Supporting information

Syntheses, Structures and Properties of a Series of Polyazaheteroaromatic Core-Based Zn(II) Coordination Polymers Together with Carboxylate Auxiliary Ligands

Shui-Sheng Chen,*^{,†,‡} Liang-Quan Sheng,[†] Yue Zhao,^{*,‡} Zhao-Di Liu,[†] Rui Qiao,[†] and Song Yang[†]

[†] School of Chemistry and Chemical Engineering, Fuyang Normal University, Fuyang 236041, China

[‡] Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China

Table S1. Selected Bond Lengths	[Å]	and Bond Angles	[deg] for	Complexes 1	- 6 ^a

1					
Zn(1)-N(1)	2.001(16)	Zn(1)-O(2)	1.982(14)		
O(2)#1-Zn(1)-O(2)	95.18(8)	O(2)#1-Zn(1)-N(1)	106.34(7)		
O(2)-Zn(1)-N(1)	123.71(7)	N(1)-Zn(1)-N(1)#1	103.38(10)		
	2				
Zn(1)-O(1)	1.9666(13)	Zn(1)-O(2)#1	1.9547(13)		
Zn(1)-N(3)	1.9963(17)	Zn(1)-N(1)#2	1.9774(15)		
O(2)#1-Zn(1)-O(1)	122.94(6)	O(2)#1-Zn(1)-N(1)#2	96.89(6)		
O(1)-Zn(1)-N(1)#2	99.46(6)	O(2)#1-Zn(1)-N(3)	110.68(6)		
O(1)-Zn(1)-N(3)	104.29(6)	N(1)#2-Zn(1)-N(3)	123.71(7)		
	3				
Zn(1)-O(1)	1.9303(17)	Zn(1)-N(1)	2.010(2)		
Zn(1)-N(5)#1	2.013(2)	Zn(1)-N(7)#2	2.038(2)		
Zn(2)-O(3)#3	1.9439(17)	Zn(2)-N(11)	1.970(2)		
Zn(2)-N(10)#4	2.047(2)	Zn(2)-N(3)	2.079(2)		
O(1)-Zn(1)-N(1)	128.85(9)	O(1)-Zn(1)-N(5)#1	96.48(8)		
N(1)-Zn(1)-N(5)#1	106.87(8)	O(1)-Zn(1)-N(7)#2	106.07(8)		
N(1)-Zn(1)-N(7)#2	106.11(9)	N(5)#1-Zn(1)-N(7)#2	111.96(9)		
O(3)#3-Zn(2)-N(11)	126.25(9)	O(3)#3-Zn(2)-N(10)#4	106.15(8)		
N(11)-Zn(2)-N(10)#4	119.10(9)	O(3)#3-Zn(2)-N(3)	100.81(8)		
N(11)-Zn(2)-N(3)	103.54(9)	N(10)#4-Zn(2)-N(3)	93.61(9)		
4					
Zn(1)-O(1)	1.941(2)	Zn(1)-N(11)#1	2.000(2)		
Zn(1)-N(1)	2.002(3)	Zn(1)-N(9)#2	2.030(3)		
Zn(2)-O(6)#3	1.953(2)	Zn(2)-N(7)	1.969(3)		
Zn(2)-N(4)	1.997(3)	Zn(2)-N(5)#4	2.008(3)		
O(1)-Zn(1)-N(11)#1	106.48(10)	O(1)-Zn(1)-N(1)	126.08(10)		
N(11)#1-Zn(1)-N(1)	115.30(11)	O(1)-Zn(1)-N(9)#2	105.22(10)		
N(11)#1-Zn(1)-N(9)#2	104.09(10)	N(1)-Zn(1)-N(9)#2	96.31(11)		
O(6)#3-Zn(2)-N(7)	108.92(11)	O(6)#3-Zn(2)-N(4)	110.02(12)		

N(7)-Zn(2)-N(4)	121.34(11)	O(6)#3-Zn(2)-N(5)#4	97.61(11)
N(7)-Zn(2)-N(5)#4	106.56(11)	N(4)-Zn(2)-N(5)#4	109.74(11)
	4	5	
N(1)-Zn(1)	2.152(4)	Zn(1)-O(1)	1.982(4)
O(4)-Zn(2)#1	1.982(4)	O(6)-Zn(2)#2	1.938(4)
O(8)-Zn(1)#3	2.042(4)	Zn(1)-N(6)#4	2.004(4)
Zn(1)-O(3)#3	2.173(4)	Zn(2)-N(5)	2.003(4)
Zn(2)-O(5)	1.981(4)	Zn(2)-O(4)#1	1.982(4)
O(1)-Zn(1)-N(6)#4	123.73(17)	O(1)-Zn(1)-O(8)#3	123.34(16)
N(6)#4-Zn(1)-O(8)#3	112.42(17)	O(1)-Zn(1)-N(1)	88.83(16)
N(6)#4-Zn(1)-N(1)	99.96(18)	O(8)#3-Zn(1)-N(1)	88.61(18)
O(1)-Zn(1)-O(3)#3	91.04(16)	N(6)#4-Zn(1)-O(3)#3	90.74(17)
O(8)#3-Zn(1)-O(3)#3	80.79(16)	N(1)-Zn(1)-O(3)#3	167.21(16)
O(6)#5-Zn(2)-O(5)	102.68(19)	O(6)#5-Zn(2)-O(4)#1	128.17(15)
O(5)-Zn(2)-O(4)#1	104.22(17)	O(6)#5-Zn(2)-N(5)	114.94(17)
O(5)-Zn(2)-N(5)	98.54(19)	O(4)#1-Zn(2)-N(5)	103.77(17)
	(6	
Zn(1)-O(2)	1.942(5)	Zn(1)-N(5)#1	1.999(6)
Zn(1)-N(1)	2.024(6)	Zn(1)-N(13)	2.052(6)
Zn(2)-O(5)#2	1.950(5)	Zn(2)-N(11)#1	1.975(6)
Zn(2)-N(3)	2.011(6)	Zn(2)-N(7)	2.011(6)
Zn(3)-N(17)#1	2.002(6)	Zn(3)-N(10)#3	2.039(7)
Zn(3)-O(3)	2.039(6)	Zn(3)-N(16)#4	2.044(6)
O(2)-Zn(1)-N(5)#1	111.6(2)	O(2)-Zn(1)-N(1)	115.0(2)
N(5)#1-Zn(1)-N(1)	109.1(2)	O(2)-Zn(1)-N(13)	109.2(2)
N(5)#1-Zn(1)-N(13)	110.6(3)	N(1)-Zn(1)-N(13)	100.7(3)
O(5)#2-Zn(2)-N(11)#1	104.9(2)	O(5)#2-Zn(2)-N(3)	104.3(2)
N(11)#1-Zn(2)-N(3)	117.8(2)	O(5)#2-Zn(2)-N(7)	110.6(2)
N(11)#1-Zn(2)-N(7)	112.2(2)	N(3)-Zn(2)-N(7)	106.7(3)
N(17)#1-Zn(3)-N(10)#3	107.8(3)	N(17)#1-Zn(3)-O(3)	112.4(3)

N(10)#3-Zn(3)-O(3)	130.1(3)	N(17)#1-Zn(3)-N(16)#4	110.2(2)
N(10)#3-Zn(3)-N(16)#4	101.3(3)	O(3)-Zn(3)-N(16)#4	91.5(2)
N(17)#1-Zn(3)-O(4)	98.3(2)	N(10)#3-Zn(3)-O(4)	88.5(2)
O(3)-Zn(3)-O(4)	58.0(2)	N(16)#4-Zn(3)-O(4)	144.9(2)

^a Symmetry transformations used to generate equivalent atoms:

For 1: #1 -x+2,y,-z+1/2. For 2: #1 -x+1,-y+2,-z+1; #2 -x+3/2,y+1/2,-z+3/2. For 3: #1 x+1,y,z; #2 x+1,y,z-1; #3 -x+2,-y+2,-z+1; #4 -x+1,-y+1,-z+2. For 4: #1 x+1,y,z-1; #2 x+1,-y+1/2,z-1/2; #3 -x,-y+1,-z; #4 -x,-y+1,-z+1. For 5: #1 -x+1,-y+1,-z; #2 x+1,y-1,z-1; #3 -x+1,-y,-z; #4 -x-1,-y+1,-z+1; #5 x-1,y+1,z+1. For 6: #1 x+1,y,z; #2 -x+1,-y+1,-z+1; #3 x+1,y+1,z+1; #4 -x+2,-y+2,-z+1.

D-H···A	$d(D \cdots A)$ (Å)	∠D-H…A (°)		
Compound 1				
N2-H2···O5#1	2.688(3)	168		
O3-H3A…O1#2	2.610(2)	158		
O5-H5A…O4#3	2.765(3)	155		
O5-H5…O1#4	2.788(3)	134		
	Compound 2			
N2-H2A…N4#1	2.871(2)	157		
C16-H16A…N5#2	3.382(2)	170		
	Compound 3			
N6-H6…O8	2.910(4)	168		
O8-H8A…O2	3.007(4)	151		
O8-H8B…O5#1	3.043(5)	117		
O8-H8B…O6#1	3.174(4)	165		
N12-H12A…O7#2	2.905(3)	169		
C1-H1…O8	3.163(4)	147		
C8-H8…N2#3	3.104(3)	116		
С9-Н9…О5#1	3.040(3)	123		
C11-H11…O7#2	3.360(4)	166		
C14-H14…O4#4	3.469(3)	159		
C18-H18…N4	3.256(3)	140		
	Compound 4			
N6-H6····O2#1	2.890(4)	167		
N8-H8A…O5#2	2.764(4)	172		
C5-H5…O2#1	3.227(4)	163		
C11-H11…O5#2	3.426(4)	164		
Compound 5				
N4-H4A…O7#1	2.823(9)	159		
O5-H5A…O2#2	2.775(6)	132		
O5-H5C…O2#3	2.619(7)	157		
C15-H15…O2#4	3.081(8)	122		
	Compound 6			

Table S2 Hydrogen bonding data for complexes 1 - 6

N6-H6…O6	2.842(9)	170
N12-H12A…O4#1	2.677(11)	133
С5-Н5…О2	3.125(11)	163
C10-H10…O1#2	3.028(11)	120
C11-H11…O5#1	3.371(10)	141
C28-H28…N9#3	3.258(11)	128
C29-H29…O1#2	3.233(13)	126
C32-H32…N8#3	3.452(11)	157

Symmetry transformations used to generate equivalent atoms: For 1: #1 1+x,1-y,-1/2+z; #2 x,1+y,z; #3 x,2-y,1/2+z; #4 1-x,y,1/2-z. For 2: #1 x,2-y,1/2+z; #2 3/2-x,1/2+y,1/2-z. For 3: #1 1-x,2-y,-z; #2 x,y,1+z; #3 -1+x,y,z; #4 1-x,2-y,1-z. For 4: #1 -x,1-y,-z; #2 -x,-1/2+y,1/2-z. For 5: #1 -x,1-y,1-z; #2 x,1+y,z; #3 -x,1-y,-z; #4 -1-x,1-y,1-z. For 6: #1 1-x,1-y,1-z; #2 -1+x,y,z; #3 x,1+y,1+z.

Figure S1 View of the linkage of a binuclear Zn(II) node with six adjacent cores of 2.

Figure S2 Schematic view of the 8-connected tetranuclear [Zn₄(COO)₄] SBU of 5.

Figure S3 The pores of framework decorated with uncoordinated tetrazole-N atoms in

6.

Figure S4 The TG curves of **1** - **6**.

Figure S5 The X-ray powder diffraction patterns of complexes 1 - 6: a – simulated; b – as-synthesized; c –the actived phase at 140°C; d –the actived phase at 180°C.

Figure S6 The fitting initial slope for CO_2 and N_2 isotherms collected at 273 K (CO_2 : green; N_2 : blue).

Figure S7 The fitting initial slope for CO_2 and N_2 isotherms collected at 298 K (CO_2 : green; N_2 : blue).