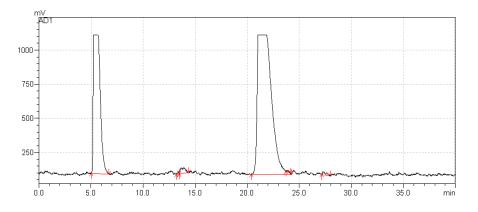
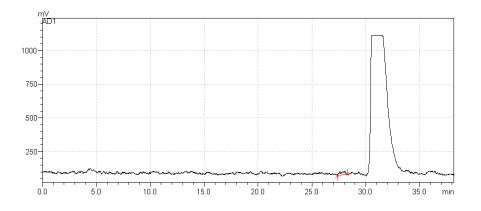
Supporting Information


Drug distribution to retinal pigment epithelium: studies on melanin binding, cellular kinetics, and single photon emission computed tomography/computed tomography imaging

Anna-Kaisa Rimpelä^a, Mechthild Schmitt^a, Satu Latonen^a, Marja Hagström^a, Maxim Antopolsky^a, José A. Manzanares^c, Heidi Kidron^a, Arto Urtti^{a,b}


^a Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland

^b School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland

^c Department of Thermodynamics, Faculty of Physics, University of Valencia, E-46100 Burjassot, Spain

Figure S1. HPLC traces of a typical chloroquine radiolabeling reaction. A - 0.05 M NaH_2PO_4 buffer, B - 0.05 M NaH_2PO_4 buffer in 70 % MeCN, pH = 5.0. Linear gradient from 0 to 70 % B in 30 min. Peak at 22 min corresponds to the target compound; peak at 6 min corresponds to unreacted ¹²³I.

Figure S2. HPLC traces of radiolabeled chloroquine after cartridge purification. A - $0.05 \text{ M NaH}_2\text{PO}_4$ buffer, B - $0.05 \text{ M NaH}_2\text{PO}_4$ buffer in 70% MeCN, pH = 5.0. Linear gradient from 0 to 50 % B in 30 min. Peak at 32 min corresponds to the target compound.