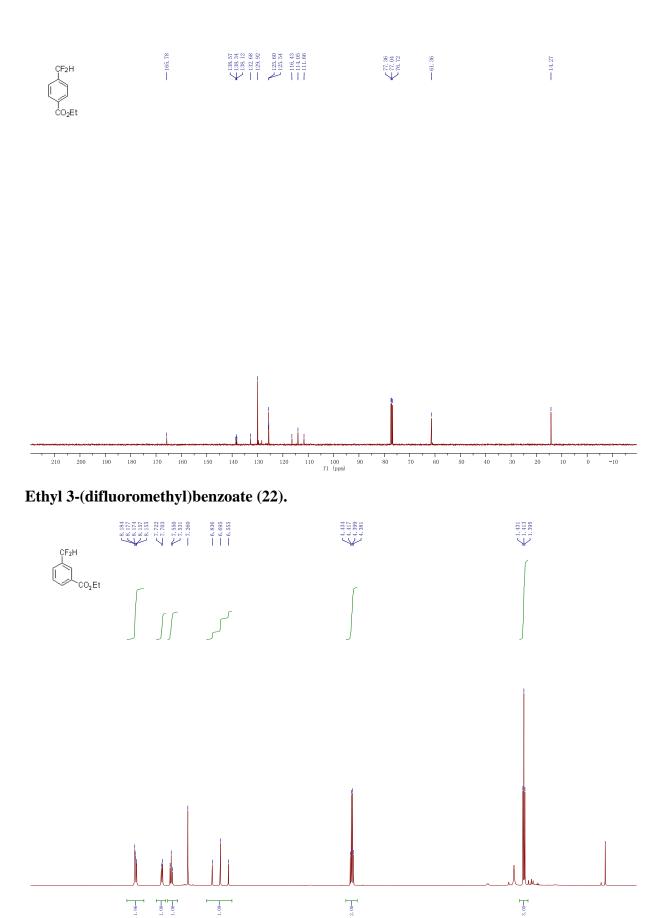

3-(Difluoromethyl)benzaldehyde (19).

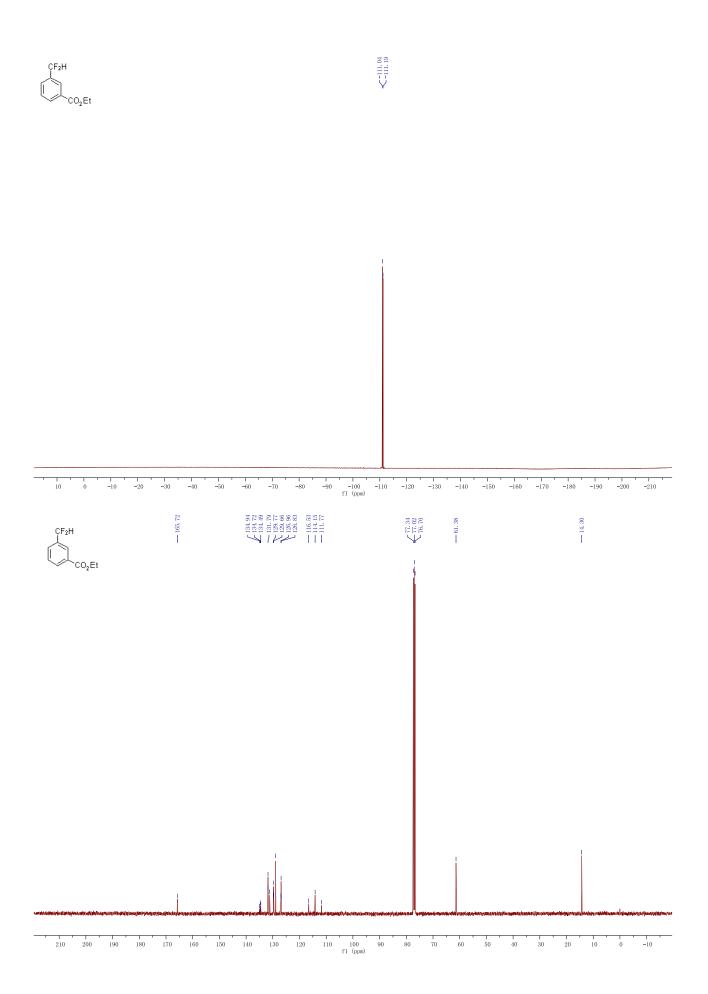



 30
 20
 10
 0
 -10
 -20
 -30
 -40
 -50
 -60
 -70
 -80
 -90
 -100
 -110
 -120
 -130
 -140
 -150
 -160
 -170
 -180
 -190
 -200

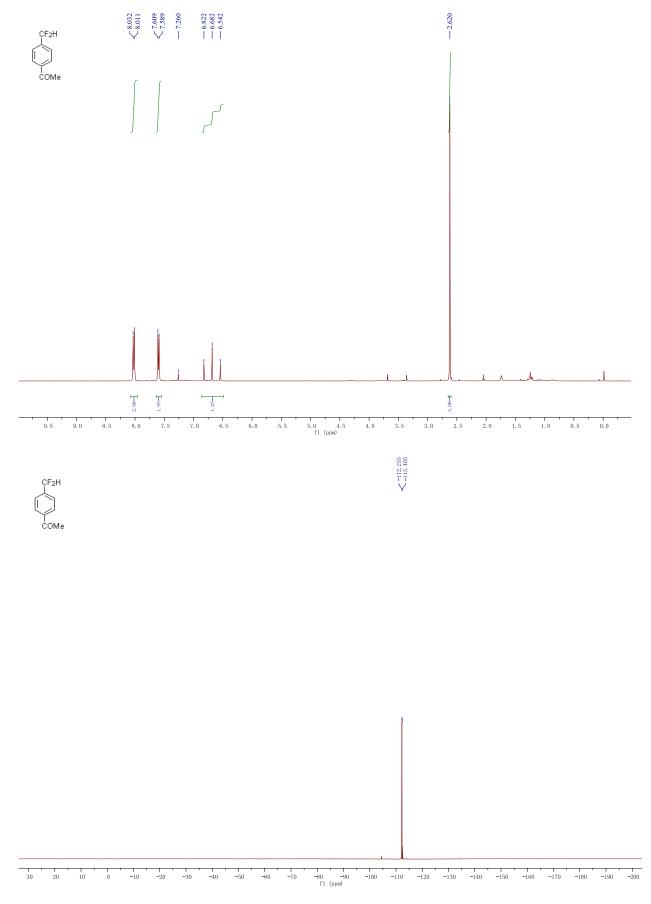

 f1
 (ppm)
 f1
 (ppm)
 f1
 (ppm)
 f1
 f1</t

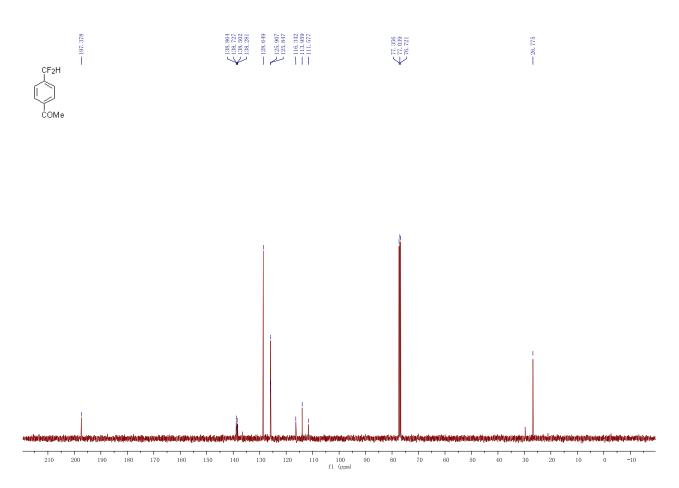

2-(Difluoromethyl)benzaldehyde (20).

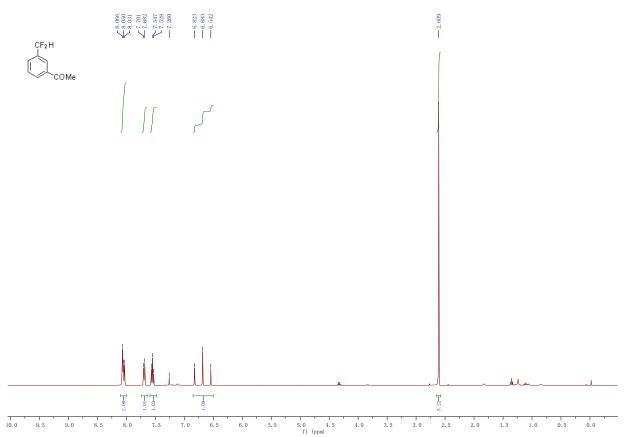


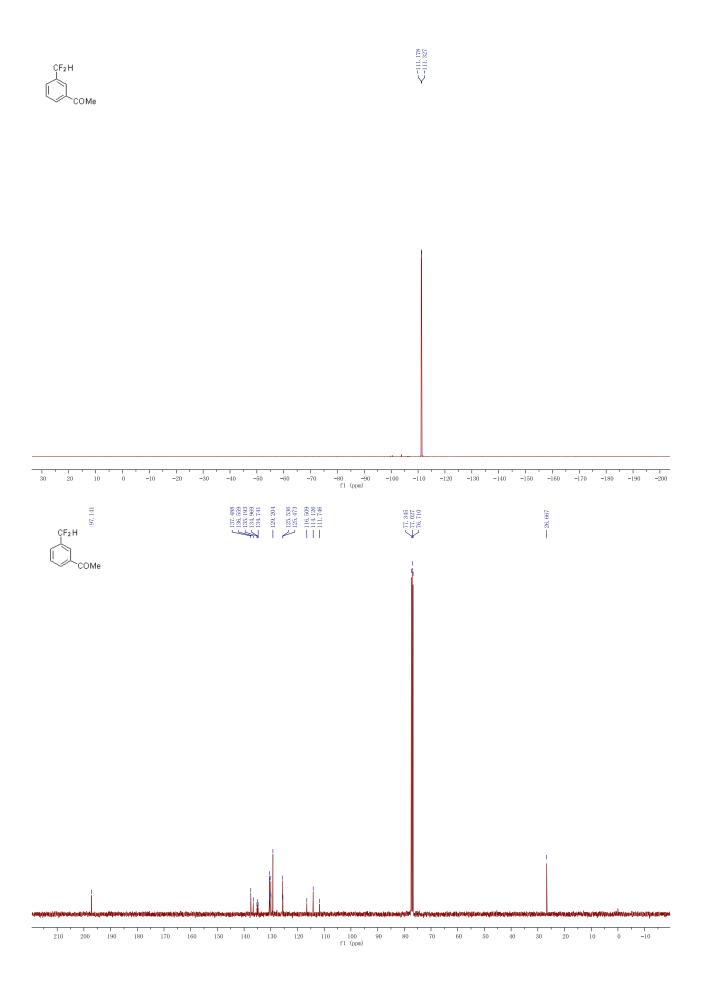


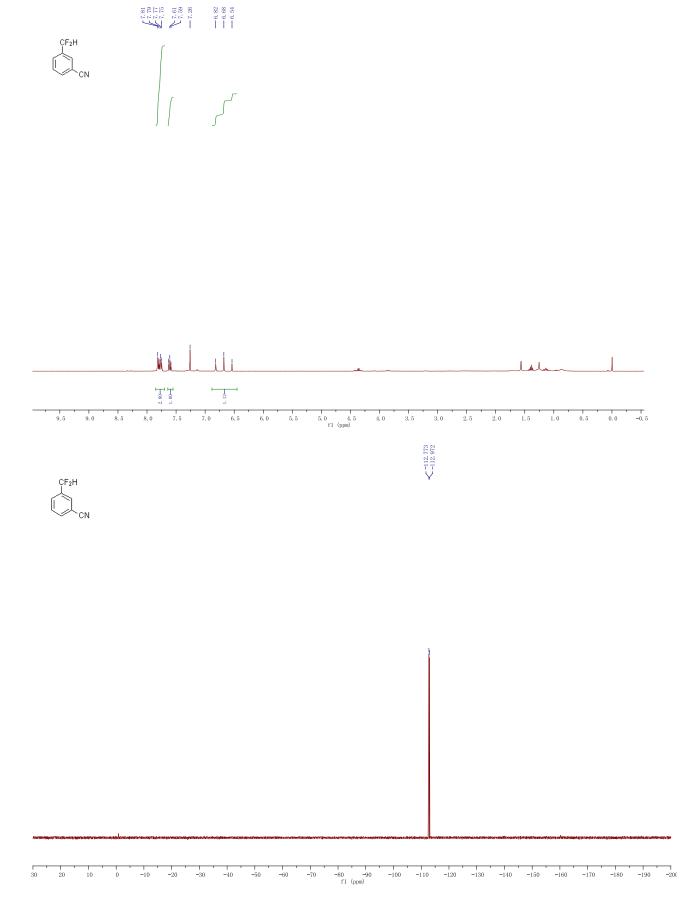
Ethyl 4-(difluoromethyl)benzoate (21).


-90 -91 -92 -93 -94 -95 -96 -97 -98 -99 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126

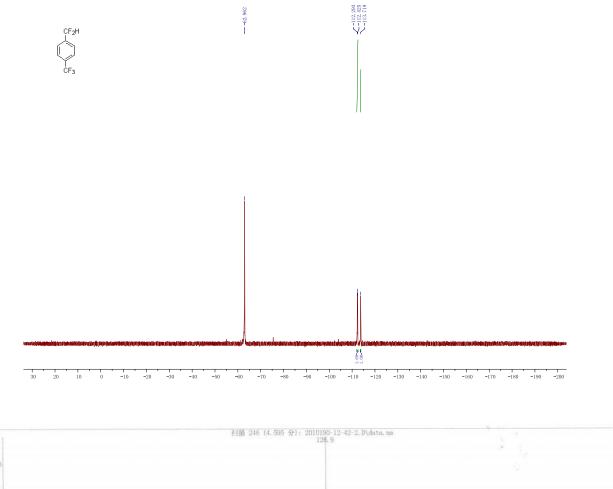



S66

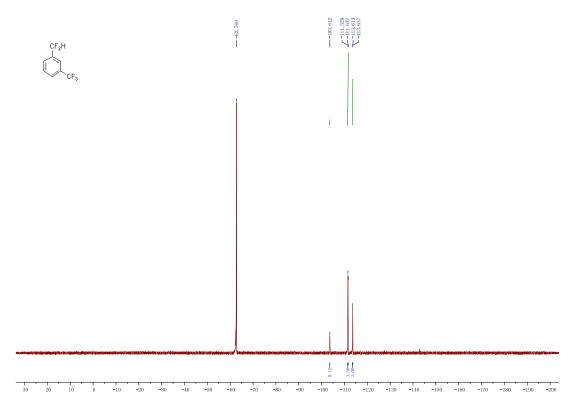

1-(4-(Difluoromethyl)phenyl)ethanone (23).



1-(3-(Difluoromethyl)phenyl)ethanone (24).

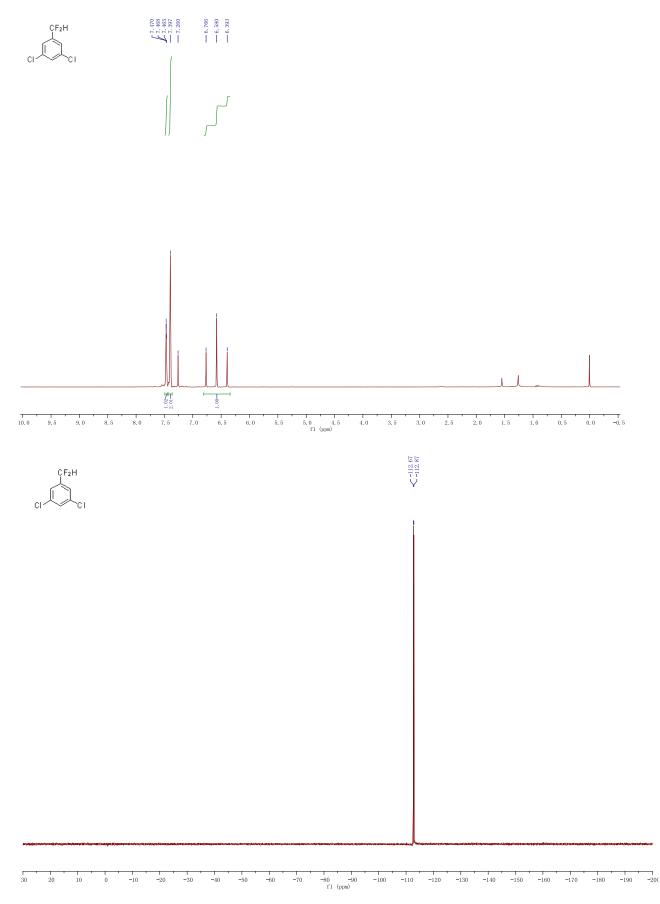


3-(Difluoromethyl)benzonitrile (25).

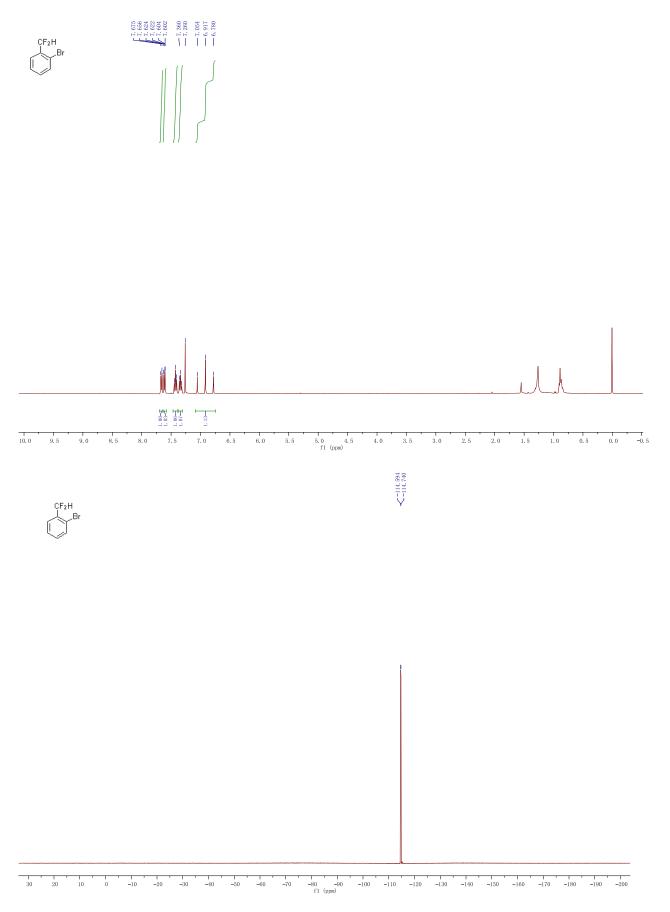

1-(Difluoromethyl)-4-(trifluoromethyl)benzene (26). (Due to the low boil point of 26, a crude ¹⁹F NMR was provided)

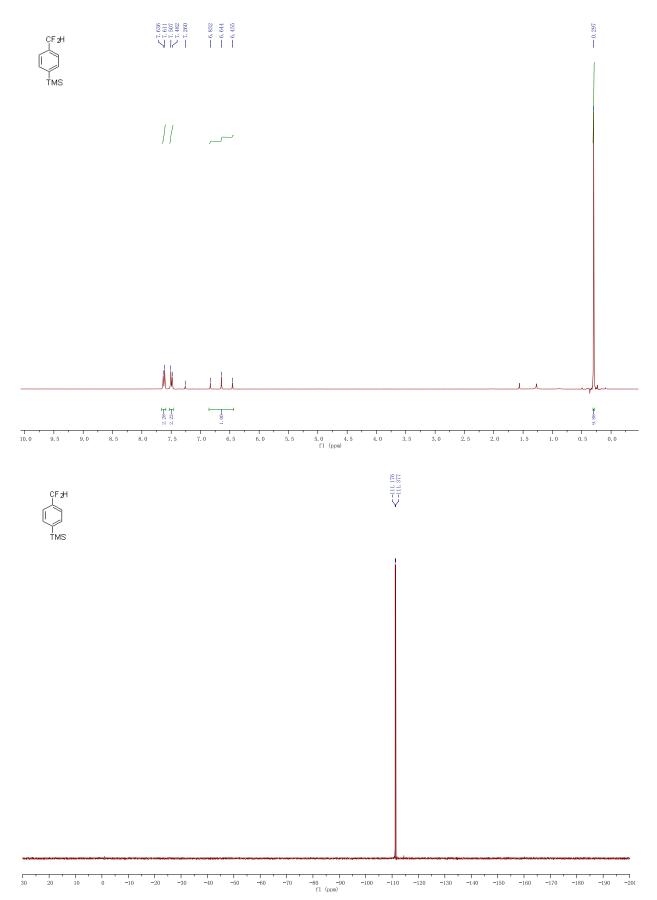


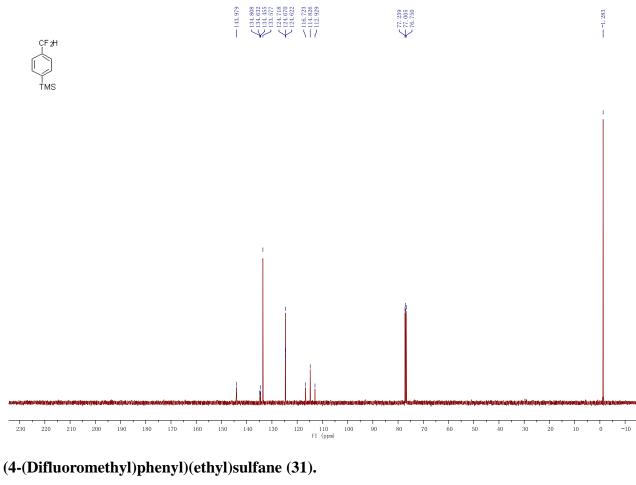
90													
80													
70													
60													
50												195.4	8
40													
30										176	i. 9		
20								14	44.9				
241													
10	51.0 57.0 5 50 55 6	CP 0	75, 0		95. 9	106.9			í.				
			80.5	9 88.0			12.8 118.8						206.8

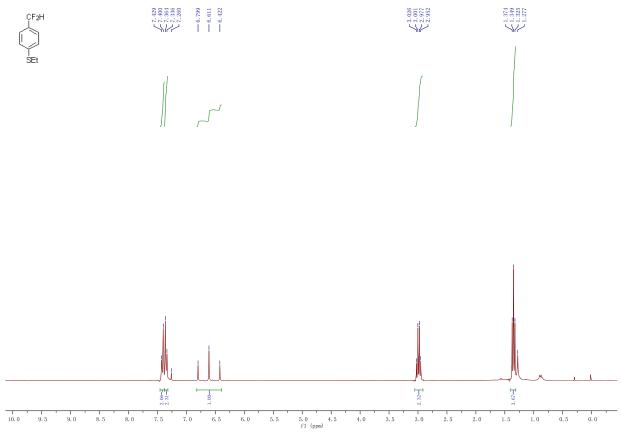

丰度

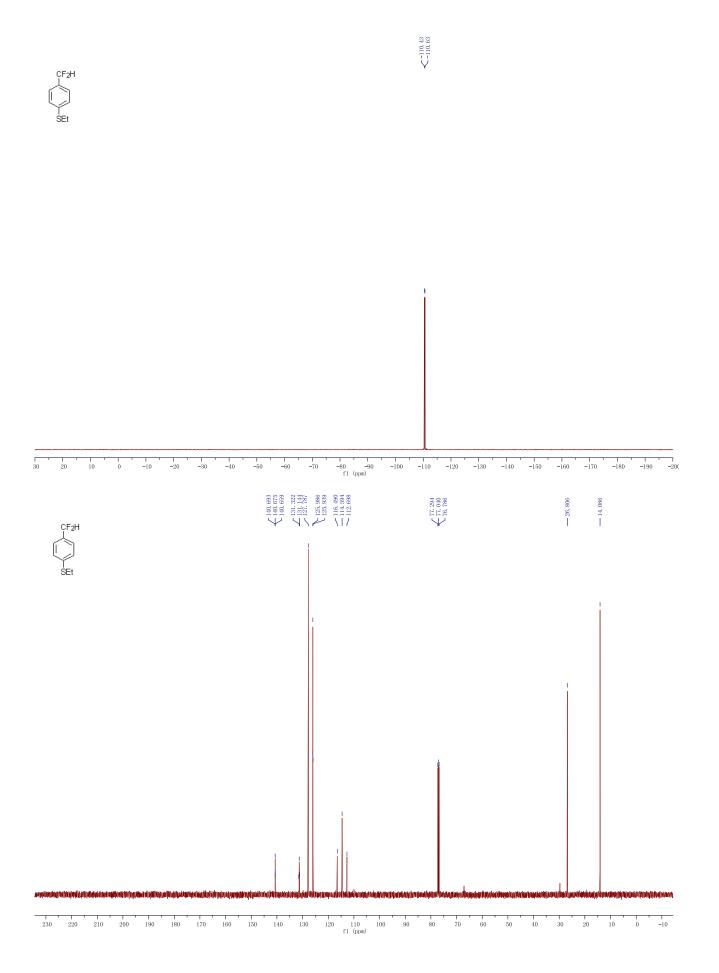
1-(Difluoromethyl)-3-(trifluoromethyl)benzene (27) (Due to the low boil point of 27, a crude ¹⁹F NMR was provided)



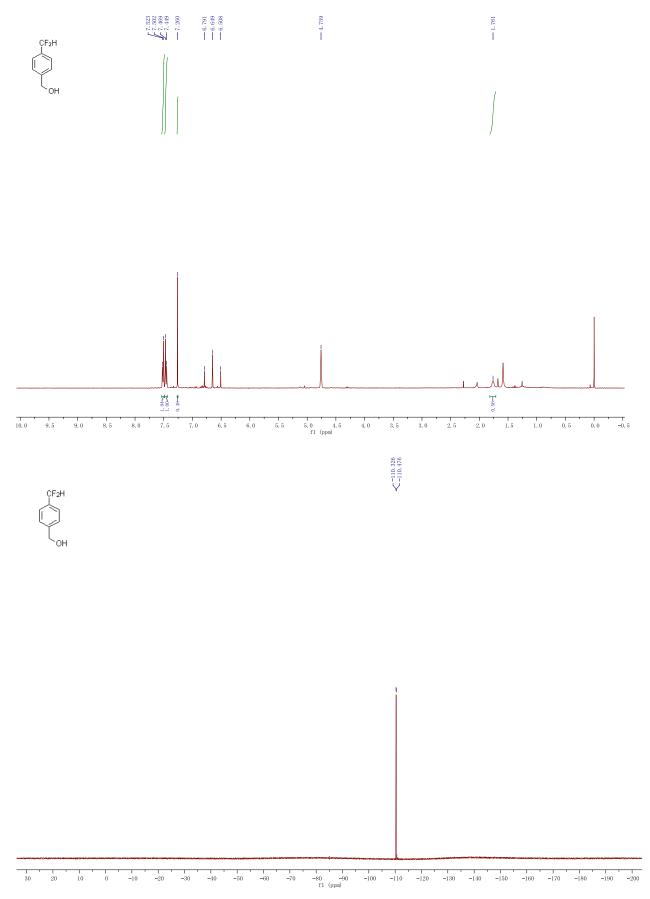

1,3-dichloro-5-(difluoromethyl)benzene (28).

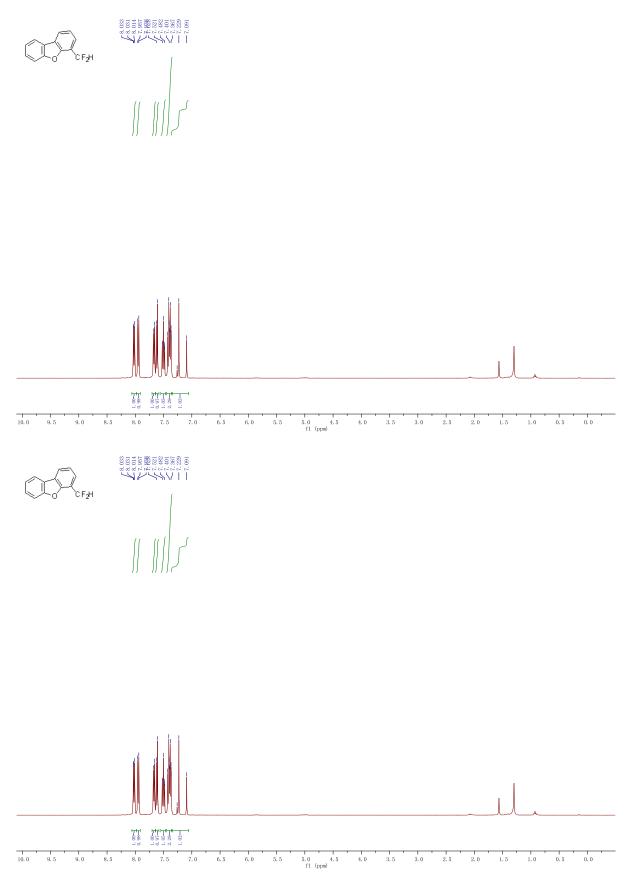


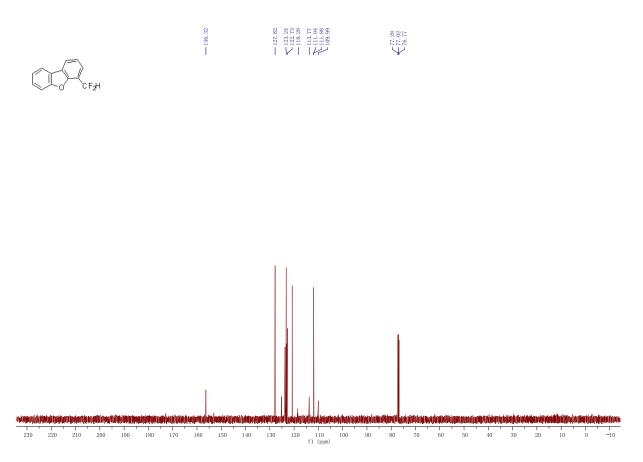

1-Bromo-2-(difluoromethyl)benzene (29).



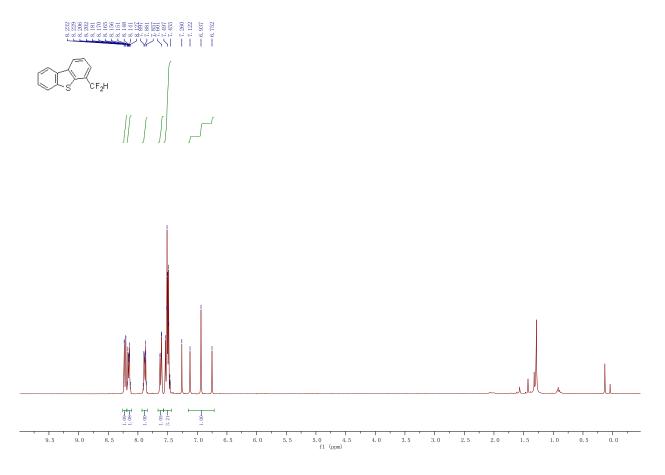
(4-(Difluoromethyl)phenyl)trimethylsilane (30).

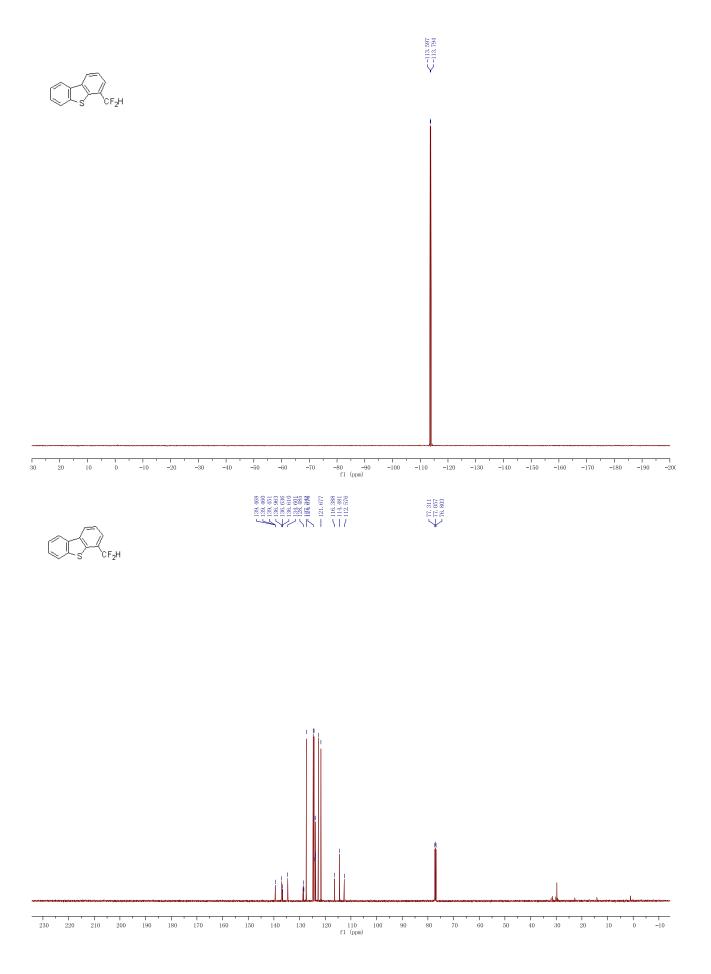


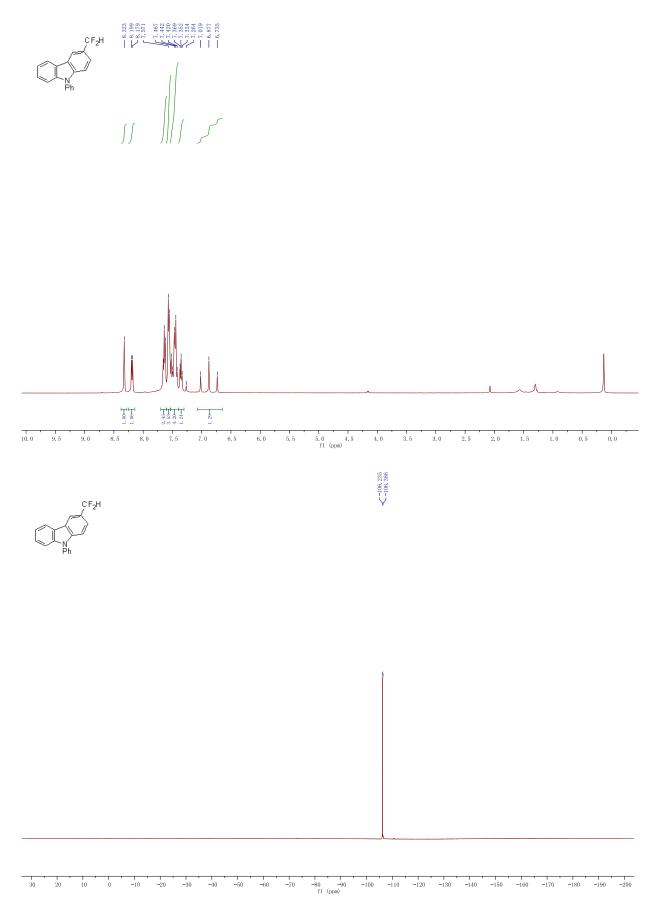


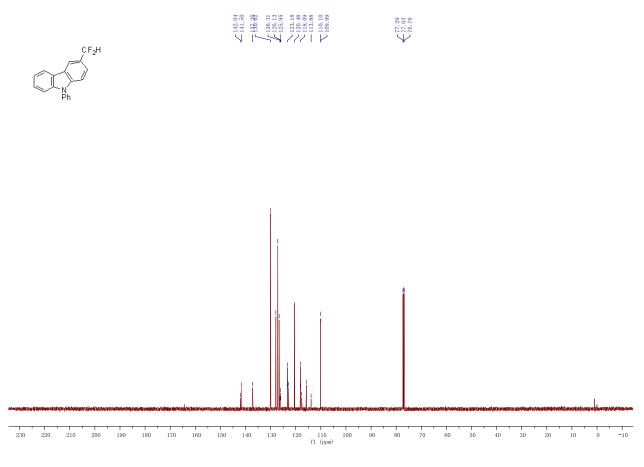


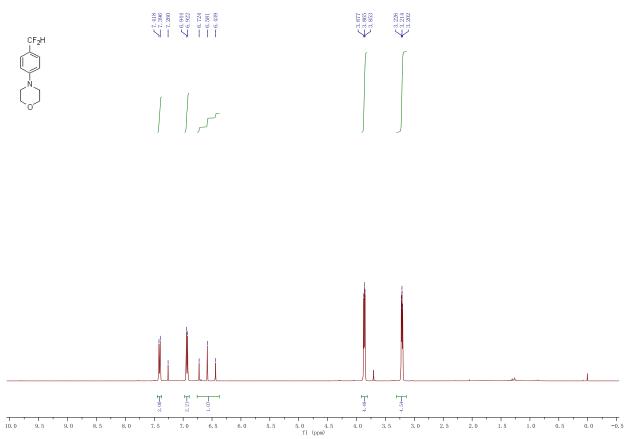
(4-(Difluoromethyl)phenyl)methanol (32).

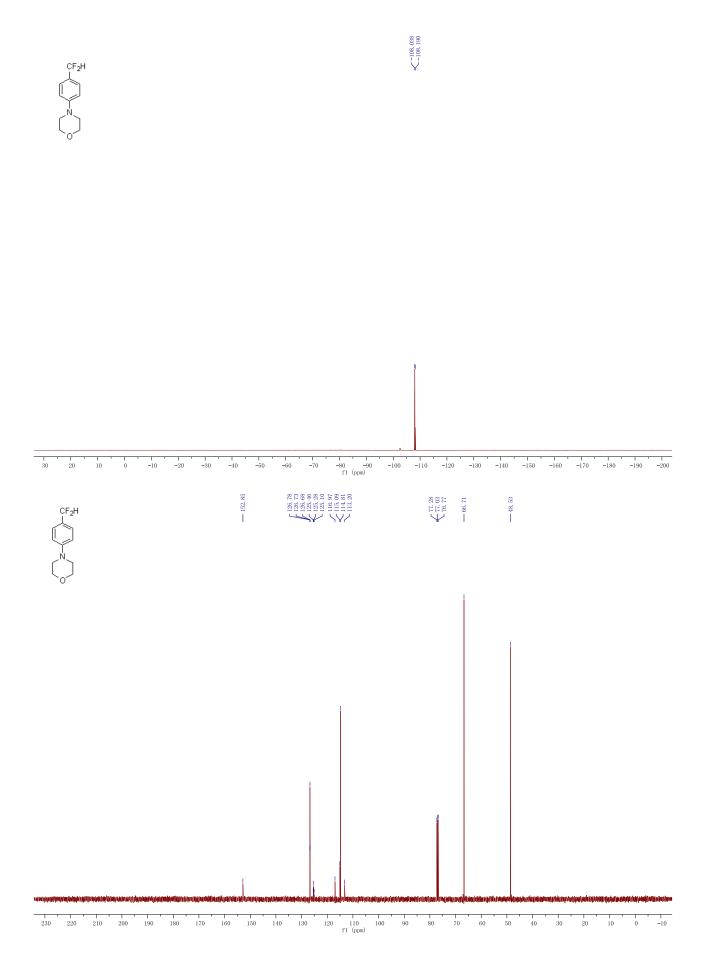


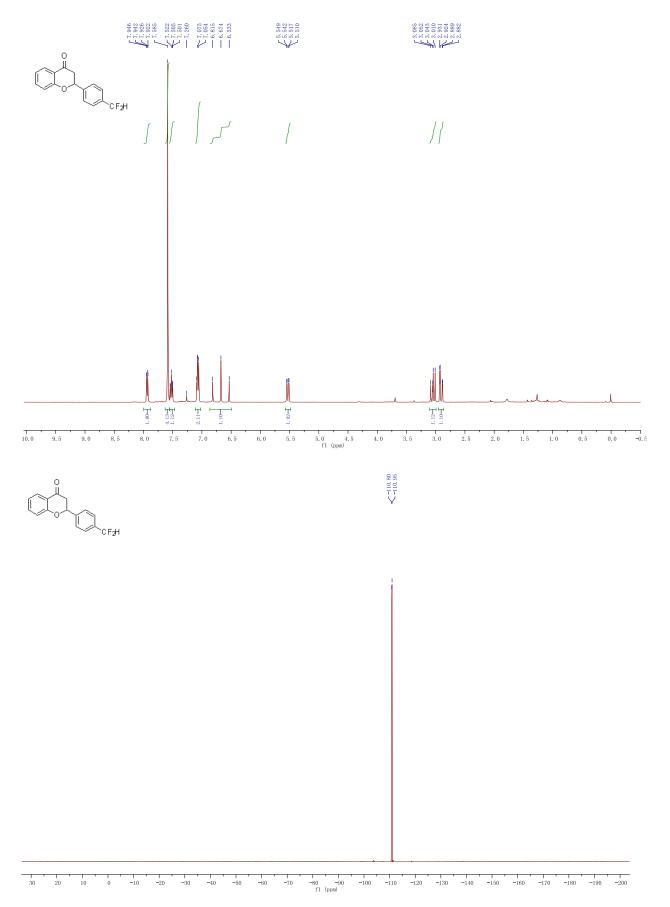

4-(Difluoromethyl)dibenzo[b,d]furan (33).

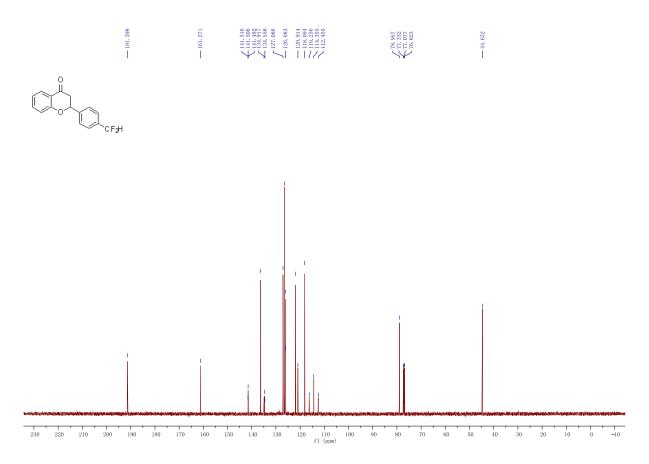


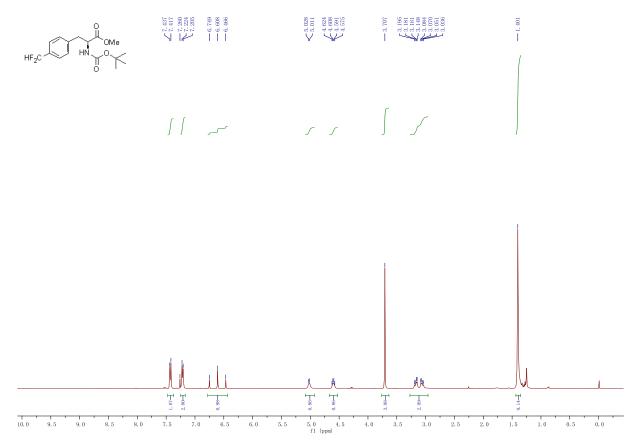

4-(Difluoromethyl)dibenzo[b,d]thiophene (34).

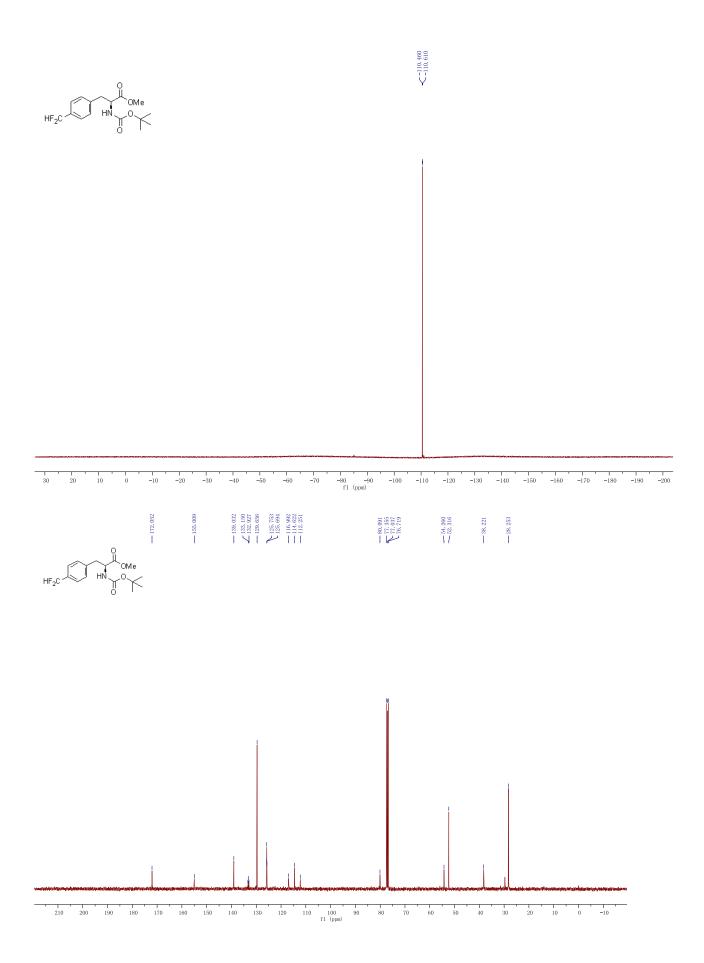


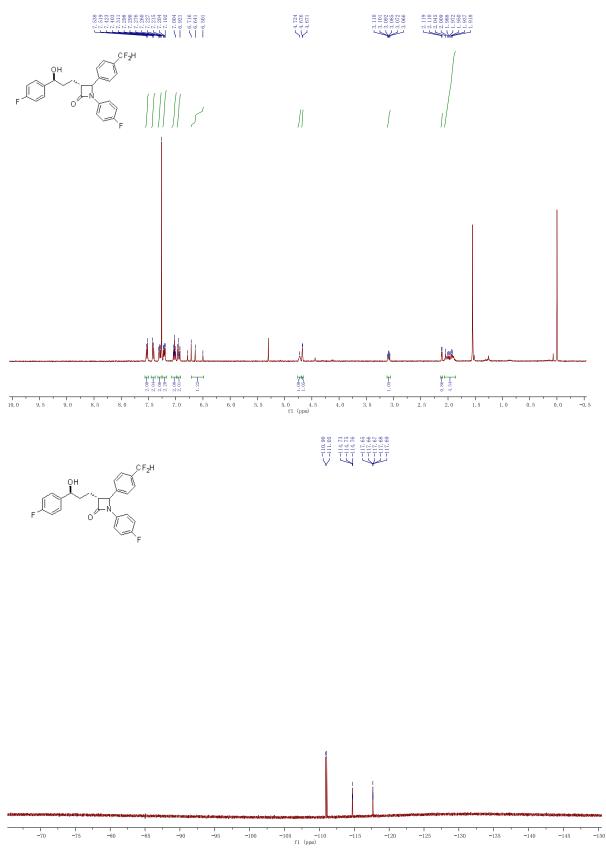

3-(Difluoromethyl)-9-phenyl-9H-carbazole (35).

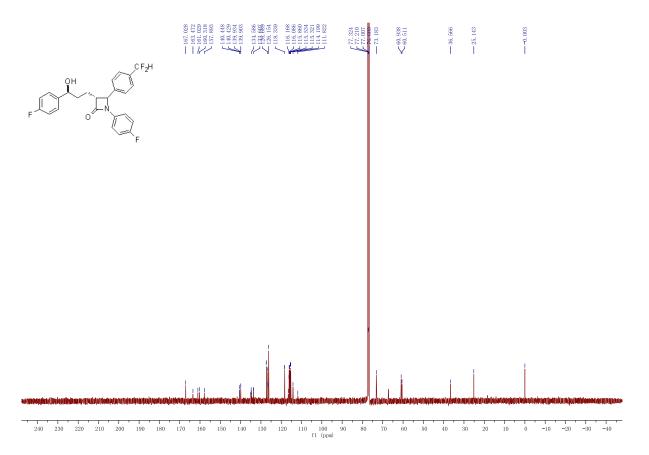


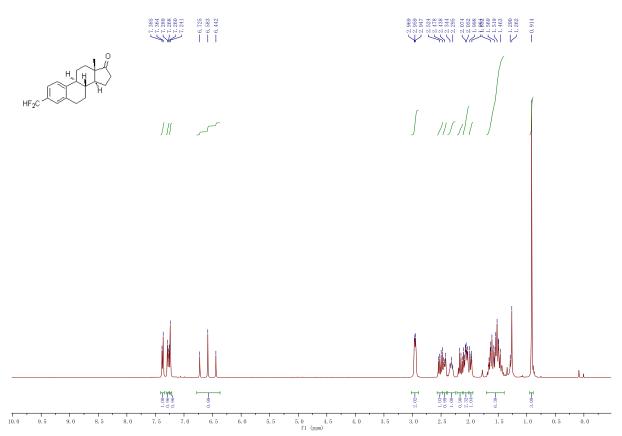

4-(4-(Difluoromethyl)phenyl)morpholine (36).

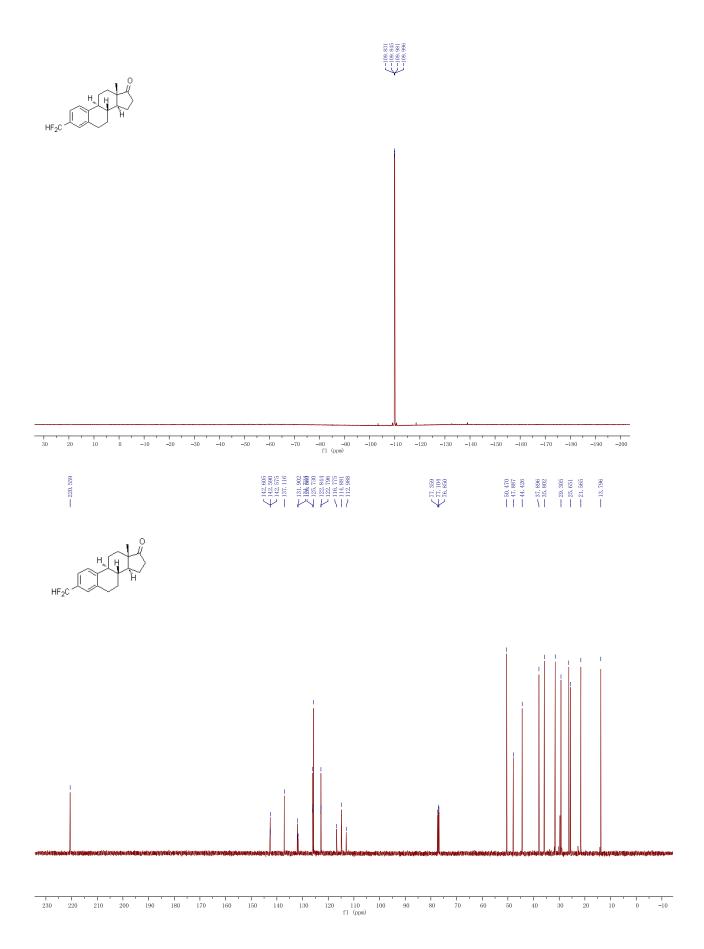



(2-(4-(Difluoromethyl)phenyl)chroman-4-one (37).




(S)-Methyl 2-((tert-butoxycarbonyl)amino)-3-(4-(difluoromethyl)phenyl)propanoate (38).




(3R)-4-(4-(Difluoromethyl)phenyl)-1-(4-fluorophenyl)-3-((S)-3-(4-fluorophenyl)-3hydroxypropyl)azetidin-2-one (39).

(8*R*,9*S*,13*S*,14*S*)-3-(Difluoromethyl)-13-methyl-7,8,9,11,12,13,15,16-octahydro-6*H*-cyclopenta[*a*]phenanthren-17(14*H*)-one (40).

