Supporting Information

Enantioselective Synthesis of Fluoro-dihydroquinazolones and -benzooxazinones by Fluorination Initiated Asymmetric Cyclization Reactions

Kenichi Hiramatsu ${ }^{\dagger \dagger}{ }^{\dagger}$ Takashi Honjo, ${ }^{\dagger}$ Vivek Rauniyar ${ }^{\dagger}$ and F. Dean Toste ${ }^{*}{ }^{\dagger} \dagger$
${ }^{\dagger}$ Department of Chemistry, University of California Berkeley, California 94720, United States
${ }^{\ddagger}$ Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
*E-mail: fdtoste@berkeley.edu

General Information S2
Optimization of Catalysts and Solvent on Fluorocyclization (Table S1) S3
Optimization of Condition on Fluoroamination (Table S2) S4
Synthesis of (R)-4-Ph-PhDAP (Scheme S1) S5
Synthesis of Substrates (Scheme S2) S8
Synthesis of Products S18
X-Ray Crystal Structure Data for $\mathbf{2 f}$ and $2 \mathbf{2 s}$ S28
References S46
NMR Spectra S47
HPLC Traces S115

General Information

Unless otherwise noted, all commercial reagents were used without further purification. Dry and degassed THF, dichloromethane, diethyl ether, toluene, triethylamine, and dimethylformamide were obtained by passage through activated alumina columns under argon. All other dried solvents were obtained by storage over $3 \AA$ or $4 \AA$ molecular sieves (beads, $8-12$ mesh) overnight. Selectfluor ${ }^{\circledR}$ (Sigma Aldrich) and anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ were ground in a pestle and morter and dried at $80^{\circ} \mathrm{C}$ under high vacuum for 30 minutes prior to use. $4 \AA$ and $5 \AA$ molecular sieves powder ($<50 \mu \mathrm{~m}$) were dried in an oven overnight prior to use. Fluorination reactions were run in 1 dram ($15 \mathrm{~mm} \times 45 \mathrm{~mm}$) vials fitted with a screw cap and stirred using an 8 mm magnetic stirrer bar. It is important to note that, due to the heterogeneous nature of the reactions, fast stirring is required in order to achieve optimal conversions. Thin-layer chromatography (TLC) analysis of reaction mixtures was performed using Merck silica gel 60 F254 TLC plates, and visualized under UV. Flash column chromatography was carried out on Merck Silica Gel $60 \AA, 230$ X 400 mesh or Fuji Silysia Chromatorex NH, 200-350 mesh. Nuclear magnetic resonance (NMR) spectra were recorded using Bruker AV-600, AVQ-400, AVB-400, AV-300 and JEOL ECX-400P spectrometers. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts were referenced to ${ }^{1} \mathrm{H}$ (residual) and ${ }^{13} \mathrm{C}$ signals of the deuterated solvents, respectively. ${ }^{1}$ Multiplicities are reported using the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. Mass spectral data were obtained from the Micro-Mass/Analytical Facility operated by the College of Chemistry, University of California, Berkeley. Diastereomeric ratios were determined by integration of ${ }^{19}$ F NMR spectra of crude product prior to purification. Enantiomeric excesses were determined on a Shimadzu VP Series Chiral HPLC using IA or IB or IC columns. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. The synthesis of $\mathrm{PhDAP}^{2}, \mathrm{OCyDAP}^{3}$ and $\mathrm{C}_{8}-$ TRIP 4 was previously described. Racemic products were synthesized by carrying out the reaction in toluene in the presence of a previously reported ${ }^{5} t \mathrm{Bu}$-substituted achiral phosphoric acid catalyst or in acetonitrile in the absence of catalyst and $\mathrm{Na}_{2} \mathrm{CO}_{3}$. X-ray crystallographic data were collected by Dr. Antonio DiPasquale of the University of California, Berkeley College of Chemistry X-ray Crystallography Facility.

Optimization of Catalysts and Solvent on Fluorocyclization.

Table S1. Optimization of Catalysts and Solvent on Fluorocyclization

[a] Isolated yields after chromatography on silica gel. [b] Determined by HPLC. [c] Difluorobenzene was used as a solvent.

(S)-VAPOL PA

(R)-PhDAPNHTf

(R)-TRIP

(S)-VANOL PA

(R)-PhDAP $\quad \mathrm{R}=$ phenyl (R)-4-Ph-PhDAP R=4-phenyl-phenyl (R)-OCyDAP $\quad \mathrm{R}=$ cyclohexanol

(R)-C C $_{8}$-TRIP

(R)-STRIP

(R)-Taddol PA

Optimization of Condition on Fluoroamination.

Table S2. Optimization of Condition on Fluoroamination

Entry	condition (Cat., MS, solvent, additive)	\% yield 2s ${ }^{[a]} \%$ ee $\mathbf{2 s}^{[b]}$		$\mathrm{dr}^{[\mathrm{c}]}$
1	no catalyst and base, acetonitrile (homogeneous)	39	0	5:2
2	(R)-C C_{8}-TRIP, MS 5A, toluene	52	82	9:1
3	(R)-PhDAP, MS 5Å, toluene	58	57	> 20:1
4	(R)-4-Ph-PhDAP, MS 5A, toluene	55	63	> 20:1
5	(R)-PhDAP, MS 5A, 1,2-difluorobenzene	60	33	> 20:1
6	(R)- C_{8}-TRIP, MS 5A, trifluorotoluene	48	37	2:1
7	(R)- C_{8}-TRIP, MS 3A, toluene	37	72	10:1
8	(R)-4-Ph-PhDAP, MS 5A, benzene	41	50	> 20:1
9	(R)-4-Ph-PhDAP, MS 5Å, trifluorotoluene	45	31	> 20:1
10	(R)-4-Ph-PhDAP, MS 5Å, xylene	50	75	> 20:1
11	(R)-4-Ph-PhDAP, MS 4A, xylene	42	87	> 20:1
12	(R)-PhDAP, MS 4A, xylene	74	72	> 20:1
13	(R)-4-Ph-PhDAP, MS 4A, xylene, 3-hexanol (5 eq)	10	85	> 20:1
14	(R)-4-Ph-PhDAP, MS 4A, xylene, water (10 eq)	9	90	> 20:1
15	no catalyst, MS 4A, xylene	trace	0	-
16	no base, (R)-PhDAP, MS 4Å, xylene	trace	41	-

[a] Isolated yields after chromatography on silica gel. [b] Determined by HPLC. [c] Determined by ${ }^{1} \mathrm{H}$-NMR or ${ }^{19} \mathrm{~F}$-NMR analysis of crude reaction mixture.

Synthesis of (R)-4-Ph-PhDAP

The title compound was prepared following the route shown below.
Scheme S1. Synthesis of (\boldsymbol{R})-4-Ph-PhDAP

(R)- 2-([1,1'-biphenyl]-4-yl)-2'-(ethoxymethoxy)-1,1'-binaphthalene ((R)-S4).

A solution of biphenylmagnesium bromide in THF was first prepared as follows. A 2-necked round bottom flask equipped with a reflux condenser was charged with magnesium turnings ($4.37 \mathrm{~g}, 180$ mmol, 6.0 equiv), and the flask was heated under vacuum for 30 min with stirring. THF (40 mL) and 1,2-dibromoethane ($650 \mu \mathrm{~L}, 7.5 \mathrm{mmol}, 0.25$ equiv) was then added by cannulation, followed by biphenyl bromide ($34.97 \mathrm{~g}, 150 \mathrm{mmol}$, 5.0 equiv) in THF (200 mL). The reaction mixture was stirred vigorously under reflux for 2 h , upon which only traces of magnesium metal remained unreacted, and allowed to cool to ambient temperature. A separate round bottom flask was charged with a suspension of (R)-S2 ($12.55 \mathrm{~g}, 30 \mathrm{mmol}, 1.0$ equiv) $)^{6}$, methylmagnesium iodide (3 M solution in diethylether, $10 \mathrm{~mL}, 30 \mathrm{mmol}, 1.0$ equiv) and bis(triphenylphosphine)nickel(II) dichloride (792 mg , $1.5 \mathrm{mmol}, 0.04$ equiv) in THF (40 mL). The solution of Grignard reagent was cannulated into the stirred suspension over 5 min , during which a significant exotherm was observed. After being stirred for 12 h at room temperature, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(200$ $\mathrm{mL})$. The mixture was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and filtered through a pad of silica gel (EtOAc:hexane $=1: 9$) to give
the crude product $\mathbf{S 3}(7.78 \mathrm{~g}, 18.4 \mathrm{mmol})$. To the residue of $\mathbf{S 3}$ and EOMCl ($3.4 \mathrm{~mL}, 36.8 \mathrm{mmol}, 2.0$ equiv) in THF (90 mL), was added NaH (60% in mineral oil, $1.47 \mathrm{~g}, 36.8 \mathrm{mmol}, 2.0$ equiv) dropwise at room temperature. The reaction mixture was stirred for 1 h , water was carefully added and the reaction mixture was extracted with EtOAc 2 times and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by column chromatography (EtOAc : Hexane $=1: 15$) to give $\mathbf{S 4}$ as a colorless foam $(6.18 \mathrm{~g}, 12.9 \mathrm{mmol}, 43 \%$ yield $)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.13(\mathrm{~m}, 12 \mathrm{H})$, $5.00(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.24(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.08,141.26,140.78,139.63,139.04,134.67,133.37$, 132.97, 132.02, $129.62,129.43,129.41,128.75,128.35,128.17,128.15,128.06,128.05,127.21,126.97,126.59$, 126.33, 126.12, 125.86, 125.77, 123.88, 122.91, 116.54, 93.64, 63.93, 15.10. m/z HRMS (ESI) found $[\mathrm{M}+\mathrm{K}]^{+}$519.1720, $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{O}_{2}{ }^{39} \mathrm{~K}_{1}$ requires 519.1721.

(R)-2'-([1,1'-biphenyl]-4-yl)-2-(ethoxymethoxy)-3-iodo-1,1'-binaphthalene ((R)-S5).

To a stirred solution of $\mathbf{S 4}\left(3.50 \mathrm{~g}, 7.28 \mathrm{mmol}, 1.0\right.$ equiv) in THF (58 mL) cooled to $-78{ }^{\circ} \mathrm{C}$ was added n-butyllithium (2.5 M solution in hexane, $7.28 \mathrm{~mL}, 18.2 \mathrm{mmol}, 2.5$ equiv). After an additional 5 min , the reaction mixture was moved to an ice bath and stirred for 2 h . The reaction mixture was then cooled to $-78^{\circ} \mathrm{C}$, iodine ($7.39 \mathrm{~g}, 29.1 \mathrm{mmol}, 4.0$ equiv) was added in one portion. The reaction mixture was stirred for additional 30 min at $-78^{\circ} \mathrm{C}$, subsequently, saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(150$ $\mathrm{mL})$ was added. The mixture was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, purified by column chromatography ($\mathrm{EtOAc}:$ Hexane $=1: 20$) to give $\mathbf{S 5}(3.60 \mathrm{~g}, 5.94 \mathrm{mmol}, 81 \%)$ as a pale brown foam.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-$ $7.66(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.23(\mathrm{~m}, 9 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H})$, $4.85-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.45(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.68(\mathrm{~m}, 1 \mathrm{H}), 0.69(\mathrm{td}, \mathrm{J}=7.1$, $1.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.41,140.86,140.67,140.39,139.65,139.30,134.59$, $133.45,132.79,132.02,131.29,129.23,128.87$, 128.75, 128.68, 128.46, 128.16, 127.22, 127.10, 127.07 (2 overlapping carbons), 127.01, 126.81, 126.63, 126.29, 125.97, 125.61, 97.47, 92.90, 65.05, 14.59. m / z HRMS (ESI) found $[\mathrm{M}+\mathrm{Na}]^{+} 629.0950, \mathrm{C}_{35} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{I}_{1}{ }^{23} \mathrm{Na}_{1}$ requires 629.0948 .

(R,R)- 2,2''-di([1,1'-biphenyl]-4-yl)-[1,1':3',2':4',1'"-quaternaphthalene]-2',3'-diol ((R,R)-S8).

To a stirred solution of $\mathbf{S 4}\left(2.50 \mathrm{~g}, 5.2 \mathrm{mmol}, 1.0\right.$ equiv) in THF (42 mL) cooled to $-78^{\circ} \mathrm{C}$ was added n-butyllithium (2.5 M solution in hexane, $5.2 \mathrm{ml}, 13.0 \mathrm{mmol}, 2.5$ equiv). The reaction mixture was moved to an ice bath and stirred for 2 h . After cooling to $-78{ }^{\circ} \mathrm{C}, \mathrm{B}(\mathrm{OMe})_{3}(2.95 \mathrm{~mL}, 26.0 \mathrm{mmol}, 5.0$ equiv) was added, then the mixture was allowed to warm to room temperature and stirred for 12 h . A solution of $1 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$ was added and the organic layer was separated and the aqueous phase was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give $\mathbf{S 6}$ as a crude product. The residue was combined with $\mathbf{S 5}\left(3.15 \mathrm{~g}, 5.2 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(600 \mathrm{mg}, 0.52 \mathrm{mmol}, 0.1\right.$ equiv), $\mathrm{Ba}(\mathrm{OH})_{2}(2.67 \mathrm{~g}$, $15.6 \mathrm{mmol}, 3.0$ equiv) in 1,4-dioxane (60 mL) and water (6 mL). The resulting mixture was heated at $100^{\circ} \mathrm{C}$ under argon for 20 h . Water was added and the mixture was extracted with ethyl acetate (3 x $100 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and the residue was passed through a short silica gel pad (EtOAc:Hexane $=1: 10)$ to remove polar materials to obtain $\mathbf{S 7}$ as a crude product. To the residue in 1,4-dioxane (100 mL) was added $10 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$, the mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 20 min . Brine (50 mL) was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with saturated NaHCO_{3} and dried over MgSO_{4}, concentrated and purified by column chromatography (EtOAc:Hexane $=1: 8)$ to afford $\mathbf{S 8}$ as a white powder ($2.1 \mathrm{~g}, 2.49 \mathrm{mmol}$, 48\% yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~s}, 2 \mathrm{H}), 7.79$ (dd, J = 11.2, 8.3 Hz, 4H), 7.52 (t, J = 7.5 Hz, 2H), 7.37 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35-7.00$ (m, 26H), 4.58 (s, 2H). ${ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO) $\delta 151.40,140.81,139.65,139.46,138.03,133.34,133.07$, 132.70, 131.24, 130.52, 129.22, 128.77, 128.60, 128.23, 128.21, 128.20, 127.91, 127.74, 127.26, 126.57, 126.41, 126.29, 126.04, 125.74, 125.69, 123.90, 122.70, 118.74. m/z HRMS (ESI) found $[\mathrm{M}+\mathrm{Na}]^{+}$865.3081, $\mathrm{C}_{64} \mathrm{H}_{42} \mathrm{O}_{2}{ }^{23} \mathrm{Na}_{1}$ requires 865.3077.

(R,R)-5,9-bis(2-([1,1'-biphenyl]-4-yl)naphthalen-1-yl)-7-hydroxydinaphtho[2,3-d:2',3'-f][1,3,2]d ioxaphosphepine 7-oxide ($(R)-4-P h-P h D A P)$.

$\mathbf{S 8}(2.10 \mathrm{~g}, 2.49 \mathrm{mmol}, 1.0$ equiv) was suspended in anhydrous pyridine $(13 \mathrm{~mL})$. To the mixture was added $\mathrm{POCl}_{3}\left(464 \mu \mathrm{~L}, 4.89 \mathrm{mmol}, 2.0\right.$ equiv) and heated at $95^{\circ} \mathrm{C}$ for 2 h . The resulting solution was cooled to room temperature, and water 13 mL was added. This mixture was then heated at $95^{\circ} \mathrm{C}$ for 2 h and then cooled to room temperature. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with $3 \mathrm{~N} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$ and then dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The crude material was triturated with MeCN to give the title compound as a pale brown powder ($1.25 \mathrm{~g}, 1.38 \mathrm{mmol}, 55 \%$ yield $)$.
$[\alpha]_{\mathrm{D}}{ }^{20}=-174^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~s}, 2 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.78-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.53-6.88(\mathrm{~m}, 34 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.67,141.12,140.89$, $140.11,138.83,134.44,132.98,132.59,131.03,130.20,129.60,129.23,128.85,128.71,128.64$, $128.35,128.08,127.86,127.49,127.25,127.11,127.01,126.78,126.27,126.16,126.06,125.87$, 125.71. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-1.92$ (s). m/z HRMS (ESI) found [M-H] 903.2657, $\mathrm{C}_{64} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{P}_{1}$ requires 903.2670.

Synthesis of Substrates

The synthesis of substrates ($\mathbf{1} \mathbf{e} \mathbf{- 1 r}$ other than $\mathbf{1 h}, \mathbf{1 k}$ and $\mathbf{1 0})$ is summarized below. A variety of anthranilamide are commercially available.

Scheme S2.Synthesis of Substrates

anthranilamide
$R=\mathrm{H}, \mathrm{Me}, \mathrm{OMe}, \mathrm{F}, \mathrm{Cl}$
$\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{Me}, \mathrm{Bn}, \mathrm{Ph}, 4$-methoxyphenyl

2-amino-N-(2-methylprop-1-en-1-yl)benzamide (1e)

Synthesized according to the previously published procedure. ${ }^{7}$ A 20 mL
Biotage ${ }^{\circledR}$ tube was charged with anthranilamide ($2.0 \mathrm{~g}, 14.7 \mathrm{mmol}, 1.0$ equiv),
 1-bromo-2-methylprop-1-ene ($1.81 \mathrm{~mL}, 17.6 \mathrm{mmol}, 1.2$ equiv), DMEDA ($316 \mu \mathrm{~L}, 2.94 \mathrm{mmol}, 0.2$ equiv), copper iodide ($280 \mathrm{mg}, 1.47 \mathrm{mmol}, 0.1$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(3.0 \mathrm{~g}, 21.7 \mathrm{mmol}, 1.5$ equiv) and toluene (10 mL), evacuated and backfilled with N_{2}. The reaction tube was sealed with cap and stirred for 16 h at $110^{\circ} \mathrm{C}$ in an oil bath. After cooling to ambient temperature, water was added and the mixture was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and the residue was purified by column chromatography (EtOAc:Hexane $=1: 4$) to obtain the title compound as a white solid ($1.8 \mathrm{~g}, 9.5 \mathrm{mmol}, 64 \%$ yield $)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.65(\mathrm{~m}, 3 \mathrm{H}), 5.51(\mathrm{~s}$, $2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.91,149.12,132.68,127.02$, $117.59,117.19,116.85,116.04,115.81,22.71,16.75 . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$191.1179, $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 191.1179.

2-(methylamino)-N-(2-methylprop-1-en-1-yl)benzamide (1f)

To a solution of $\mathbf{1 e}\left(500 \mathrm{mg}, 2.63 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(727 \mathrm{mg}, 5.26$ mmol, 2.0 equiv) in DMF (20 mL) was added iodomethane ($164 \mu \mathrm{~L}, 2.63$
 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 2 h at $55^{\circ} \mathrm{C}$. The reaction mixture was diluted with EtOAc $(100 \mathrm{~mL})$ and washed with water $(3 \times 50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated in vacuo. Purification by column chromatography (EtOAc:Hexane $=$ $1: 8)$ to afford the title compound as a white solid ($170 \mathrm{mg}, 0.83 \mathrm{mmol}, 32 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.74-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.86(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.44,150.97,133.22,127.03,117.19,115.86,114.76,114.65,111.40,29.80,22.73,16.74 . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$205.1336, $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 205.1335.

2-(benzylamino)-N-(2-methylprop-1-en-1-yl)benzamide (1g)

To a solution of $\mathbf{1 e}\left(350 \mathrm{mg}, 1.84 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(509 \mathrm{mg}, 3.68$ mmol, 2.0 equiv) in DMF (45 mL) was added benzylbromide ($220 \mu \mathrm{~L}, 1.84$
 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 3 h at $60^{\circ} \mathrm{C}$. The reaction mixture was diluted with EtOAc $(100 \mathrm{~mL})$ and washed with water $(3 \times 50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated in vacuo. Purification by column chromatography (EtOAc:Hexane $=$ 1:8) to afford the title compound as a white solid ($110 \mathrm{mg}, 0.39 \mathrm{mmol}, 21 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.68-6.59(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.39,149.87,139.06,133.17,128.71,127.22,127.14,127.11,117.15,116.06,115.19,114.94$, 112.43, 47.27, 22.72, 16.74. m/z HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 281.1648, \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 281.1648 .

2-(cyclohexylamino)-N-(2-methylprop-1-en-1-yl)benzamide was synthesized according to the scheme below.

2-(cyclohexylamino)benzamide

To a solution of 2-aminobenzonitrile ($5.0 \mathrm{~g}, 42.3 \mathrm{mmol}, 1.2$ equiv) in 1,2-dichloroethane (50 mL) was added cyclohexanone ($3.7 \mathrm{~mL}, 36.0 \mathrm{mmol}, 1.0$ equiv), sodium triacetoxyborohydride ($11.4 \mathrm{~g}, 53.8 \mathrm{mmol}, 1.5$ equiv) and acetic acid $(5 \mathrm{~mL})$ at room temperature. The mixture was stirred for 12 h at $40^{\circ} \mathrm{C}$. The reaction mixture was diluted with EtOAc (100 mL) and washed with water $(3 \times 50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated in vacuo. Purification by column chromatography (EtOAc:Hexane $=$ 1:6) to afford the title compound as a white solid ($5.0 \mathrm{~g}, 25.0 \mathrm{mmol}, 69 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.50-4.36(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.63(\mathrm{~m}$, $1 \mathrm{H}), 1.45-1.19(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.56,134.24,133.00,118.22,116.03$, 111.13, 95.59, 51.48, 33.06, 25.76, 24.91. m/z HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 201.1388, \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2}$ requires 201.1386 .

2-(cyclohexylamino)benzamide

To a suspention of 2-(cyclohexylamino)benzamide ($2.1 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(1.5 \mathrm{~g}, 10.5 \mathrm{mmol}\right.$, 1.0 equiv) in DMSO $(5 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{O}_{2}(4.0$ $\mathrm{mL}, 35.3 \mathrm{mmol}, 3.4$ equiv) slowly at ice-cooled temperature. The mixture was
 stirred for 1 h at room temperature. The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(30$ $\mathrm{mL})$ and extracted with EtOAc $(2 \times 50 \mathrm{~mL})$. The organic layer was washed with water $(3 \times 50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated in vacuo. Purification by column chromatography (EtOAc:Hexane $=1: 2$) to afford the title compound as a white solid ($1.7 \mathrm{~g}, 7.8$ mmol, 74 \% yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}$, 1H), $6.72(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 2 \mathrm{H}), 3.41-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.95$ $(\mathrm{m}, 2 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.22(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.44,149.64,133.49,128.65,113.87,112.67,112.40,50.68,32.92,26.02,24.84 . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$219.1492, $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 219.1492.

2-(cyclohexylamino)-N-(2-methylprop-1-en-1-yl)benzamide (1h)

A 20 mL Biotage ${ }^{\circledR}$ tube was charged with 2-(cyclohexylamino)benzamide ($400 \mathrm{mg}, 1.83 \mathrm{mmol}, 1.0$ equiv), 1-bromo-2-methylprop-1-ene ($205 \mu \mathrm{~L}, 2.0$

mmol, 1.1 equiv), DMEDA ($39 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 0.2$ equiv), copper iodide ($34 \mathrm{mg}, 0.18 \mathrm{mmol}, 0.1$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($380 \mathrm{mg}, 2.75 \mathrm{mmol}, 1.5$ equiv) and toluene (5 mL), evacuated and backfilled with N_{2}. The reaction tube was sealed with cap and stirred for 24 h at $110^{\circ} \mathrm{C}$ in an oil bath. After cooling to ambient temperature, water (50 mL) was added and the mixture was extracted with EtOAc (3×50 mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and the residue was purified by column chromatography (EtOAc:Hexane $=1: 9$) to obtain $\mathbf{1 h}$ as a white solid ($270 \mathrm{mg}, 0.99 \mathrm{mmol}$, 54 \% yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.65(\mathrm{~m}$, $2 \mathrm{H}), 6.55(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.69(\mathrm{~s}$, $3 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.20(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.51,149.30$, $133.09,127.43,117.28,115.78,114.35,114.29,112.55,50.82,32.90,26.04,24.84,22.73,16.74$. m / z HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$273.1960, $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 273.1961.

N-(2-methylprop-1-en-1-yl)-2-(phenylamino)benzamide (1i)

To a solution of $\mathbf{1 e}\left(300 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(459 \mathrm{mg}, 3.32$ $\mathrm{mmol}, 2.1$ equiv) in t-Butanol (10 mL) was added bromobenzene ($166 \mu \mathrm{~L}$,
 $1.58 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(14 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.01$ equiv) and 2-Dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (X-Phos, $15 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.02$ equiv) at room temperature. The mixture was refluxed for 12 h under N_{2}. The reaction mixture was diluted with water $(30 \mathrm{~mL})$ and EtOAc (30 mL), extracted with EtOAc $(3 \times 30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated in vacuo. Purification by column chromatography (EtOAc:Hexane = 1:9) to afford the title compound as a light yellow solid ($160 \mathrm{mg}, 0.60 \mathrm{mmol}, 38 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.19(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.05,145.87,141.60,132.58,129.43,127.44,122.70,120.94,118.36,118.30,117.07,116.75$, 116.02, 22.75, 16.79. m/z HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$267.1490, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 267.1492.

2-((4-methoxyphenyl)amino)-N-(2-methylprop-1-en-1-yl)benzamide (1j)

To a solution of $\mathbf{1 e}\left(192 \mathrm{mg}, 1.01 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(307 \mathrm{mg}, 2.22$ $\mathrm{mmol}, 2.2$ equiv) in t-Butanol (5 mL) was added 4-bromoanisole ($127 \mu \mathrm{~L}$,

$1.01 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(9 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) and
2-Dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (X-Phos, $10 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.02$ equiv) at room temperature. The mixture was refluxed for 12 h under N_{2}. The reaction mixture was diluted with water $(30 \mathrm{~mL})$ and EtOAc (30 mL), extracted with EtOAc $(3 \times 30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated in vacuo. Purification by column chromatography (EtOAc:Hexane $=1: 9$) to afford the title compound as a light yellow oil ($167 \mathrm{mg}, 0.56 \mathrm{mmol}, 56 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.11(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.03(\mathrm{~m}$, $3 \mathrm{H}), 6.93-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.67(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.16,156.14,147.72,134.17,132.61,127.27,124.57,117.07,116.95,116.47$, $116.42,114.66,114.61,55.52,22.67,16.71 . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 297.1598, \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 297.1598.

N-(2-methylprop-1-en-1-yl)-2-((4-nitrophenyl)amino)benzamide (1k)

 Synthesized using an adaptation of a previously reported procedure. ${ }^{8}$ To a solution of anthranilamide ($2.0 \mathrm{~g}, 14.7 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.1 \mathrm{~g}, 29.4$ $\mathrm{mmol}, 2.0$ equiv) in t-Butanol (50 mL) was added 4-bromonitrobenzene (2.4 g , $11.8 \mathrm{mmol}, 0.8$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(916 \mathrm{mg}, 1.0 \mathrm{mmol}, 0.07$ equiv) and 2-Dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (X-Phos, $2.0 \mathrm{~g}, 4.2$ mmol, 0.29 equiv) at room temperature. The mixture was refluxed for 12 h under N_{2}. The reaction mixture was diluted with water $(100 \mathrm{~mL})$ and EtOAc (100 mL), extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated in vacuo. Purification by column chromatography (EtOAc:Hexane $=3: 7$) to afford 2-((4 -nitrophenyl)amino)benzamide as a light yellow solid ($2.6 \mathrm{~g}, 10.1 \mathrm{mmol}$). A 20 mL Biotage ${ }^{\circledR}$ tube was charged with the benzamide $(1.0 \mathrm{~g}$, $3.89 \mathrm{mmol}, 1.0$ equiv), 1-bromo-2-methylprop-1-ene ($398 \mu \mathrm{~L}, 3.89 \mathrm{mmol}, 1.0$ equiv), DMEDA (84 $\mu \mathrm{L}, 0.78 \mathrm{mmol}, 0.2$ equiv), copper iodide ($74 \mathrm{mg}, 0.39 \mathrm{mmol}$, 0.1 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(806 \mathrm{mg}, 5.8 \mathrm{mmol}$, 1.5 equiv) and toluene (5 mL), evacuated and backfilled with N_{2}. The reaction tube was sealed with cap and stirred for 24 h at $110^{\circ} \mathrm{C}$ in an oil bath. After cooling to ambient temperature, water (30 mL) was added and the mixture was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and the residue was purified by column chromatography $(E t O A c: H e x a n e=1: 9)$ to obtain the title compound as a yellow oil ($120 \mathrm{mg}, 0.39 \mathrm{mmol}, 7 \%$ yield (2 steps)).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.69(\mathrm{~s}, 1 \mathrm{H}), 8.16-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.59,148.40,141.98,140.85,132.59,127.65,126.26,126.06$, $121.85,121.81,118.92,116.66,116.31,22.73,16.83 . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 312.1344$, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 312.1343.

2-hydroxy-N-(2-methylprop-1-en-1-yl)benzamide (11)

Synthesized using an adaptation of a previously reported procedure. ${ }^{9}$ A 20 mL Biotage ${ }^{\circledR}$ tube was charged with salicylamide ($1.0 \mathrm{~g}, 7.3 \mathrm{mmol}, 1.0$ equiv),
 1-bromo-2-methylprop-1-ene ($874 \mu \mathrm{~L}, 8.5 \mathrm{mmol}, 1.17$ equiv), DMEDA ($237 \mu \mathrm{~L}, 2.2 \mathrm{mmol}, 0.3$ equiv), copper iodide ($139 \mathrm{mg}, 0.73 \mathrm{mmol}, 0.1$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.7 \mathrm{~g}, 12.3 \mathrm{mmol}, 1.7$ equiv) and $\operatorname{MeCN}(8 \mathrm{~mL})$, evacuated and backfilled with N_{2}. The reaction tube was sealed with cap and stirred for 72 h at $50^{\circ} \mathrm{C}$ in an oil bath. After cooling to ambient temperature, water was added and the mixture was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and the residue was purified by column chromatography ($\mathrm{EtOAc}:$ Hexane $=1: 4$) to give the title compound as a white solid ($650 \mathrm{mg}, 3.4 \mathrm{mmol}, 47 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.11(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.55,161.90,134.58,125.20,118.95,118.93,118.19,116.17,114.22,22.73$, 16.77. m/z HRMS (ESI) found [M-H] 190.0874, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{1} \mathrm{O}_{2}$ requires 190.0874.

Substrates $\mathbf{1 m - 1 r}$ were prepared as outlined in the syntheses for substrates $\mathbf{1 i}$.

4-chloro-N-(2-methylprop-1-en-1-yl)-2-(phenylamino)benzamide (1m)

Yellow oil, 17 \% yield (2 steps from 4-chloroanthranilamide). This compound is unstable especially in solution on bench, should be kept dry in
 a freezer.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.42(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~s}$, $1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, \mathrm{J}=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.47,147.56,140.52,138.92$, 129.65, 128.48, 123.80, 122.07, 117.82, 117.16, 116.91, 115.71, 114.80, 22.74, 16.83. m/z HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 301.1104, \mathrm{C}_{17} \mathrm{H}_{18}{ }^{35} \mathrm{Cl}_{1} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 301.1102 .

5-methyl-N-(2-methylprop-1-en-1-yl)-2-(phenylamino)benzamide (1n)
White solid. 7 \% yield (2 steps from 5-methylanthranilamide). This compound is unstable especially in solution on bench, should be kept dry in a freezer.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.12$ $(\mathrm{m}, 3 \mathrm{H}), 7.01(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.80,142.74,142.46,133.30,129.39,128.56,127.90,121.98$, 119.79, 117.53, 117.15, 116.67 (2 overlapping aryl carbons), 22.72, 20.71, 16.81. m/z HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$281.1649, $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 281.1648.

5-methoxy-N-(2-methylprop-1-en-1-yl)-2-(phenylamino)benzamide

 (10)Light yellow solid. 23 \% yield (2 steps from 5-methoxyanthranilamide)
 ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ $(\mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.89(\mathrm{~m}, 4 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.30,154.65,144.14,136.70$, $129.51,124.92,122.91,121.36,118.81,117.95,117.22,116.88,113.57,56.02,22.70,16.73 . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$297.1601, $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 297.1598.

5-fluoro -N-(2-methylprop-1-en-1-yl)-2-(phenylamino)benzamide (1p)

Light yellow solid. 10% yield (2 steps from 5 -fluoroanthranilamide)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-$

$7.24(\mathrm{~m}, 4 \mathrm{H}), 7.14-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.72-6.62(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.42,156.09\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=240.0 \mathrm{~Hz}\right), 142.38,141.30\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.1 \mathrm{~Hz}\right), 129.56,122.43$, $121.11\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=5.6 \mathrm{~Hz}\right), 119.78,119.67\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22.7 \mathrm{~Hz}\right), 119.54,117.50,116.91,114.10\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ 23.3 Hz), 22.73, 16.81. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-122.62(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$ 285.1401, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 285.1398.

5-chloro-N-(2-methylprop-1-en-1-yl)-2-(phenylamino)benzamide (1q)

Light yellow solid. 12 \% yield (2 steps from 5-chloroanthranilamide).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.26$ (m, 2H), $7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 2 \mathrm{H})$,
 $7.08-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.71-6.63(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $164.88,144.54,141.17,132.42,129.56,127.05,123.19,122.71,121.16,119.50,117.68,117.38$,
116.84, 22.77, 16.93. m/z HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 301.1105, \mathrm{C}_{17} \mathrm{H}_{18}{ }^{35} \mathrm{Cl}_{1} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 301.1102 .

2-fluoro-N-(2-methylprop-1-en-1-yl)-6-(phenylamino)benzamide (1r)

Light yellow oil. 64 \% yield (2 steps from 6-fluoroanthranilamide).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.03(\mathrm{~s}, 1 \mathrm{H}), 8.16-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}$, 2H), $7.23-7.18$ (m, 2H), $7.19-7.12$ (m, 1H), $7.10-7.04$ (m, 2H), $6.79-6.72$
 $(\mathrm{m}, 1 \mathrm{H}), 6.52-6.43(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.81(\mathrm{~d}$, $\left.\mathrm{J}_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right), 162.24\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=243.6 \mathrm{~Hz}\right), 149.17\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=5.5 \mathrm{~Hz}\right), 140.98,132.55\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=13.0\right.$ Hz), $129.47,123.63,122.45,117.26,116.75,110.90\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.4 \mathrm{~Hz}\right), 104.82\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=13.8 \mathrm{~Hz}\right)$, 104.27 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=26.3 \mathrm{~Hz}$), 22.72, $16.82 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.77(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$285.1397, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 285.1398.

Substrates $\mathbf{1 s - 1 w}$ were synthesized according to the scheme below.

anthranilamide

2-(phenylamino)benzamide

According to published procedure, ${ }^{10}$ to a solution of anthranilamide (20.0 g , 146.9 mmol , 2.0 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(25.4 \mathrm{~g}, 183.6 \mathrm{mmol}$, 2.5 equiv) in t-Butanol $(500 \mathrm{~mL})$ was added bromobenzene ($7.7 \mathrm{~mL}, 73.5 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.4 \mathrm{~g}$ $\mathrm{mg}, 1.47 \mathrm{mmol}, 0.02$ equiv) and 2-Dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (X-Phos, 1.8 $\mathrm{g}, 3.7 \mathrm{mmol}, 0.05$ equiv) at room temperature. The mixture was refluxed for 24 h under N_{2}. The reaction mixture was diluted with water $(300 \mathrm{~mL})$ and $\operatorname{EtOAc}(300 \mathrm{~mL})$, extracted with EtOAc ($3 \times$ 150 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated in vacuo. Purification by column chromatography (EtOAc :Hexane $=1: 3$) to give the title compound as a light yellow solid ($4.9 \mathrm{~g}, 23.1 \mathrm{mmol}, 31 \%$ yield)
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.52(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.04(\mathrm{t}, \mathrm{J}=$
$7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.03, 146.57,
141.36, 133.03, 129.42, 128.44, 122.98, 121.62, 117.66, 116.07, 115.42. m/z HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$213.1024, $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 213.1022.

(E)-2-(phenylamino)-N-(2-phenylprop-1-en-1-yl)benzamide (1s)

A 20 mL Biotage ${ }^{\circledR}$ tube was charged with 2-(phenylamino) benzamide (1.0 g , $4.7 \mathrm{mmol}, 1.0$ equiv), 1-Bromo-2-phenylpropene (prepared according to a
 previously reported procedure, ${ }^{11} 928 \mathrm{mg}, 4.7 \mathrm{mmol}, 1.0$ equiv), DMEDA ($101 \mu \mathrm{~L}, 0.94 \mathrm{mmol}, 0.2$ equiv), copper iodide ($90 \mathrm{mg}, 0.47 \mathrm{mmol}, 0.1$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.1 \mathrm{~g}, 8.0 \mathrm{mmol}, 1.7$ equiv) and toluene $(5 \mathrm{~mL})$, evacuated and backfilled with N_{2}. The reaction tube was sealed with cap and stirred for 36 h at $110^{\circ} \mathrm{C}$ in an oil bath. After cooling to ambient temperature, water $(80 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and the residue was purified by column chromatography ($\mathrm{EtOAc}: \mathrm{Hexane}=1: 50$) to afford the title compound as a light yellow solid ($480 \mathrm{mg}, 1.5 \mathrm{mmol}, 31 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.19(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, \mathrm{J}=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48-7.16(\mathrm{~m}, 12 \mathrm{H}), 7.08-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.80(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.17,146.18,141.50,141.08,132.98,129.50,128.61,127.53,126.88,125.54$, 122.97, 121.20, 119.78, 118.56, 118.46, 117.94, 116.28, 14.68. m/z HRMS (ESI) found [M+H] ${ }^{+}$ $329.1650, \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 329.1648.

(E)-N-(2-(4-isopropylphenyl)prop-1-en-1-yl)-2-(phenylamino)benz

 amide (1t)A 20 mL Biotage ${ }^{\circledR}$ tube was charged with 2-(phenylamino)benzamide ($1.0 \mathrm{~g}, 4.7 \mathrm{mmol}, 1.0$ equiv), 1-Bromo-2-(4-isopropyl)phenylpropene
 (prepared from 4- isopropyl- α-methylstyrene according to a previously reported procedure, ${ }^{11} 1.1 \mathrm{~g}$, $4.7 \mathrm{mmol}, 1.0$ equiv), DMEDA ($101 \mu \mathrm{~L}, 0.94 \mathrm{mmol}, 0.2$ equiv), copper iodide ($90 \mathrm{mg}, 0.47 \mathrm{mmol}$, 0.1 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(1.1 \mathrm{~g}, 8.0 \mathrm{mmol}, 1.7\right.$ equiv) and toluene (5 mL), evacuated and backfilled with N_{2}. The reaction tube was sealed with cap and stirred for 48 h at $120^{\circ} \mathrm{C}$ in an oil bath. After cooling to ambient temperature, water (80 mL) was added and the mixture was extracted with EtOAc (3 x 50 mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and the residue was purified by column chromatography ($\mathrm{EtOAc}:$ Hexane $=1: 50$) to afford the title compound as a light yellow solid ($120 \mathrm{mg}, 0.32 \mathrm{mmol}, 7 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.20(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$
$-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{dd}, \mathrm{J}=8.2,3.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.03(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, \mathrm{J}$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91($ hept, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.10,147.67,146.14,141.51,138.50,132.91,129.48,127.51,126.67,125.47$, 122.93, 121.18, 119.15, 118.53, 118.42, 118.01, 116.22, 33.88, 24.11, 14.68. m/z HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 371.2122, \mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 371.2118 .

(E)-N-(2-(4-(tert-butyl)phenyl)prop-1-en-1-yl)-2-(phenylamino)be

 nzamide (1u)A 20 mL Biotage ${ }^{\circledR}$ tube was charged with 2-(phenylamino)benzamide ($1.0 \mathrm{~g}, 4.7 \mathrm{mmol}, 1.0$ equiv),

1-Bromo-2-(4-tert-butyl)phenylpropene (prepared from 4-tert-butyl- α-methylstyrene according to a previously reported procedure, ${ }^{11} 1.2 \mathrm{~g}, 4.7 \mathrm{mmol}, 1.0$ equiv), DMEDA ($101 \mu \mathrm{~L}, 0.94 \mathrm{mmol}, 0.2$ equiv), copper iodide ($90 \mathrm{mg}, 0.47 \mathrm{mmol}, 0.1$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.1 \mathrm{~g}, 8.0 \mathrm{mmol}, 1.7$ equiv) and toluene (5 mL), evacuated and backfilled with N_{2}. The reaction tube was sealed with cap and stirred for 72 h at $120^{\circ} \mathrm{C}$ in an oil bath. After cooling to ambient temperature, water $(80 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{EtOAc}\left(3 \times 50 \mathrm{~mL}\right.$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and the residue was purified by column chromatography ($\mathrm{EtOAc}: \mathrm{Hexane}=1: 50$) to afford the title compound as a light yellow solid ($250 \mathrm{mg}, 0.65 \mathrm{mmol}, 14 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.21(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ $-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.09,149.90,146.12,141.52$, 138.06, 132.90, 129.48, 127.54, 125.52, 125.18, 122.92, 121.17, 119.21, 118.44, 118.40, 118.05, $116.25,34.61,31.47,14.60 . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 385.2279, \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 385.2274 .
(E)-2-(phenylamino)-N-(2-(thiophen-2-yl)prop-1-en-1-yl)benzamide (1v)
A 20 mL Biotage ${ }^{\circledR}$ tube was charged with 2-(phenylamino) benzamide
 ($600 \mathrm{mg}, 2.8 \mathrm{mmol}, 1.0$ equiv), 2-(1-bromoprop-1-en-2-yl)thiophene (prepared from 2-acetyl thiophene according to a previously reported procedure, ${ }^{12} 569 \mathrm{mg}, 2.8 \mathrm{mmol}, 1.0$ equiv), DMEDA ($61 \mu \mathrm{~L}, 057 \mathrm{mmol}, 0.2$ equiv), copper iodide ($53 \mathrm{mg}, 0.28 \mathrm{mmol}, 0.1$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(663 \mathrm{mg}, 4.8$ mmol, 1.7 equiv) and toluene (4 mL), evacuated and backfilled with N_{2}. The reaction tube was sealed
with cap and stirred for 72 h at $120^{\circ} \mathrm{C}$ in an oil bath. After cooling to ambient temperature, water (80 mL) was added and the mixture was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and the residue was purified by column chromatography $($ EtOAc:Hexane $=1: 50)$ to afford the title compound as a yellow solid $(95 \mathrm{mg}, 0.28 \mathrm{mmol}, 10 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (d, J = $10.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.39-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.89,146.16,145.31,141.44,133.05,129.49,127.55,127.50,123.05,123.01,122.33$, $121.19,118.74,118.52,117.78,116.37,113.50,15.05 . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 335.1218$, $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{1} \mathrm{~S}_{1}$ requires 335.1213.

Synthesis of Products

General procedure for asymmetric fluorcyclization:

To a one dram ($15 \times 45 \mathrm{~mm}$) vial equipped with an 8 mm magnetic stirrer bar, the substrate (0.1 $\mathrm{mmol}, 1.0$ equiv), $5 \AA$ molecular sieves ($<50 \mu \mathrm{~m}$ powder, 30 mg), anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}(17 \mathrm{mg}, 0.16$ $\mathrm{mmol}, 1.6$ equiv), Selectfluor ($57 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv) and the specified catalyst (0.01 mmol , 0.1 equiv) were added. Toluene (2 mL) was added to the mixture and the vial was capped with a screw cap. The reaction mixture was stirred vigorously for 24 h at room temperature. The mixture was poured into saturated NaHCO_{3} solution, extracted with EtOAc $(2 \times 5 \mathrm{~mL})$ and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was purified by flash column chromatography, eluting with EtOAc:Hexanes. Most of the products except for $\mathbf{2 e}, \mathbf{2 k}$ and $\mathbf{2 1}$ show blue spot on TLC under long wave (365 nm) UV lamp.
(R)-2-amino- N-(2-fluoro-2-methyl-1-((2-((2-methylprop-1-en-1-yl)carbamoyl)phenyl)amino)pro pyl)benzamide (2e)
Only compound identification data was provided.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.58(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.37(\mathrm{~m}$, 2 H), 7.33 (ddd, $\mathrm{J}=8.6,7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.19$ (ddd, J $=8.5,7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.64(\mathrm{~m}, 3 \mathrm{H}), 6.65$ $-6.57(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dt}, \mathrm{J}=20.4,8.9 \mathrm{~Hz}, 1 \mathrm{H})$,

$5.52(\mathrm{~s}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{~d}, \mathrm{~J}=22.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Acetone-d6) $8170.53,167.61,151.35,149.04,133.78,133.15,129.38,129.04,118.79$, $117.69,117.05,116.93,116.84,116.10,115.55,113.72$, $97.91(\mathrm{~d}, \mathrm{~J}=175.0 \mathrm{~Hz}), 64.41(\mathrm{~d}, \mathrm{~J}=21.4$ Hz), $24.70\left(\mathrm{~d}, \mathrm{~J}=24.2 \mathrm{~Hz}\right.$), $24.05(\mathrm{~d}, \mathrm{~J}=23.7 \mathrm{~Hz}) ., 23.14,17.15 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-157.81(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{Na}]^{+} 421.2010, \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~F}_{1} \mathrm{~N}_{4} \mathrm{Na}_{1} \mathrm{O}_{2}$ requires 421.2010.

(R)-2-(2-fluoropropan-2-yl)-1-methyl-2,3-dihydroquinazolin-4(1H)-one (2f)

 Reaction carried out according to the general procedure using $\mathbf{1 f}(20.4 \mathrm{mg}, 0.1$ mmol, 1.0 equiv) as substrate, toluene $(2.0 \mathrm{ml})$ as solvent and (R) - $\mathrm{PhDAP}(7.5$ $\mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) as catalyst, with Selectfluor ($57 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv), $5 \AA$ molecular sieves (30 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(17 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv) by stirring for 36 h at room temperature to give $\mathbf{2 f}$ as an white solid ($16.0 \mathrm{mg}, 0.072 \mathrm{mmol}, 72 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.70$ $(\mathrm{m}, 1 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.60(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 1.36\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=22.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.20$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=21.9 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.41,147.58,134.59,128.27,117.43$, $115.28,111.81,100.00\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=172.7 \mathrm{~Hz}\right), 76.78\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=29.7 \mathrm{~Hz}\right), 39.59\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4.5 \mathrm{~Hz}\right), 23.03$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=23.2 \mathrm{~Hz}\right), 21.76\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.1 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-142.82(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$223.1242, $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 223.1241. HPLC (Chiralpak IC column, 85:15 hexanes/isopropanol, $1 \mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=11.9 \mathrm{~min}$ (major), 12.9 min (minor); 84% ee.

(R)-1-benzyl-2-(2-fluoropropan-2-yl)-2,3-dihydroquinazolin-4(1H)-one (2g)

Reaction carried out according to the general procedure using $\mathbf{1 g}(28.0 \mathrm{mg}, 0.1$ mmol, 1.0 equiv) as substrate, toluene $(2.0 \mathrm{ml})$ as solvent and (R)-PhDAP (7.5 $\mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) as catalyst, with Selectfluor ($57 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$
 equiv), $5 \AA$ molecular sieves (30 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(17 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv) by stirring for 48 h at room temperature to give $\mathbf{2 g}$ as an white solid ($17.9 \mathrm{mg}, 0.060 \mathrm{mmol}, 60 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89\left(\mathrm{dd}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ $-7.20(\mathrm{~m}, 6 \mathrm{H}), 6.79(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}$, $\left.\mathrm{J}_{\mathrm{H}-\mathrm{F}}=7.4, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.50(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=22.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.26\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=22.4\right.$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.27,147.01,136.95,134.37,128.95,128.46,127.78$, $127.44,118.72,117.16,114.52,99.66\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=172.5 \mathrm{~Hz}\right), 74.70\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=29.2 \mathrm{~Hz}\right), 55.87\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $3.7 \mathrm{~Hz}), 23.01\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23.4 \mathrm{~Hz}\right), 22.41\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23.8 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-143.08$ (m). m/z HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$299.1557, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 299.1554. HPLC (Chiralpak

IC column, $86: 14$ hexanes $/$ isopropanol, $1 \mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=8.6 \mathrm{~min}$ (minor), 10.9 min (major); 84% ee.
(R)-1-cyclohexyl-2-(2-fluoropropan-2-yl)-2,3-dihydroquinazolin-4(1H)-one (2h)

Reaction carried out according to the general procedure using $1 \mathrm{~h}(27.2 \mathrm{mg}, 0.1$ $\mathrm{mmol}, 1.0$ equiv) as substrate, toluene $(2.0 \mathrm{ml})$ as solvent and (R)-PhDAP (7.5
 $\mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) as catalyst, with Selectfluor ($57 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv), $5 \AA$ molecular sieves (30 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(17 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv) by stirring for 48 h at room temperature to give $\mathbf{2 h}$ as an white solid ($10.0 \mathrm{mg}, 0.034 \mathrm{mmol}, 34 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.56$ $\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=11.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.39-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-0.99(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.61,148.92,133.50,127.24,122.52,121.51,98.07\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=172.5\right.$ $\mathrm{Hz}), 69.54\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=28.7 \mathrm{~Hz}\right), 67.36,33.04,30.22,25.67,26.35\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=15.5 \mathrm{~Hz}\right), 23.65\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ 23.5 Hz), $22.84\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23.9 \mathrm{~Hz}\right.$). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-144.92(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$291.1867, $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 291.1867. HPLC (Chiralpak IA column, 87:13 hexanes/isopropanol, $1 \mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=8.8 \mathrm{~min}$ (major), 14.2 min (minor); 94\% ee.

(R)-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one

 (2i)Reaction carried out according to the general procedure using $\mathbf{1 i}(26.6 \mathrm{mg}, 0.1$ mmol, 1.0 equiv) as substrate, toluene $(2.0 \mathrm{ml})$ as solvent and (R) - $\mathrm{PhDAP}(7.5$
 $\mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) as catalyst, with Selectfluor ($57 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv), $5 \AA$ molecular sieves (30 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($17 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv) by stirring for 24 h at room temperature to give $\mathbf{2 i}$ as an white solid ($25.6 \mathrm{mg}, 0.090 \mathrm{mmol}, 90 \%$ yield). By using (R) $-4-\mathrm{Ph}-\mathrm{PhDAP}(9.0 \mathrm{mg}$, 0.01 mmol) as a catalyst, the same product was obtained in 97% ee and 90% yield.
${ }^{1}{ }^{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 3 \mathrm{H})$, $7.22(\mathrm{~d}, \mathrm{~J}-8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}$, $\left.\mathrm{J}_{\mathrm{H}-\mathrm{F}}=10.0, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.41\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=21.9 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.37\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=21.7 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.12,149.18,145.50,133.50,129.56,127.82,124.75,123.75,122.19,121.61$, 121.47, $98.08\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=174.0 \mathrm{~Hz}\right), 77.41\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=28.9 \mathrm{~Hz}\right), 23.69\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23.9 \mathrm{~Hz}\right), 23.03\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}\right.$ $=24.1 \mathrm{~Hz}$) ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-143.39(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$285.1397, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 285.1398. HPLC (Chiralpak IA column, 90:10 hexanes/isopropanol, 1 $\mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=8.9 \mathrm{~min}$ (major), 12.1 min (minor); 98% ee.
(R)-2-(2-fluoropropan-2-yl)-1-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one ($\mathbf{2 j}$)

Reaction carried out according to the general procedure using $\mathbf{1 j}$ ($29.6 \mathrm{mg}, 0.1$ $\mathrm{mmol}, 1.0$ equiv) as substrate, toluene $(2.0 \mathrm{ml})$ as solvent and $(R)-\mathrm{PhDAP}(7.5 \mathrm{mg}$, $0.01 \mathrm{mmol}, 0.1$ equiv) as catalyst, with Selectfluor ($57 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv), $5 \AA$ molecular sieves (30 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(17 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv) by
 stirring for 24 h at room temperature to give $\mathbf{2 j}$ as an yellow solid ($20.5 \mathrm{mg}, 0.065 \mathrm{mmol}, 65 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, \mathrm{J}=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}$, $1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}$, $\left.\mathrm{J}_{\mathrm{H}-\mathrm{F}}=9.6, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.43\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=21.9 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.36\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=21.8 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.69,158.26,147.63,143.35,133.81,128.25\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=12.9 \mathrm{~Hz}\right)$, 127.43, $122.15(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}), 121.67,121.22,115.57,99.27\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=175.3 \mathrm{~Hz}\right), 78.36\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ 26.4 Hz), $55.90,24.06\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.0 \mathrm{~Hz}\right), 23.20\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.1 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-143.27(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 315.1503, \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 315.1503. HPLC (Chiralpak IA column, 90:10 hexanes/isopropanol, $1 \mathrm{ml} / \mathrm{min}$); $\operatorname{tr}=11.9 \mathrm{~min}$ (major), 15.4 min (minor); 97% ee.

(R)-2-(2-fluoropropan-2-yl)-1-(4-nitrophenyl)-2,3-dihydroquinazolin-4(1H)one (2k)

Reaction carried out according to the general procedure using $\mathbf{1 k}(31.1 \mathrm{mg}, 0.1$ mmol, 1.0 equiv) as substrate, toluene $(2.0 \mathrm{ml})$ as solvent and $(R)-\mathrm{PhDAP}(7.5$ $\mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) as catalyst, with Selectfluor ($57 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv), $5 \AA$ molecular sieves (30 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(17 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv)
 by stirring for 24 h at room temperature to give $\mathbf{2 k}$ as an yellow solid ($14.3 \mathrm{mg}, 0.043 \mathrm{mmol}, 43 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20-8.13(\mathrm{~m}, 2 \mathrm{H}), 8.05(\mathrm{dd}, \mathrm{J}=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}$, $1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.11\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=9.5, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.44\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=21.9\right.$ $\mathrm{Hz}, 3 \mathrm{H}), 1.31\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=21.7 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Acetone-d6) $\delta 162.77,154.91$, 143.32, $143.26,133.93,128.70,126.18,125.39\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}\right), 125.27,123.80,120.35\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}\right)$, $99.23\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=177.2 \mathrm{~Hz}\right), 76.27\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.7 \mathrm{~Hz}\right), 24.34\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.1 \mathrm{~Hz}\right), 23.33\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.1\right.$ Hz). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-142.50(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]{ }^{+} 330.1249$,
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{1} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 330.1248. HPLC (Chiralpak IA column, 90:10 hexanes/isopropanol, 1 $\mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=16.8 \mathrm{~min}$ (major), 24.7 min (minor); 95% ee.

2-(2-fluoropropan-2-yl)-2H-benzo[e][1,3]oxazin-4(3H)-one (21)

Reaction carried out according to the general procedure using $\mathbf{1 1}(9.6 \mathrm{mg}, 0.05$ mmol, 1.0 equiv) as substrate, toluene $(0.5 \mathrm{ml})$ as solvent and (R)-OCyDAP (4.0
 $\mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv) as catalyst, with Selectfluor ($21 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.2$ equiv), $5 \AA$ molecular sieves (15 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(7 \mathrm{mg}, 0.065 \mathrm{mmol}, 1.3$ equiv) by stirring for 24 h at room temperature to give 21 as an white solid ($7.4 \mathrm{mg}, 0.035 \mathrm{mmol}, 71 \%$ yield). By using (S)-VAPOL Phosphoric acid ($3.0 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv) as a catalyst, enantiomer of the product (ent-21) was obtained in 96% ee and 76% yield. This reaction could compete with fluorohydration reaction if the reaction mixture contains water. Using dry solvent, Selectfluor, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and molecular sieves is important to obtain high yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{dd}, \mathrm{J}=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{td}, \mathrm{J}=7.5$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 5.29\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.55\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=\right.$ $22.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d6) δ 162.07, 156.69, 134.31, 127.18, 122.09, 118.19, 116.16, $95.16\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=174.4 \mathrm{~Hz}\right), 86.08\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=25.7 \mathrm{~Hz}\right), 21.94\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}\right), 21.79\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ 8.6 Hz). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-153.54(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 210.0927$, $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~F}_{1} \mathrm{~N}_{1} \mathrm{O}_{2}$ requires 210.0925. HPLC (Chiralpak IA column, 96:04 hexanes/isopropanol, 1 $\mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=14.4 \mathrm{~min}$ (major), 16.4 min (minor); 98% ee.

(R)-7-chloro-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4(1 H)-one (2m)

Reaction carried out according to the general procedure using $\mathbf{1 m}(30.1 \mathrm{mg}$, $0.1 \mathrm{mmol}, 1.0$ equiv) as substrate, toluene $(2.0 \mathrm{ml})$ as solvent and $(R)-\mathrm{PhDAP}$
 ($7.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) as catalyst, with Selectfluor ($57 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv), $5 \AA$ molecular sieves (30 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(17 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv) by stirring for 24 h at room temperature to give $\mathbf{2 m}$ as an white solid ($26.9 \mathrm{mg}, 0.084 \mathrm{mmol}, 84 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, \mathrm{J}=8.4 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{dd}, \mathrm{J}=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 1 \mathrm{H}), 4.93\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=\right.$ $9.5 \mathrm{~Hz}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.44\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=21.9 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.35\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=21.7 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Acetone-d6) $\delta 162.78,149.48,147.77,138.99,130.66,130.13,126.08,125.04,122.62,121.81$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=1.8 \mathrm{~Hz}\right), 121.25,99.51\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=176.6 \mathrm{~Hz}\right), 77.99\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=25.1 \mathrm{~Hz}\right), 24.23\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.0\right.$

Hz), $23.26\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.0 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-143.59(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$319.1007, $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{1} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 319.1008. HPLC (Chiralpak IA column, 90:10 hexanes/isopropanol, $1 \mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=7.8 \mathrm{~min}$ (major), 8.8 min (minor); 89% ee.

(R)-2-(2-fluoropropan-2-yl)-6-methyl-1-phenyl-2,3-dihydroquinazolin-4(1

 H)-one (2n)Reaction carried out according to the general procedure using $\mathbf{1 n}(28.4 \mathrm{mg}, 0.1$ mmol, 1.0 equiv) as substrate, toluene $(2.0 \mathrm{ml})$ as solvent and (R) - $\mathrm{PhDAP}(7.5$
 $\mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) as catalyst, with Selectfluor ($57 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv), $5 \AA$ molecular sieves (30 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(17 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv) by stirring for 18 h at room temperature to give $\mathbf{2 n}$ as an white solid ($23.2 \mathrm{mg}, 0.078 \mathrm{mmol}, 78 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.12(\mathrm{~m}$, 3 H), 7.09 (t, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.89 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.94 (dd, $\mathrm{J}_{\mathrm{H}-\mathrm{F}}=10.5, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (s , $3 \mathrm{H}), 1.40\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=22.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.39\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=21.7 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Acetone-d6) δ $163.55,150.86,143.61,134.60,132.74,130.28,128.31,124.57,124.02,123.22,123.12,99.14$ (d, $\mathrm{J}_{\mathrm{C}-\mathrm{F}}=175.8 \mathrm{~Hz}$), $77.91\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=25.8 \mathrm{~Hz}\right), 24.27\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.1 \mathrm{~Hz}\right), 23.53\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.0 \mathrm{~Hz}\right), 20.90$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-143.62(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]{ }^{+}$299.1553, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 299.1554. HPLC (Chiralpak IA column, 90:10 hexanes/isopropanol, 1 $\mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=9.6 \mathrm{~min}$ (major), 10.7 min (minor); 97% ee.

(R)-2-(2-fluoropropan-2-yl)-6-methoxy-1-phenyl-2,3-dihydroquinazo

lin-4(1H)-one (20)

Reaction carried out according to the general procedure using $\mathbf{1 0}$ (29.6 $\mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) as substrate, toluene $(2.0 \mathrm{ml})$ as solvent and
 (R)-PhDAP ($7.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) as catalyst, with Selectfluor ($57 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv), $5 \AA$ molecular sieves (30 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(17 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv) by stirring for 24 h at room temperature to give $\mathbf{2 o}$ as an white solid ($17.3 \mathrm{mg}, 0.055 \mathrm{mmol}, 55 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H})$, $7.17-7.04(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.92(\mathrm{~m}, 2 \mathrm{H}), 4.97\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=10.9, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~d}$, $\left.\mathrm{J}_{\mathrm{H}-\mathrm{F}}=21.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.39\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=22.0 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Acetone-d6) $\delta 163.15,156.59$, $151.44,139.02,130.28,125.71\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right), 125.40,124.21,122.55,121.35,110.91,98.98(\mathrm{~d}$, $\mathrm{J}_{\mathrm{C}-\mathrm{F}}=175.7 \mathrm{~Hz}$), $78.06\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=25.7 \mathrm{~Hz}\right), 56.03,24.21\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.4 \mathrm{~Hz}\right), 23.73\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.1 \mathrm{~Hz}\right)$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-144.10(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]{ }^{+}$315.1503,
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 315.1503. HPLC (Chiralpak IB column, 90:10 hexanes/isopropanol, 1 $\mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=7.9 \mathrm{~min}$ (major), 9.1 min (minor); 94% ee.

(R)-6-fluoro-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2p)

Reaction carried out according to the general procedure using $\mathbf{1 p}(28.4 \mathrm{mg}$, $0.1 \mathrm{mmol}, 1.0$ equiv) as substrate, toluene (2.0 ml) as solvent and
 (R)-PhDAP ($7.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) as catalyst, with Selectfluor ($57 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv), $5 \AA$ molecular sieves (30 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(17 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv) by stirring for 24 h at room temperature to give $\mathbf{2 p}$ as an white solid ($28.2 \mathrm{mg}, 0.093 \mathrm{mmol}, 93 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=8.5, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.95\left(\mathrm{dd}, \mathrm{J}=8.9, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.92\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=10.9, \mathrm{~J}=4.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 1.40\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=21.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.39\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=21.9 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Acetone-d6) $\delta 162.46\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.3 \mathrm{~Hz}\right), 159.08\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=240.4 \mathrm{~Hz}\right), 150.77,142.41\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.2 \mathrm{~Hz}\right), 130.43$, $125.78\left(\mathrm{dd}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=7.3,2.0 \mathrm{~Hz}\right), 125.45\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7.5 \mathrm{~Hz}\right), 124.96,123.38\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1.6 \mathrm{~Hz}\right), 121.03(\mathrm{~d}$, $\mathrm{J}_{\mathrm{C}-\mathrm{F}}=23.7 \mathrm{~Hz}$), $113.72\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23.8 \mathrm{~Hz}\right), 99.25\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=176.6 \mathrm{~Hz}\right), 77.96\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.7 \mathrm{~Hz}\right), 24.23$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=24.2 \mathrm{~Hz}\right), 23.53\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23.9 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.31(\mathrm{~m}),-144.22$ (m). m/z HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 303.1304, \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 303.1303. HPLC (Chiralpak IA column, $90: 10$ hexanes/isopropanol, $1 \mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=9.0 \mathrm{~min}$ (major), 9.9 min (minor); 96% ee.
(R)-6-chloro-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4 (1H)-one (2q)

Reaction carried out according to the general procedure using $\mathbf{1 q}(30.1 \mathrm{mg}$, $0.1 \mathrm{mmol}, 1.0$ equiv) as substrate, toluene (2.0 ml) as solvent and
 (R)-PhDAP ($7.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) as catalyst, with Selectfluor ($57 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv), $5 \AA$ molecular sieves (30 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(17 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv) by stirring for 24 h at room temperature to give $\mathbf{2 q}$ as an white solid ($23.6 \mathrm{mg}, 0.074 \mathrm{mmol}, 74 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33(\mathrm{~d}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 3 \mathrm{H})$, 7.23-7.12 (m, 3H), $6.90(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=11.0 \mathrm{~Hz}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.45\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=\right.$ $21.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.36\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=21.7 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Acetone d-6) $\delta 162.45,149.89$, 145.07, 133.59, 130.50, 127.65, 127.45, 125.50, $124.97\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1.9 \mathrm{~Hz}\right), 124.36,124.14,99.42(\mathrm{~d}$, $\left.\mathrm{J}_{\mathrm{C}-\mathrm{F}}=176.8 \mathrm{~Hz}\right), 77.79\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.7 \mathrm{~Hz}\right), 24.24\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.2 \mathrm{~Hz}\right), 23.34\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.0 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-144.36(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$319.1007,
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{1} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 319.1008. HPLC (Chiralpak IC column, 88:12 hexanes/isopropanol, 1 $\mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=6.4 \mathrm{~min}$ (minor), 7.0 min (major); 97% ee.

(R)-5-fluoro-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4(1H)one (2r)

Reaction carried out according to the general procedure using $\mathbf{1 r}(28.4 \mathrm{mg}, 0.1$ mmol, 1.0 equiv) as substrate, toluene $(2.0 \mathrm{ml})$ as solvent and $(R)-\mathrm{PhDAP}(7.5$
 $\mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) as catalyst, with Selectfluor ($57 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv), $5 \AA$ molecular sieves (30 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(17 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6$ equiv) by stirring for 24 h at room temperature to give $2 \mathbf{r}$ as an white solid ($25.3 \mathrm{mg}, 0.084 \mathrm{mmol}, 84 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H})$, $6.77-6.65(\mathrm{~m}, 2 \mathrm{H}), 4.92\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=11.7, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.48\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=21.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.36\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}\right.$ $=21.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Acetone-d6) $\delta 162.95\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=259.7 \mathrm{~Hz}\right.$), $160.70\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.7\right.$ $\mathrm{Hz}), 149.94,148.45\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 134.17\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10.9 \mathrm{~Hz}\right), 130.40,125.32,123.97,118.61(\mathrm{~d}$, $\left.\mathrm{J}_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 113.01\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.9 \mathrm{~Hz}\right), 110.62\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21.5 \mathrm{~Hz}\right), 99.24\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=176.7 \mathrm{~Hz}\right), 77.50$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=24.7 \mathrm{~Hz}\right), 24.33\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.2 \mathrm{~Hz}\right), 23.35\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.1 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-110.71(\mathrm{~m}),-144.38(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 303.1303, \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 303.1303. HPLC (Chiralpak IA column, 90:10 hexanes/isopropanol, $1 \mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=9.7 \mathrm{~min}$ (major), 12.5 min (minor); 92% ee.

(R)-2-((S)-1-fluoro-1-phenylethyl)-1-phenyl-2,3-dihydroquinazolin-4(1H) -one (2s)

Reaction carried out according to the general procedure using $1 \mathrm{~s}(16.4 \mathrm{mg}$, $0.05 \mathrm{mmol}, 1.0$ equiv) as substrate, xylene (1.0 ml , mixture of isomers) as
 solvent and (R)-PhDAP ($3.8 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv) as catalyst, with Selectfluor ($28.3 \mathrm{mg}, 0.08$ mmol, 1.6 equiv), $4 \AA$ molecular sieves (15 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(8.5 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.6$ equiv) by stirring for 72 h at room temperature to give 2s as an white solid ($12.9 \mathrm{mg}, 0.037 \mathrm{mmol}, 74 \%$ yield). By using (R)-biPhDAP ($4.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv) as a catalyst, the same product was obtained in 87% ee and 42% yield.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.19-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{t}$, $\mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15-6.07(\mathrm{~m}, 1 \mathrm{H}), 5.05\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=10.0, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $1.81\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=23.3 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Acetone-d6) $\delta 163.31,150.59,146.68,141.87(\mathrm{~d}$, $\left.\mathrm{J}_{\mathrm{C}-\mathrm{F}}=22.1 \mathrm{~Hz}\right), 133.46,130.22,129.08\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1.4 \mathrm{~Hz}\right), 129.03\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1.4 \mathrm{~Hz}\right), 128.21,126.94(\mathrm{~d}$,
$\left.\mathrm{J}_{\mathrm{C}-\mathrm{F}}=9.3 \mathrm{~Hz}\right), 125.30,124.26,123.98\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.5 \mathrm{~Hz}\right), 122.68,122.62,101.65\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=182.7 \mathrm{~Hz}\right)$, $79.02\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=25.5 \mathrm{~Hz}\right), 22.95\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22.8 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-148.04(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 347.1552, \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 347.1554. HPLC (Chiralpak IC column, $88: 12$ hexanes/isopropanol, $1 \mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=12.0 \mathrm{~min}$ (minor), 14.0 min (major); 72% ee.
(R)-2-((S)-1-fluoro-1-(4-isopropylphenyl)ethyl)-1-phenyl-2,3-dihydroquinazoli n-4(1H)-one (2t)

Reaction carried out according to the general procedure using $\mathbf{1 t}$ ($18.5 \mathrm{mg}, 0.05$ mmol, 1.0 equiv) as substrate, xylene (1.0 ml , mixture of isomers) as solvent and (R)-PhDAP ($3.8 \mathrm{mg}, 0.005 \mathrm{mmol}$, 0.1 equiv) or as catalyst, with Selectfluor (28.3 $\mathrm{mg}, 0.08 \mathrm{mmol}, 1.6$ equiv), $4 \AA$ molecular sieves (15 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(8.5 \mathrm{mg}$,
 $0.08 \mathrm{mmol}, 1.6$ equiv) by stirring for 72 h at room temperature to give $\mathbf{2 t}$ as an white solid (8.9 mg , $0.023 \mathrm{mmol}, 46 \%$ yield $)$. By using (R)-biPhDAP ($4.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv) as a catalyst, the same product was obtained in 77% ee and 49% yield.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.05$ $(\mathrm{m}, 3 \mathrm{H}), 6.96-6.88(\mathrm{~m}, \mathrm{~J}=3 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=12.1, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.94-2.76 (m, 1H), $1.85\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=23.2 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.22(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Acetone-d6) $\delta 163.26\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=9.1 \mathrm{~Hz}\right), 150.58,149.70$, $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=1.3 \mathrm{~Hz}\right), 146.69,139.01\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $22.1 \mathrm{~Hz}), 133.34,130.20,128.16\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1.9 \mathrm{~Hz}\right), 127.10\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.9 \mathrm{~Hz}\right), 126.98,126.97,125.36$, $124.48,123.81,122.47\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=11.3 \mathrm{~Hz}\right), 101.38\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=181.7 \mathrm{~Hz}\right), 79.05\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26.6 \mathrm{~Hz}\right)$, $34.74,24.46\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24.5 \mathrm{~Hz}\right), 22.98\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22.6 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-147.34$ (m). m/z HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+}$389.2034, $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 389.2024. HPLC (Chiralpak IA column, $90: 10$ hexanes $/$ isopropanol, $1 \mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=8.4 \mathrm{~min}$ (minor), 9.9 min (major); 70% ee.
(R)-2-((S)-1-(4-(tert-butyl)phenyl)-1-fluoroethyl)-1-phenyl-2,3-dihydroquinaz olin-4(1H)-one (2u)

Reaction carried out according to the general procedure using $\mathbf{1 u}(19.2 \mathrm{mg}, 0.05$ mmol, 1.0 equiv) as substrate, xylene (1.0 ml , mixture of isomers) as solvent and (R)-PhDAP ($3.8 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv) or as catalyst, with Selectfluor (28.3 $\mathrm{mg}, 0.08 \mathrm{mmol}, 1.6$ equiv), $4 \AA$ molecular sieves (15 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(8.5 \mathrm{mg}$,
 $0.08 \mathrm{mmol}, 1.6$ equiv) by stirring for 72 h at room temperature to give $\mathbf{2 u}$ as an white solid (11.1 mg , $0.028 \mathrm{mmol}, 55 \%$ yield $)$. By using (R)-biPhDAP ($4.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv) as a catalyst, the same product was obtained in 84% ee and 40% yield.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.05\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=9.5, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.83\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=23.2 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Acetone-d6) $\delta 163.34,151.83,150.57,146.69,138.54\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22.2 \mathrm{~Hz}\right), 133.31,130.19,128.16$, $126.84\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.9 \mathrm{~Hz}\right), 125.82,125.39,124.55,123.76\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.3 \mathrm{~Hz}\right), 122.47,122.40,101.30(\mathrm{~d}$, $\left.\mathrm{J}_{\mathrm{C}-\mathrm{F}}=181.5 \mathrm{~Hz}\right), 79.13\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26.7 \mathrm{~Hz}\right), 35.21,31.75,22.99\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22.6 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-147.34(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 403.2184, \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1}$ requires 403.2180. HPLC (Chiralpak IC column, 88:12 hexanes/isopropanol, $1 \mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=12.5 \mathrm{~min}$ (minor), 13.9 min (major); 86% ee.
(R)-2-((R)-1-fluoro-1-(thiophen-2-yl)ethyl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2v)

Reaction carried out according to the general procedure using $\mathbf{1 v}(16.7 \mathrm{mg}$, $0.05 \mathrm{mmol}, 1.0$ equiv) as substrate, xylene (1.0 ml , mixture of isomers) as solvent and (R)-PhDAP ($3.8 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv) or as catalyst, with Selectfluor ($28.3 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.6$ equiv), $5 \AA$ molecular sieves (15 mg) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($8.5 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.6$ equiv) by stirring for 72 h at room
 temperature to give 2 v as an white solid ($9.0 \mathrm{mg}, 0.026 \mathrm{mmol}, 51 \%$ yield). By using $(R)-4-\mathrm{Ph}-\mathrm{PhDAP}(4.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.1$ equiv) as a catalyst, the same product was obtained in 58% ee and 53% yield.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=7.8, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.13$ (m, 3H), 7.05-7.01 (m, 1H), $7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35$ $(\mathrm{d}, \mathrm{J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14\left(\mathrm{dd}, \mathrm{J}_{\mathrm{H}-\mathrm{F}}=9.4, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.82\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{F}}=22.2 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (151 MHz , Acetone-d6) $\delta 163.11,150.48,146.35,144.57\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1.2 \mathrm{~Hz}\right), 144.40,133.52,130.33$, $128.31,127.70,126.96\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=5.4 \mathrm{~Hz}\right), 125.31,124.02,123.73\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.4 \mathrm{~Hz}\right), 122.82,122.72$, $100.42\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=180.2 \mathrm{~Hz}\right), 79.00\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=27.2 \mathrm{~Hz}\right), 23.52\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21.7 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}) $\delta-132.69(\mathrm{~m}) . \mathrm{m} / \mathrm{z}$ HRMS (ESI) found $[\mathrm{M}+\mathrm{H}]^{+} 353.1122, \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1} \mathrm{~S}_{1}$ requires 353.1118. HPLC (Chiralpak IA column, 90:10 hexanes/isopropanol, $1 \mathrm{ml} / \mathrm{min}$); $\mathrm{tr}=10.1 \mathrm{~min}$ (minor), 11.2 min (major); 72% ee.

X-Ray Crystal Structure Data for $2 f$

A colorless rod $0.140 \times 0.040 \times 0.040 \mathrm{~mm}$ in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans.

Crystal-to-detector distance was 60 mm and exposure time was 5 seconds per frame using a scan width of 2.0°. Data collection was 100.0% complete to 67.000° in θ. A total of 19143 reflections were collected covering the indices, $-9<=h<=9,-7<=k<=7,-14<=l<=14.2020$ reflections were found to be symmetry independent, with an $\mathrm{R}_{\text {int }}$ of 0.0265 . Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be P 21 (No. 4). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by iterative methods (SHELXT) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2013). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2013. Absolute stereochemistry was unambiguously determined to be R at C 1 .

Table S3. Crystal data and structure refinement for 2 f .

X-ray ID	toste80
Sample/notebook ID	ken4-150-3
Empirical formula	C12 H15 F N2 O
Formula weight	222.26
Temperature	100(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	P 21
Unit cell dimensions	$\mathrm{a}=7.6084(2) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=6.4312(2) \AA \quad \beta=103.6270(10)^{\circ}$.
	$\mathrm{c}=11.7689(3) \AA \quad \gamma=90^{\circ}$.
Volume	559.66(3) \AA^{3}
Z	2
Density (calculated)	$1.319 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.799 \mathrm{~mm}^{-1}$
F(000)	236
Crystal size	$0.140 \times 0.040 \times 0.040 \mathrm{~mm}^{3}$
Crystal color/habit	colorless rod
Theta range for data collection	3.865 to 68.289°.
Index ranges	$-9<=\mathrm{h}<=9,-7<=\mathrm{k}<=7,-14<=\mathrm{l}<=14$
Reflections collected	19143
Independent reflections	$2020[\mathrm{R}(\mathrm{int})=0.0265]$
Completeness to theta $=67.000^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.929 and 0.858
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2020 / 1/148
Goodness-of-fit on F^{2}	1.058
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0255, \mathrm{wR} 2=0.0685$
R indices (all data)	$\mathrm{R} 1=0.0258, \mathrm{wR} 2=0.0687$
Absolute structure parameter	0.01(7)
Extinction coefficient	n / a
Largest diff. peak and hole	0.211 and -0.136 e. \AA^{-3}

Table S4. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{\mathbf{2}} \mathbf{x} 10^{\mathbf{3}}\right)$ for $2 f . \quad U(e q)$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

			y	U(eq)
$\mathrm{C}(1)$	$7165(2)$	$4726(3)$	$7618(1)$	$21(1)$
$\mathrm{C}(2)$	$9813(2)$	$6655(3)$	$8780(1)$	$21(1)$
$\mathrm{C}(3)$	$9580(2)$	$8121(3)$	$7794(2)$	$21(1)$
$\mathrm{C}(4)$	$10523(2)$	$9994(3)$	$7919(2)$	$25(1)$
$\mathrm{C}(5)$	$10429(2)$	$11308(3)$	$6974(2)$	$28(1)$
$\mathrm{C}(6)$	$9359(2)$	$10727(3)$	$5894(2)$	$26(1)$
$\mathrm{C}(7)$	$8389(2)$	$8892(3)$	$5749(2)$	$23(1)$
$\mathrm{C}(8)$	$8477(2)$	$7551(3)$	$6704(2)$	$20(1)$
$\mathrm{C}(9)$	$6591(2)$	$4936(3)$	$5454(1)$	$24(1)$
$\mathrm{C}(10)$	$5376(2)$	$5494(3)$	$7896(2)$	$26(1)$
$\mathrm{C}(11)$	$5226(3)$	$7826(3)$	$7999(2)$	$32(1)$
$\mathrm{C}(12)$	$4979(3)$	$4338(4)$	$8926(2)$	$34(1)$
$\mathrm{N}(1)$	$8682(2)$	$5017(2)$	$8620(1)$	$21(1)$
$\mathrm{N}(2)$	$7571(2)$	$5678(2)$	$6591(1)$	$20(1)$
$\mathrm{O}(1)$	$11021(2)$	$6836(2)$	$9690(1)$	$26(1)$
$\mathrm{F}(1)$	$4015(1)$	$4893(2)$	$6902(1)$	$34(1)$

Table S5. Bond lengths $[\AA \mathbb{\AA}]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{2 f}$.

$\mathrm{C}(1)-\mathrm{N}(2)$	1.451(2)	$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.455(2)$	$\mathrm{C}(8)-\mathrm{N}(2)$	1.379(2)
$\mathrm{C}(1)-\mathrm{C}(10)$	$1.553(2)$	$\mathrm{C}(9)-\mathrm{N}(2)$	1.451(2)
$\mathrm{C}(1)-\mathrm{H}(1)$	1.0000	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9800
$\mathrm{C}(2)-\mathrm{O}(1)$	1.241(2)	C(9)-H(9B)	0.9800
$\mathrm{C}(2)-\mathrm{N}(1)$	$1.345(2)$	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(3)$	1.473(2)	$\mathrm{C}(10)-\mathrm{F}(1)$	1.421(2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.392(3)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.512(3)
$\mathrm{C}(3)-\mathrm{C}(8)$	$1.406(2)$	$\mathrm{C}(10)-\mathrm{C}(12)$	1.512(3)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.385(3)$	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9800
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9800
$\mathrm{C}(5)-\mathrm{C}(6)$	1.390(3)	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	0.9800
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	1.381(3)	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800
$\mathrm{C}(7)$-C(8)	1.406(2)	$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	0.8800
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	109.67(13)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	120.7
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	114.22(14)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	121.59(17)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	110.85(14)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	119.2
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	107.3	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	119.2
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	107.3	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120.13(17)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{H}(1)$	107.3	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	119.9
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	120.91(16)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	119.9
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	123.15(16)	$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(3)$	119.55(15)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	115.86(14)	$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	122.03(16)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	120.28(16)	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	118.37(16)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	120.46(16)	$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.5
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	119.15(16)	$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	121.02(17)	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	119.5	$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	119.5	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	118.59(18)	$\mathrm{H}(9 \mathrm{~B})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	120.7	$\mathrm{F}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	106.37(16)

$\mathrm{F}(1)-\mathrm{C}(10)-\mathrm{C}(12)$	$106.37(15)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(12)$	$112.96(17)$
$\mathrm{F}(1)-\mathrm{C}(10)-\mathrm{C}(1)$	$104.19(13)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(1)$	$114.77(16)$
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(1)$	$111.30(15)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	$125.01(15)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	117.5
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	117.5
$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(9)$	$120.86(14)$
$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(1)$	$119.22(14)$
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(1)$	$117.74(14)$

Symmetry transformations used to generate equivalent atoms:

Table S6. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for t2f. The anisotropic displacement factor exponent takes the form: $\quad-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots \quad+2 h k \mathbf{a}^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$23(1)$	$19(1)$	$18(1)$	$1(1)$	$2(1)$	$-1(1)$
$\mathrm{C}(2)$	$19(1)$	$21(1)$	$21(1)$	$-4(1)$	$4(1)$	$4(1)$
$\mathrm{C}(3)$	$19(1)$	$22(1)$	$23(1)$	$-3(1)$	$6(1)$	$3(1)$
$\mathrm{C}(4)$	$23(1)$	$24(1)$	$30(1)$	$-6(1)$	$8(1)$	$0(1)$
$\mathrm{C}(5)$	$26(1)$	$21(1)$	$41(1)$	$-1(1)$	$14(1)$	$-1(1)$
$\mathrm{C}(6)$	$27(1)$	$23(1)$	$32(1)$	$6(1)$	$15(1)$	$6(1)$
$\mathrm{C}(7)$	$23(1)$	$25(1)$	$23(1)$	$2(1)$	$7(1)$	$5(1)$
$\mathrm{C}(8)$	$18(1)$	$20(1)$	$23(1)$	$-1(1)$	$7(1)$	$4(1)$
$\mathrm{C}(9)$	$24(1)$	$26(1)$	$20(1)$	$-2(1)$	$2(1)$	$-1(1)$
$\mathrm{C}(10)$	$21(1)$	$35(1)$	$19(1)$	$0(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(11)$	$27(1)$	$37(1)$	$34(1)$	$0(1)$	$11(1)$	$8(1)$
$\mathrm{C}(12)$	$28(1)$	$46(1)$	$31(1)$	$6(1)$	$11(1)$	$0(1)$
$\mathrm{N}(1)$	$22(1)$	$21(1)$	$18(1)$	$3(1)$	$1(1)$	$1(1)$
$\mathrm{N}(2)$	$22(1)$	$22(1)$	$16(1)$	$0(1)$	$2(1)$	$-1(1)$
$\mathrm{O}(1)$	$25(1)$	$27(1)$	$23(1)$	$-4(1)$	$-2(1)$	$2(1)$
$\mathrm{F}(1)$	$22(1)$	$53(1)$	$26(1)$	$-4(1)$	$1(1)$	$-4(1)$

Table S7. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10{ }^{\mathbf{3}}\right)$ for $2 f$.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(1)$	7036	3198	7466	25
H(4)	11242	10377	8664	30
H(5)	11083	12580	7063	34
H(6)	9293	11613	5239	31
$\mathrm{H}(7)$	7662	8535	5002	28
H(9A)	5488	5762	5186	36
H(9B)	6268	3472	5514	36
H(9C)	7355	5074	4894	36
H(11A)	4043	8179	8142	48
H(11B)	5352	8484	7272	48
$\mathrm{H}(11 \mathrm{C})$	6184	8328	8651	48
$\mathrm{H}(12 \mathrm{~A})$	5885	4705	9637	51
H(12B)	5020	2837	8790	51
$\mathrm{H}(12 \mathrm{C})$	3774	4723	9018	51
H(1A)	8875	4047	9163	25

X-Ray Crystal Structure Data for 2s

A colorless prism $0.100 \times 0.080 \times 0.060 \mathrm{~mm}$ in size was mounted on Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at $100(2) \mathrm{K}$ using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 5 seconds per frame using a scan width of 1.0°. Data collection was 99.9% complete to 67.000° in θ. A total of 58533 reflections were collected covering the indices, $-16<=h<=16,-15<=k<=15,-23<=l<=20$. 3151 reflections were found to be symmetry independent, with an $\mathrm{R}_{\text {int }}$ of 0.0207 . Indexing and unit cell refinement indicated a primitive, orthorhombic lattice. The space group was found to be Pbca (No. 61). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by iterative methods (SHELXT) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2013). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2013.

Table S8. Crystal data and structure refinement for $\mathbf{2 s}$.
X-ray ID toste82

Sample/notebook ID
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Crystal color/habit
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.000^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
ken4-153-9
C22 H19 F N2 O
346.39

100(2) K
$1.54178 \AA$
Orthorhombic
Pbca
$a=13.5231(9) \AA \quad \alpha=90^{\circ}$.
$b=13.1489(9) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=19.3467(14) \AA \quad \gamma=90^{\circ}$.
3440.1(4) \AA^{3}

8
$1.338 \mathrm{Mg} / \mathrm{m}^{3}$
$0.730 \mathrm{~mm}^{-1}$
1456
$0.100 \times 0.080 \times 0.060 \mathrm{~mm}^{3}$
colorless prism
4.571 to 68.335°.
$-16<=\mathrm{h}<=16,-15<=\mathrm{k}<=15,-23<=\mathrm{l}<=20$
58533
$3151[\mathrm{R}(\mathrm{int})=0.0207]$
99.9 \%

Semi-empirical from equivalents
0.929 and 0.880

Full-matrix least-squares on F^{2}
$3151 / 0 / 236$
1.047
$R 1=0.0369, w R 2=0.0946$
$R 1=0.0371, w R 2=0.0948$
n/a
0.475 and -0.322 e. \AA^{-3}

Table S9. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{\mathbf{2}} \mathbf{x} 10^{\mathbf{3}}\right)$ for 2 s . $\mathbf{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
C(1)	-122(1)	1466(1)	3698(1)	17(1)
C(2)	844(1)	1231(1)	4766(1)	17(1)
C(3)	1414(1)	2142(1)	4558(1)	18(1)
C(4)	2289(1)	2394(1)	4904(1)	21(1)
C(5)	2782(1)	3283(1)	4743(1)	24(1)
C(6)	2415(1)	3918(1)	4228(1)	25(1)
C(7)	1558(1)	3671(1)	3876(1)	22(1)
C(8)	1044(1)	2782(1)	4044(1)	18(1)
C(9)	-621(1)	3279(1)	3686(1)	19(1)
C(10)	-655(1)	4067(1)	4168(1)	23(1)
C(11)	-1394(1)	4797(1)	4132(1)	29(1)
C(12)	-2117(1)	4739(1)	3627(1)	31(1)
C(13)	-2099(1)	3948(1)	3157(1)	29(1)
C(14)	-1352(1)	3222(1)	3181(1)	23(1)
C(15)	404(1)	847(1)	3125(1)	19(1)
C(16)	137(1)	-273(1)	3174(1)	24(1)
C(17)	198(1)	1292(1)	2417(1)	20(1)
C(18)	885(1)	1924(1)	2097(1)	22(1)
C(19)	690(1)	2330(1)	1449(1)	26(1)
C(20)	-195(1)	2121(1)	1118(1)	27(1)
C(21)	-892(1)	1509(1)	1438(1)	28(1)
C(22)	-693(1)	1094(1)	2084(1)	24(1)
N(1)	46(1)	1015(1)	4376(1)	17(1)
N(2)	152(1)	2538(1)	3701(1)	18(1)
$\mathrm{O}(1)$	1059(1)	726(1)	5285(1)	22(1)
F(1)	1431(1)	915(1)	3253(1)	26(1)

Table S10. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 2 s.

$\mathrm{C}(1)-\mathrm{N}(2)$	1.4576(16)	$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500
$\mathrm{C}(1)-\mathrm{N}(1)$	1.4581(16)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.381(2)
$\mathrm{C}(1)-\mathrm{C}(15)$	1.5489(18)	$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500
$\mathrm{C}(1)-\mathrm{H}(1)$	1.0000	$\mathrm{C}(13)-\mathrm{C}(14)$	1.391(2)
$\mathrm{C}(2)-\mathrm{O}(1)$	$1.2390(16)$	$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{C}(2)-\mathrm{N}(1)$	1.3471(17)	$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.4796(18)$	$\mathrm{C}(15)-\mathrm{F}(1)$	$1.4135(15)$
$\mathrm{C}(3)-\mathrm{C}(8)$	1.3954(19)	$\mathrm{C}(15)-\mathrm{C}(17)$	1.5149(18)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.3995(18)$	$\mathrm{C}(15)-\mathrm{C}(16)$	1.5188(18)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.382(2)	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}(5)-\mathrm{C}(6)$	1.393(2)	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500	$\mathrm{C}(17)-\mathrm{C}(18)$	1.3907 (19)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.383(2)	$\mathrm{C}(17)-\mathrm{C}(22)$	1.392(2)
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500	$\mathrm{C}(18)-\mathrm{C}(19)$	1.389(2)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.3979(19)	$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500	$\mathrm{C}(19)-\mathrm{C}(20)$	1.384(2)
$\mathrm{C}(8)-\mathrm{N}(2)$	$1.4129(17)$	$\mathrm{C}(19)-\mathrm{H}(19)$	0.9500
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.3915(19)$	$\mathrm{C}(20)-\mathrm{C}(21)$	1.385(2)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.3952(19)$	$\mathrm{C}(20)-\mathrm{H}(20)$	0.9500
$\mathrm{C}(9)-\mathrm{N}(2)$	1.4300(16)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.390(2)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.387(2)	$\mathrm{C}(21)-\mathrm{H}(21)$	0.9500
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500	$\mathrm{C}(22)-\mathrm{H}(22)$	0.9500
$\mathrm{C}(11)-\mathrm{C}(12)$	1.385(2)	$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	0.8800
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	110.50(10)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)$	120.12(12)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(15)$	113.26(10)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	119.66(12)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(15)$	111.01(10)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	120.10(12)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	107.3	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	120.02(13)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	107.3	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	120.0
$\mathrm{C}(15)-\mathrm{C}(1)-\mathrm{H}(1)$	107.3	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	120.0
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	121.83(12)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	119.76(13)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	122.18(12)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	120.1
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	115.90(11)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	120.1

$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	120.75(13)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	119.6	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	119.6	$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	119.85(13)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)$	118.94(12)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	120.1	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(15)$	120.72(12)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	120.1	$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{C}(15)$	120.32(12)
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	119.48(12)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	120.35(13)
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{N}(2)$	120.23(11)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	119.8
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(2)$	120.28(12)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	119.8
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)$	119.11(12)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	120.28(13)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{N}(2)$	119.85(12)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	119.9
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(2)$	121.05(12)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	119.9
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	120.28(14)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	119.86(13)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	119.9	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	120.1
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	119.9	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	120.1
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	120.36(14)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	119.88(14)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	119.8	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	120.1
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.8	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	120.1
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	119.61(13)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(17)$	120.68(13)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	120.2	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	119.7
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	120.2	$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{H}(22)$	119.7
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.51(14)	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	122.82(11)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	119.7	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	118.6
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	119.7	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	118.6
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	120.12(13)	$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(9)$	118.69(10)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.9	$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(1)$	116.02(10)
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{H}(14)$	119.9	$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(1)$	118.20(10)
$\mathrm{F}(1)-\mathrm{C}(15)-\mathrm{C}(17)$	108.34(10)		
$\mathrm{F}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	106.47(10)		
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(16)$	112.81(11)		
$\mathrm{F}(1)-\mathrm{C}(15)-\mathrm{C}(1)$	106.97(10)		
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(1)$	111.07(10)		
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(1)$	110.87(11)		
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5		
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5		
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5		

Symmetry transformations used to generate equivalent atoms:

Table S11. Anisotropic displacement parameters ($\AA^{\AA^{2}} \mathbf{x} 10^{3}$) for 2s. The anisotropic displacement factor exponent takes the form: $\quad-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots \quad+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$19(1)$	$15(1)$	$17(1)$	$1(1)$	$-1(1)$	$-1(1)$
$\mathrm{C}(2)$	$19(1)$	$16(1)$	$16(1)$	$-2(1)$	$3(1)$	$3(1)$
$\mathrm{C}(3)$	$19(1)$	$18(1)$	$17(1)$	$-3(1)$	$4(1)$	$1(1)$
$\mathrm{C}(4)$	$19(1)$	$23(1)$	$20(1)$	$-3(1)$	$1(1)$	$2(1)$
$\mathrm{C}(5)$	$19(1)$	$26(1)$	$28(1)$	$-6(1)$	$0(1)$	$-2(1)$
$\mathrm{C}(6)$	$23(1)$	$20(1)$	$33(1)$	$-2(1)$	$5(1)$	$-5(1)$
$\mathrm{C}(7)$	$24(1)$	$18(1)$	$25(1)$	$2(1)$	$2(1)$	$0(1)$
$\mathrm{C}(8)$	$18(1)$	$17(1)$	$18(1)$	$-3(1)$	$2(1)$	$1(1)$
$\mathrm{C}(9)$	$19(1)$	$16(1)$	$22(1)$	$4(1)$	$4(1)$	$-1(1)$
$\mathrm{C}(10)$	$24(1)$	$20(1)$	$26(1)$	$0(1)$	$4(1)$	$-2(1)$
$\mathrm{C}(11)$	$29(1)$	$19(1)$	$40(1)$	$-3(1)$	$10(1)$	$0(1)$
$\mathrm{C}(12)$	$22(1)$	$22(1)$	$48(1)$	$7(1)$	$6(1)$	$5(1)$
$\mathrm{C}(13)$	$21(1)$	$28(1)$	$38(1)$	$8(1)$	$-2(1)$	$1(1)$
$\mathrm{C}(14)$	$25(1)$	$21(1)$	$24(1)$	$3(1)$	$0(1)$	$0(1)$
$\mathrm{C}(15)$	$20(1)$	$18(1)$	$19(1)$	$0(1)$	$0(1)$	$1(1)$
$\mathrm{C}(16)$	$33(1)$	$18(1)$	$21(1)$	$-1(1)$	$2(1)$	$0(1)$
$\mathrm{C}(17)$	$27(1)$	$15(1)$	$17(1)$	$-2(1)$	$2(1)$	$2(1)$
$\mathrm{C}(18)$	$26(1)$	$19(1)$	$22(1)$	$-1(1)$	$1(1)$	$0(1)$
$\mathrm{C}(19)$	$34(1)$	$21(1)$	$23(1)$	$3(1)$	$5(1)$	$1(1)$
$\mathrm{C}(20)$	$41(1)$	$23(1)$	$19(1)$	$2(1)$	$-2(1)$	$5(1)$
$\mathrm{C}(21)$	$33(1)$	$28(1)$	$24(1)$	$-2(1)$	$-7(1)$	$-1(1)$
$\mathrm{C}(22)$	$30(1)$	$21(1)$	$22(1)$	$0(1)$	$-1(1)$	$-4(1)$
	$19(1)$	$16(1)$	$16(1)$	$2(1)$	$1(1)$	$-2(1)$
	$19(1)$	$14(1)$	$20(1)$	$1(1)$	$-1(1)$	$0(1)$
	$21(1)$	$18(1)$	$4(1)$	$-3(1)$	$-2(1)$	
	$28(1)$	$24(1)$	$1(1)$	$0(1)$	$3(1)$	

Table S12. Hydrogen coordinates ($x \mathbf{1 0}^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10{ }^{\mathbf{3}}\right.$) for 2s.

	x	y	Z	$\mathrm{U}(\mathrm{eq})$
H(1)	-849	1430	3605	20
H(4)	2544	1953	5250	25
H(5)	3370	3461	4984	29
H(6)	2757	4527	4116	31
H(7)	1318	4105	3521	27
H(10)	-170	4104	4522	28
H(11)	-1405	5339	4457	35
H(12)	-2622	5240	3603	37
H(13)	-2601	3900	2815	35
H(14)	-1341	2685	2852	28
H(16A)	-584	-347	3175	36
H(16B)	410	-558	3601	36
H(16C)	413	-636	2776	36
H(18)	1489	2079	2324	27
H(19)	1166	2754	1231	31
H(20)	-324	2396	673	33
H(21)	-1504	1373	1216	34
H(22)	-1171	672	2301	29
H(1A)	-393	582	4538	20

References

(1) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176-2179.
(2) Honjo, T.; Phipps, R. J.; Rauniyar, V.; Toste, F. D. Angew. Chem. Int. Ed. 2012, 51, 9684-9688.
(3) Guo, Q. S.; Du, D. M.; Xu, J. Angew. Chem. Int. Ed. 2008, 47, 759-762.
(4) Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681-1684.
(5) Hubert, C.; Moreau, J.; Batany, J.; Duboc, A.; Hurvois, J.-P.; Renaud, J.-L., Adv. Synth. Catal.2008, 350, 40-42.
(6) Sasaki, H.; Irie, R.; Hamada, T.; Suzuki, K.; Katsuki, T. Tetrahedron 1994, 50, 11827-11838.
(7) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667-3669.
(8) Suzuki, T.; Khan, M. N. A.; Sawada, H.; Imai, E.; Itoh, Y.; Yamatsuta, K.; Tokuda, N.;

Takeuchi, J.; Seko, T.; Nakagawa, H.; Miyata, N. J. Med. Chem. 2012, 55, 5760-5773.
(9) Vellalath, S.; Čorić, I.; List, B. Angew. Chem. Int. Ed. 2010, 49, 9749-9752.
(10) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653-6655.
(11) Alem, K. V.; Belder, G.; Lodder, G.; Zuilhof, H. J. Org. Chem. 2005, 70, 179-190.
(12) Korotchenko, V. N.; Shastin, A. V.; Nenajdenko, V. G.; Balenkova, E. S. J. Chem. Soc., Perkin Trans 2002, 1, 883-887.

NMR Spectra

(R)- 2-([1,1'-biphenyl]-4-yl)-2'-(ethoxymethoxy)-1,1'-binaphthalene ((R)-S4).

(R)-2'-([1,1'-biphenyl]-4-yl)-2-(ethoxymethoxy)-3-iodo-1,1'-binaphthalene ((R)-S5).

(R,R)-2,2'"'-di([1,1'-biphenyl]-4-yl)-[1,1':3',2'':4', $1^{\prime \prime \prime}$-quaternaphthalene]-2',3'"-diol

 ((R, R)-S8).

(R,R)-5,9-bis(2-([1,1'-biphenyl]-4-yl)naphthalen-1-yl)-7-hydroxydinaphtho[2,3-d:2',3'-f

[[1,3,2]dioxaphosphepine 7-oxide ((R,R)-4-Ph-PhDAP).

2-amino-N-(2-methylprop-1-en-1-yl)benzamide (1e)

2-(methylamino)-N-(2-methylprop-1-en-1-yl)benzamide (1f)

2-(benzylamino)-N-(2-methylprop-1-en-1-yl)benzamide (1g)

2-(cyclohexylamino)benzamide

2-(cyclohexylamino)benzamide

2-(cyclohexylamino)-N-(2-methylprop-1-en-1-yl)benzamide (1h)

N-(2-methylprop-1-en-1-yl)-2-(phenylamino)benzamide (1i)

2-((4-methoxyphenyl)amino)-N-(2-methylprop-1-en-1-yl)benzamide (1j)

N-(2-methylprop-1-en-1-yl)-2-((4-nitrophenyl)amino)benzamide (1k)

2-hydroxy-N-(2-methylprop-1-en-1-yl)benzamide (11)

4-chloro-N-(2-methylprop-1-en-1-yl)-2-(phenylamino)benzamide (1m)

5-methyl-N-(2-methylprop-1-en-1-yl)-2-(phenylamino)benzamide (1n)

5-methoxy-N-(2-methylprop-1-en-1-yl)-2-(phenylamino)benzamide (10)

5-fluoro -N-(2-methylprop-1-en-1-yl)-2-(phenylamino)benzamide (1p)

5-chloro-N-(2-methylprop-1-en-1-yl)-2-(phenylamino)benzamide (1q)

2-fluoro-N-(2-methylprop-1-en-1-yl)-6-(phenylamino)benzamide (1r)

2-(phenylamino)benzamide

(E)-2-(phenylamino)-N-(2-phenylprop-1-en-1-yl)benzamide (1s)

(E)-N-(2-(4-isopropylphenyl)prop-1-en-1-yl)-2-(phenylamino)benzamide (1t)

(E)-N-(2-(4-(tert-butyl)phenyl)prop-1-en-1-yl)-2-(phenylamino)benzamide (1u)

(E)-2-(phenylamino)-N-(2-(thiophen-2-yl)prop-1-en-1-yl)benzamide (1v)

(R)-2-amino- N-(2-fluoro-2-methyl-1-((2-((2-methylprop-1-en-1-yl)carbamoyl)phenyl)a

mino)propyl)benzamide (2e)

(R)-2-(2-fluoropropan-2-yl)-1-methyl-2,3-dihydroquinazolin-4(1H)-one (2f)

(R)-1-benzyl-2-(2-fluoropropan-2-yl)-2,3-dihydroquinazolin-4(1H)-one (2g)

(R)-1-cyclohexyl-2-(2-fluoropropan-2-yl)-2,3-dihydroquinazolin-4(1H)-one (2h)

(R)-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2i)

(R)-2-(2-fluoropropan-2-yl)-1-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one

(2j)

(R)-2-(2-fluoropropan-2-yl)-1-(4-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one (2k)

2-(2-fluoropropan-2-yl)-2H-benzo[e][1,3]oxazin-4(3H)-one (21)

(R)-7-chloro-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2m)

(R)-2-(2-fluoropropan-2-yl)-6-methyl-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2n)

(R)-2-(2-fluoropropan-2-yl)-6-methoxy-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2o)

(R)-6-fluoro-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2p)

(R)-6-chloro-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2q)

(R)-5-fluoro-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2r)

(R)-2-((S)-1-fluoro-1-phenylethyl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2s)

(R)-2-((S)-1-fluoro-1-(4-isopropylphenyl)ethyl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-
one (2t)

(R)-2-((S)-1-(4-(tert-butyl)phenyl)-1-fluoroethyl)-1-phenyl-2,3-dihydroquinazolin-4(1H
)-one (2u)

(R)-2-((R)-1-fluoro-1-(thiophen-2-yl)ethyl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one
(2v)

HPLC Traces

(R)-2-(2-fluoropropan-2-yl)-1-methyl-2,3-dihydroquinazolin-4(1H)-one (2f)

1: $220 \mathrm{~nm}, 4 \mathrm{~nm}$
Results

Pk \#	Retention Time	Area Percent	Lambda Max
1	11.868	92.227	200
2	12.904	7.773	224

(R)-1-benzyl-2-(2-fluoropropan-2-yl)-2,3-dihydroquinazolin-4(1H)-one (2g)

[^0]

\[

$$
\begin{aligned}
& \text { 1: } 220 \mathrm{~nm}, 4 \mathrm{~nm} \\
& \text { Results }
\end{aligned}
$$
\]

| Pk \# | Retention Time | Area Percent | Lambda Max |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 8.788 | 97.068 | 222 |
| 2 | 14.220 | 2.932 | 225 |

(R)-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2i)

1: $220 \mathrm{~nm}, 4 \mathrm{~nm}$ Results				
	Pk \#	Retention Time	Area Percent	Lambda Max
	1	8.920	51.934	223
	2	12.152	48.066	223

(R)-2-(2-fluoropropan-2-yl)-1-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one

(2j)

1: $240 \mathrm{~nm}, 4 \mathrm{~nm}$
Results

Pk \#	Retention Time	Area Percent	Lambda Max
1	11.928	49.979	274
2	15.380	50.021	274

| 2: 240 nm,
 Results | nm | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | $\mathrm{Pk} \#$ | Retention Time | Area Percent | Lambda Max |
| | 1 | 11.904 | 98.497 | 200 |
| | 2 | 15.360 | 1.503 | 275 |

(R)-2-(2-fluoropropan-2-yl)-1-(4-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one (2k)

| $2: 230$ nm, 4 nm | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Results | | | |

2-(2-fluoropropan-2-yl)-2H-benzo[e][1,3]oxazin-4(3H)-one (21)

Using (R)-OCyDAP (21)

Using (S)-VAPOL PA (ent-2l)

(R)-7-chloro-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2m)

2: $240 \mathrm{~nm}, 4 \mathrm{~nm}$ Results	$\mathrm{Pk} \mathrm{\#}$	Retention Time		
	1	7.852	Area Percent	Lambda Max
	2	8.768	51.907	196
			195	

[^1](R)-2-(2-fluoropropan-2-yl)-6-methyl-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2n)

> 1: $220 \mathrm{~nm}, 4 \mathrm{~nm}$
> Results

| Pk \# | Retention Time | Area Percent | Lambda Max |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 9.560 | 98.650 | 223 |
| 2 | 10.652 | 1.350 | 206 |

1: $220 \mathrm{~nm}, 4 \mathrm{~nm}$ Results

| Pk \# | Retention Time | Area Percent | Lambda Max |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 7.932 | 97.103 | 195 |
| 2 | 9.112 | 2.897 | 208 |

(R)-6-fluoro-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2p)

3: $240 \mathrm{~nm}, 4 \mathrm{~nm}$ Results				
	Pk \#	Retention Time	Area Percent	Lambda Max
	1	9.012	49.673	201
	2	9.860	50.327	200

$3: 240 \mathrm{~nm}, 4 \mathrm{~nm}$ Results	$\mathrm{Pk} \#$	Retention Time		
	1	9.044	Area Percent	Lambda Max
	2	9.908	98.146	207
		1.854	220	

(R)-6-chloro-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2q)

2: $240 \mathrm{~nm}, 4 \mathrm{~nm}$ Results	$\mathrm{Pk} \#$			
	1	Retention Time	Area Percent	Lambda Max
	2	6.356	1.605	207
	7.000	98.395	223	

(R)-5-fluoro-2-(2-fluoropropan-2-yl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2r)

[^2]
(R)-2-((S)-1-fluoro-1-phenylethyl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2s)

1: $241 \mathrm{~nm}, 4 \mathrm{~nm}$ Results

| Pk \# | Retention Time | Area Percent | Lambda Max |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 11.996 | 13.942 | 205 |
| 2 | 13.992 | 86.058 | 194 |


```
3: 240 nm, 4 nm
Results
```

Pk \#	Retention Time	Area Percent	Lamboda Max
1	12.388	6.617	205
2	13.928	93.383	194

(R)-2-((S)-1-fluoro-1-(4-isopropylphenyl)ethyl)-1-phenyl-2,3-dihydroquinazolin-4(1H)one (2t)

$\begin{aligned} & \text { Retention Time } \\ & \text { Area Percent }\end{aligned}$
Using (R)-PhDAP

1: $220 \mathrm{~nm}, 4 \mathrm{~nm}$ Results				
	$\mathrm{Pk} \#$	Retention Time	Area Percent	Lamboda Max
	1	8.368	14.932	191
	2	9.868	85.068	210

(R)-2-((S)-1-(4-(tert-butyl)phenyl)-1-fluoroethyl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one (2u)

| 1: $220 \mathrm{~nm}, 4 \mathrm{~nm}$
 Results | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | Pk \# | Retention Time | Area Percent | Lambda Max |
| | 1 | 12.512 | 6.868 | 271 |
| | 2 | 13.932 | 93.132 | 203 |

(R)-2-((R)-1-fluoro-1-(thiophen-2-yl)ethyl)-1-phenyl-2,3-dihydroquinazolin-4(1H)-one

(2v)

2: $230 \mathrm{~nm}, 4 \mathrm{~nm}$
Results

| Pk \# | Retention Time | Area Percent | Lambda Max |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 10.096 | 50.298 | 224 |
| 2 | 11.188 | 49.702 | 224 |

$$
\begin{array}{llllll}
\begin{array}{l}
2: 230 \mathrm{~nm}, 4 \mathrm{~nm} \\
\text { Results }
\end{array} & \mathrm{Pk} \# & & & \\
& \text { Retention Time } & \text { Area Percent } & \text { Lambda Max } \\
\hline & 1 & 10.116 & 14.142 & 224 \\
& 2 & 11.200 & 85.858 & 224
\end{array}
$$

[^0]: 1: $220 \mathrm{~nm}, 4 \mathrm{~nm}$ Results

 | Pk \# | Retention Time | Area Percent | Lamboda Max |
 | ---: | ---: | ---: | ---: | ---: |
 | 1 | 8.576 | 7.982 | 200 |
 | 2 | 10.892 | 92.018 | 223 |

[^1]: 2: $240 \mathrm{~nm}, 4 \mathrm{~nm}$
 Results
 Pk \# Retention Time
 area Percent
 94.692
 Lamboda Max

 | Pk \# | Retention Time | Area Percent | Lambda Max |
 | ---: | ---: | ---: | ---: | ---: |
 | 1 | 7.848 | 94.692 | 225 |
 | 2 | 8.848 | 5.308 | 224 |

[^2]: 2: $240 \mathrm{~nm}, 4 \mathrm{~nm}$
 Results

 | Pk \# | Retention Time | Area Percent | Lamboda Max |
 | ---: | ---: | ---: | ---: |
 | 1 | 9.688 | 96.184 | 204 |
 | 2 | 12.508 | 3.816 | 271 |

