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CALCULATION OF THE PARTITION
FUNCTION FOR A RING ON A ROD

Using cylindrical polar coordinates (r, α, z) (figure 1)
with the centre of the ring as the origin, and z point-
ing along a normal to the ring, and spherical polar co-
ordinates for the relative direction of the ring and rod
normals, gives a phase space volume:
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Figure 1: The geometry for the rod of radius P threading
a ring (or tube) of radius R. The axis of the rod and the
axis of the ring are aligned in the same direction, out of the
page. We slowly rotate the axis of the ring about the line OQ.
The rod will eventually come in to contact with the ring, and
the point on the rod where this will happen can be found by
minimising the distance DC=∆.

Note that the integrals over x, r and α are over the
position of the centre of the rod, relative to the centre of
the ring. The remaining integrals are the orientation of
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Figure 2: The geometry for the rod threading a ring, seen side
on. The rod is in grey. DB is part of the ring seen in cross
section, when the ring and rod are aligned. The ring then
rotates about B until it touches the rod at D′. This defines
the maximum rotation angle cos θ0 = (H0 − ∆0)/H0.

the normal to the rod relative to that of the ring. The
two can be aligned, θ = 0, but they cannot point in any
arbitrary direction, and so are limited to some value in
the upper half plane, θ0 (figure 2). In general θ0 will
depend on r, α and φ. The prefactor of two arises from
the fact that the normal to the ring can either point in
the upper half or lower half plane, and by symmetry each
of these gives equal contribution. The integral over the
rod length is just a constant factor L, the length of the
rod. Also, it is clear that the value of θ0 for a fixed r
depends only on the difference φ−α and not on φ and α
separately (figure 1). It is thus possible to set α = 0 (i.e.
rotate about the x axis only) and replace the integral
over α by a factor of 2π. Moreover by symmetry we only
need to integrate over φ from 0 to π/2 and then multiply
by 4. Finally we need
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We now need to calculate ∆0 and H0 (figure 1). With
α = 0 the point B varies along the x axis. Let OB =
xB . The equation of the rod surface is (x − r cosφ)2 +
(y − r sinφ)2 = P 2 and so the point C has coordinates
(xb, r sinφ+ (P 2− (xB − r cosφ)2)1/2). The point D has
coordinates (xB , (R

2 − x2
B)1/2). Thus H = (R2 − x2

B)1/2

and ∆ = (R2−x2
B)1/2−r sinφ−(ρ2−(xB−r cosφ)2)1/2.

Minimising ∆ over xB gives xB = Rr cosφ/(R − P ),



∆0 = (R2 +P 2 − 2PR− r2 cos2 φ)1/2 − r sinφ and H0 =
(R2−R2r2 cos2 φ/(R−P )2)1/2. We thus need to perform
the double integral Zon = 16πLR2(1− ρ)I with
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which, defining ρ ≡ P/R, is Zon = 2R2Lπ2(1−ρ)3. Thus
the final answer for the 5-dimensional integral (1) is very
simple.

CALCULATION OF THE PARTITION
FUNCTION FOR A TUBE ON A ROD
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Figure 3: The geometry for the rod (in grey) threading a tube
of length 2Λ), seen side on. The situation is almost identical
to that for a ring, but now the rod collides with one end of
the tube at E′

We slice the tube into two at the midpoint, so the cross
section is just a ring of radius R (figure 1), and calculate
∆0 and H0, exactly as for the ring. However, when the
tube is now tilted, it is one end of the tube which first
contacts the rod (figure 3). From figure 3 θ0 is given by
H0 −∆0 = H0 cos θ0 − Λ sin θ0. Thus the integral over θ
in (1) which is 1− cos θ0 yields:
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We then need to integrate over r and φ, in (1) but
once the r and φ dependence is explicit in the integrand
it becomes lengthy (i.e. 95 lines of FORTRAN code).
We thus resort to series expansions for small and large
values of the parameters, and numerical calculation of
the remaining integrals. The results are given in the main
body of this work.

MONTE CARLO EVALUATION OF THE
PARTITION FUNCTION

The problem is essentially two dimensional. A square
box is chosen in the XY plane and a rod of radius P

is placed at the origin, pointing normal to the plane. A
ring of radius R is then chosen with a random centre, and
normal pointing in a random direction (θ, φ) with θ and φ
being the usual spherical polar angles, φ chosen uniformly
between 0 and 2π, and cos θ chosen uniformly between−1
and 1. We then test for threading as follows. If the centre
of the ring is further than R from the origin, threading is
not possible. Assuming this is not the case then we first
check if the ring actually intersects the rod. In order to do
this we step around the ring in small discrete steps, and
see if any of these points (Xp, Yp, Zp) satisfy X2

p + Y 2
p <

P 2. If this is the case then the ring actually intersects
the rod, and does not thread it. If it passes this test then
we need to check for actual threading. To do this we
take two random points on the ring, and draw a chord.
If this chord intersects the rod, then the ring threads the
rod. We repeat for many thousand random chords. If
any of these intersect the rod then the ring threads the
rod. The number of threaded rings is proportional to the
desired partition function.

The process is the same for the tube, although here we
need to check the ring at each end of the tube.

NUMERICAL EVALUATION OF THE
PARTITION FUNCTION

We numerically evaluate the configurational volume of
a ring threaded onto axle using two independent meth-
ods.

The first method counts the number of non-
intersecting and threaded configurations by progressing
orderly through a discretized configurational volume. We
start with a ring of radius R in three dimensions, whose
center is fixed at the origin and is initially oriented so
that the normal to the ring is parallel to a threading
axle. Let the axle be coincident with the z-axis, thread-
ing the interior of the ring at a coordinate (x0, y0). The
complete configurational space of the axle-ring system is
specified by the possible axle coordinates (x0, y0) and all
possible orientations of the ring normal relative to the
fixed axle, given by polar and azimuthal angles, (θ, φ).
At each discretization of (x0, y0, θ, φ) we determine if the
ring and axle are threaded without intersection. As the
projection of the oriented ring onto a plane orthogonal
to the axle is an ellipse, the aim is to determine if the
cross section of the axle, a circle of radius a centered at
(x0, y0) ≡ x0, is entirely within the interior the ellipse
described by the parametric equation

x(Ψ) = R[a cos Ψ + b sin Ψ].

where a ≡ (cosφ, sinφ) and b ≡
(− cos θ sinφ, cos θ cosφ) are the major and minor axes
of the ellipse. That is, we’ve reduced the 3-dimensional
problem of a ring and axle, to a 2-dimensional problem
of a circle and an ellipse. To determine if the center of



the circle, x0, is inside the ellipse, we find the length of
the line that runs from the ellipse center to the ellipse for
which the x0 is co-linear. That length, p, is determined
by

p =
| a || b |√

(| a | cos γ)2 + (| b | sin γ)2

where

x0 · a ≡| x0 || a | cos γ.

If | x0 |> p, then the circle is outside of the ellipse and
the axle outside of the ring. Once we’ve determined that
the circle center is inside the ellipse, we need to determine
if the circle intersects the ellipse. To do this we find the
point on the ellipse which is closest to x0, that is we find
Ψ′ for which | x0 − x(Ψ) | is minimal using a Newton
minimisation. If that minimal distance is less than the
circle radius, then the circle intersects the ellipse, and the
axle intersects the ring.

To extend this calculation to a tube threaded by an
axle, we describe a tube of radius R and length 2λ by a
series of 3 rings, two at each end, and one at the mid-
dle. Again, we start with the tube or rings of radius R
with center fixed at the origin and initially oriented so
that the tube is parallel to the threading axle. Again,
the axle is coincident with the z-axis, threading the inte-
rior of the rings at coordinates (x0, y0, z0 = ±λ, 0). The
complete configurational space of the axle-tube system is
specified by the possible axle coordinates (x0, y0) and all
possible orientations of the tube relative to the fixed axle,
or equivalently all possible orientations of the normal of

the middle ring (whose center is fixed at the origin) rel-
ative to the fixed axle, (θ, φ). At each descritization of
(x0, y0, θ, φ) we determine if the cylinder and axle are
threaded without intersection. To determine this, we
again project the top and bottom faces of the cylinder
(or rings) onto a plane orthogonal to the axle and check
if the cross section of the axle, a circle of radius a cen-
tered at (x0, y0) ≡ x0, is entirely within the interior of
two ellipses described by the parametric equation

x(Ψ) = c +R[a cos Ψ + b sin Ψ],

where the center of the top and bottom faces of the tubes
are c ≡ ±λ(sin θ sinφ, sin θ cosφ).

Short synopsis: We numerically evaluate the configu-
rational volume of a ring threaded onto axle using two
independent methods. The first method counts the num-
ber of non-intersecting and threaded configurations by
progressing orderly through a discretized configurational
space of four dimensions consisting of two coordinates
that specify translation of the axle relative to the ring
center and two more dimensions specifying the relative
orientation of ring and axle. We determine those config-
urations that are threaded and non-intersecting by pro-
jecting the ring and axle from three to two dimensions, to
give an ellipse and a circle, and checking that the axle ra-
dius is smaller than the minimum distance between circle
center and any point on the ellipse using Newton min-
imisation. The configurational volume associated with
a cyliinder threading an axle is similarly constructed as
both faces of the cylinders serve as rings through which
the axle must be threaded.


