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Figure S1: Schematic representation of the 1,3 dipolar cycloaddition reaction.

1 Experimental details

1.1 Synthesis of the fullerene-pyrene bisadducts
Bisadducts of C60 with pyrene anchor groups were synthesized through the 1,3 dipolar cycload-
dition on the surface of C60. In a typical experiment 1-pyrene carboxaldehyde (4.83 mg-0.021
mmol-Sigma Aldrich 99 %), N-methylglycine (sarcosine, 2.41 mg-0.027 mmol-Sigma Aldrich
98 %) and C60 (5.73 mg-0.008 mmol-MER Corporation 98 %) were dissolved in 9 ml of toluene.
The reaction proceeded under continuous nitrogen flow at 110 ◦C. The purification of the prod-
ucts took place through HPLC chromatography using a Buckyprep M silica column, 20 × 250
mm. Toluene was used as the eluent phase and the flow rate was 16 ml/min.

1.2 Mass spectroscopy
Matrix-assisted laser-desorption ionization time-of-flight mass spectra (MALDI-TOF MS) were
obtained from a Bruker MALDI-TOF spectrometer using trans-2-[3-(4-tert-Butylphenyl)-2-
methyl-2-propenylidene] malononitrile (DCTB) and dithranol as a matrix with positive or neg-
ative ionization modes. Figure S2 shows the mass spectroscopy of the C60 bisadduct.

1.3 Raman spectroscopy
In Figure S3 we present the Raman spectra for the bis adducts in comparison with the pristine
C60 under 532 nm laser excitation. All the Raman active vibrational modes are indicated above
each peak. We also present a magnification of the high frequency pentagonal pinch Ag(2)
Raman mode that is blue shifted in the bis adducts compared to the pristine C60 in a similar
manner with other exohedrally functionalized or polymerized fullerenes.[1, 2]
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Figure S2: Mass spectroscopy of C60 bisadduct. (a) DCTB as matrix, negative ionization. The
sample fragments in the monoadduct (mz/=977). (b) Magnification of the bisadduct peak with
the characteristic isotopic distribution. (c) Dithranol as matrix with positive ionization. The
fragmentation is much less pronounced. d) Dithranol as matrix with negative ionization. The
fragmentation leads to pyrene monoadducts and pristine C60.
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Figure S3: (a) Raman spectrum of the pristine C60 (red) and the bisadducts (blue) on gold
coated glass substrate recorded under 532 nm laser excitation. The symmetry point groups are
indicated above each peak. (b) Magnification of the Ag(2) Raman mode that is blue shifted in
the bisadducts compared to pristine C60. (c) Low energy Raman spectra of the pristine C60 (red)
and the bisadducts (blue) on gold coated silicon substrate showing the modes also observed in
transport spectroscopy. The 37 meV peak is due to the silicon background.

1.4 Rate equation model
The model considered has been extensively discussed in [3, 4]. Here we review the pertinent
points. The rate equations determine the molecular occupation probabilities P n

q for charge state
n and q vibrons, as in (1).

dP n
q

dt
=

∑
n′,q′
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q′ W
n′→n
q′→q − P n

q W
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∑
q′
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P eq
q denotes the equilibrium vibron distribution with a relaxation time τ and W n→n′

q→q′ denotes
the total rate for a transition from |n, q〉 to |n′, q′〉.
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where fa is the Fermi factor and the bare transition rates Γ are calculated from Fermi’s
golden rule.
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Figure S4: Simulated conductance stability diagrams using the experimentally obtained value
of ~ω = 1.7 meV and tL/tR = 0.2 (a), 1 (b) and 5 (c).

Here, ρa denotes the density of states in lead a, assumed in our calculations to be constant
for both leads, Mn→(n±1)

q→q′;a denotes the FC matrix elements and sn→m the spin factor such that
for sequential tunnelling and assuming twofold degeneracy they are

s1→0 = s1→2 = 1, s0→1 = s2→1 = 2. (6)

The matrix elements Mn→(n±1)
q→q′;a defined for vibrations are

M
n→(n±1)
q→q′;a = t0(q1!/q2!)

1/2 × λq2−q1e−λ2/2 (7)

where q1 = min{q, q′} and q2 = max{q, q′}.
Figure S4 shows the simulated conductance stability diagrams for different ratios of tL/tR

for comparison.

1.5 Determining peak positions, excited state energies, t0, Instep and λ
We extract the energies of the vibrational states in Figure S5a by first determining the slopes
of the Coulomb diamond edges. The white circles indicate the maximum conductance over a
small bias window at fixed gate voltages. A typical bias window is indicated by the vertical
white line. We next extract the slopes using straight line fits (red line) to the points indicated by
the white circles. The slopes are then used to determine the area (yellow boxes) over which we
average the conductance. The averaged conductance as a function of the energy are shown in
Figure S5b (positive bias) and S5c (negative bias). The energy axis is scaled by offsetting the
first conductance peak to zero energy. We can then determine the energies of the excited state
lines.

To determine ~ω we use the IV trace at Vg = 10.85 V (Figure S6a) which shows a series of
steps due to vibron transitions. The current step is fitted to a thermally broadened Lorentzian,
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Figure S5: (a) Conductance stability diagram of charge transition P3 of device A at 20 mK.
The white circles indicate the maximum conductance over a small bias range, indicated by the
white vertical line. The points indicated by the white circles are then fitted to a straight line to
determine the slopes of the Coulomb diamond edges (red line). The yellow box, determined
by the slope of the Coulomb diamond edges, indicates the area for which the conductance
is averaged. (b) The averaged conductance as a function of energy for positive bias and (c)
negative bias.

as in (8).[5, 6]

In = Instep

∫
1

(eαVg−Eres−E)/kT + 1

ht0/2

(ht0/2)2 + E2
(8)

where Instep is the amplitude, Vg the gate voltage, α the gate coupling, Eres is the resonance
energy, t0 is the molecule-electrode tunnel coupling, andE is the energy over which the integral
is taken (Figure S6b). We fit I − V at different Vg to determine the peak positions V0, t0 and
Instep as a function of the current steps n, as in Figure S6c. The energy of the excitations are then
extracted from the intersection of the excited state lines with the Coulomb diamond edges.

To determine λ, we first extract the five current step heights Instep from the stability diagram
of P3 at Vg = 10.85 V. Instep is then fitted to a set of current heights generated using the rate
equation model, as in Figure S6d.[3, 4]
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Figure S6: (a) IV trace at Vg = 10.85 V, showing current steps from vibron transitions. (b)
Typical fit of the current steps to a thermally broadened Lorentzian to extract t0 = 1.36 meV and
V0 = 23.4 mV. (c) Fitted peak positions V0 as a function of the current steps n. The straight line
fit yields a vibrational quantum of ~ω = 1.7 meV. (d) Istep is fitted to the current step heights
generated using the rate equation model to extract λ = 3.
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Figure S7: Magnetic field dependence. Charge stability diagrams of P3 at 0 T (a) and 6 T (b).
The FC gap has no magnetic dependence.

1.6 Magnetic field measurements
An in-plane magnetic field of 6 T was applied to the device (Figure S7). No change to the low
bias current suppression was observed, suggesting a non-magnetic origin for the gap.

1.7 Charge stability diagrams of device B and C
Figure S8a shows device B measured at 20 mK. The low energy excitations similarly observed
in device A is present. However, there is no FC gap, suggesting a smaller λ. In device C (Figure
S8b, measured at 20 mK), the FC gap is present. Inelastic co-tunnelling lines running horizontal
with the gate axis can be observed. At 4 K, the FC gap is lifted, similar to device A.

1.8 Temperature dependence measurements
Transitions due to vibron absorption are described by Bose-Einstein statistics, such that I0step ∝
1/kBT × 1/(exp(~ω/kBT ) − 1).[7] We extract and fit the temperature dependence of I0step at
Vg = 7 V and Vb = 7.2 mV in Figure 3c of the maintext and obtained a value of ~ω = 1.7 meV,
accordant with our experimentally obtained value. We extract the peak heights by fitting the
current steps for different temperatures as described in section 1.5. The gate shifts were man-
aged by fitting the IV traces for different temperatures where the current steps occur at the same
bias. Figure S9a shows the fit (black curve) to our data. For comparison, the curves for a value
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Figure S8: Charge stability diagrams of device B at 20 mK (a) and device C at 20 mK(b) and 4
K (c). The 2 meV lines seen in device A is present in this device. However, there is no FC gap,
suggesting a smaller λ. The FC gap is visible in device C. Inelastic co-tunnelling lines are seen
running horizontal with the gate axis. At 4 K, the FC gap is lifted.

of ~ω = 0.17 meV (green) and 17 meV (red). Figure S9b shows the normalised curves over a
larger temperature range.

1.9 Current noise measurements and Hidden Markov Model
The current-time characteristics is taken with a sampling frequency of 100 kHz using an os-
cilloscope. The noise power density is then determined using the following definition with a
Gaussian window.

S(ω) =

∞∫
−∞

dteiωt〈δI(t+ t′)δI(t′)〉t′ . (9)

S(ω) for Vb = 9, 12 and 14 mV is shown in Figure S10a. The cutoff frequency occurs at ∼
100 Hz due to the bandwidth limit of our current amplifier.

The Fano factor F = S/2e〈I〉 for the excess noise S(0)− S(0)Vb=0 indicates the deviation
from Poissonian noise, where F = 1. 〈I〉 denotes the average current. Sequential tunnelling is
characterized by 0.5 <F< 1 depending on the ratio of tL and tR [8]. Transport can also proceed
via higher order co-tunnelling processes, such as inelastic co-tunnelling, which leads to super-
Poissonian noise with F up to 8.[9] In contrast, electron avalanche-like transport is predicted in
systems with strong electron-vibron coupling and weak vibron relaxation.[4] We first calculate
the noise power density from our current-time traces using equation (1), and then determine the
zero frequency Fano factors using F = S/2e〈I〉 for the excess noise.

We use the software package SMART: Single Molecule Analysis Research Tool to fit the
current-time traces to Hidden Markov Models (HMM) using a simple two state system as illus-
trated in Figure S10b.[10] For each state in the model the software determines the probability
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Figure S9: (a) Fit of the current steps to the Bose-Einstein distribution, yielding ~ω = 1.7 meV
(black curve). For comparison, the curves for ~ω = 0.17 meV (green) and 17 meV (red) are
shown. (b) Normalised curves over a larger temperature range. The error bars for the points at
20 mK, 1 K and 2 K are represented by the 95% confidence intervals as determined by the root
mean square of the noise level

at each time point in the trace; a state probability close to 1 indicates a high probability that the
state is occupied. This allows the rate constants kij , the rate of a transition from state i to j, to be
determined. A combined kinetic and noise model is fit to each trace and the parameters for the
models are determined using maximum likelihood estimation. A typical fit is shown in Figure
S10c. The full current-time trace, over which we perform the HMM fit, was measured for 20
s with a 100 kHz sampling rate. The escape and return rates are determined using 14 current
traces extending over the bias range over which avalanche transport occurs. The HMM fit gives
the value of kij in units or per point, which are then multiplied by the conversion factor of 2
million points per 20 s.

The high current in Figure 5b in the maintext corresponds to the 0↔ 1 transition such that
I0↔1 = edN

dt
, where e is the electron charge and dN

dt
is the tunnelling rate corresponding to a

transition probability of 1. The transition probability associated with an escape rate 1/τe of
15± 2 s−1 is 1/τe

dN
dt

, which corresponds to |M0→1|2 for λ = 4.

2 DFT Calculations

2.1 Methods
The Dynamical matrix is defined as:
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Figure S10: (a) Noise power density S(ω) for Vb = 9, 12 and 14 mV. (b) Schematic of a two
state system described by the HMM model, where the rate constants kij describes the rate of
a transition from state i to j. (c) The HMM fit (orange curve) shown for a longer current-time
trace than Figure 5 in the maintext. The HMM fits are performed for the full current-time traces
taken for 20 s at a sampling frequency of 100 kHz.

Dij =
Kqq′

ij

Mij

(10)

where K for i 6= j are obtained from finite differences.

Kqq′

ij =
F q
i (δq′j)− F

q
j (−δq′j)

2δq′j
(11)

where the mass matrix M =
√
MiMj . To satisfy momentum conservation, K for i = j

(diagonal terms) is calculated from Kii = −
∑

i 6=jKij . The angular frequencies of the vibrons
(ω) can be calculated from the square root of the eigenvalues of the Dynamical Matrix. The
wavefunction (ϕ) corresponding to the vibrational modes are the eigenvectors of the Dynamical
Matrix D:

Dϕ = ω2ϕ (12)

The weight Pi of the wavefunction (ϕ) of the degree of freedom (q′) on each modes i can be
calculated as

Pi =
∑
j∈q′
|ϕij|2 (13)

The participation ratio of the modes associated with the center of mass motion on x = [1 0
0], y = [0 1 0] and z = [0 0 1] directions can be calculated as:

R =
√
Q2
x′ +Q2

y′ +Q2
z′ (14)
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Figure S11: Molecular structure of bisadducts for two isomer cis-2 (a) and cis-3 (b) consisting
of a C60 connected to two bis pyrene anchors.

whereQβ = 〈ϕ|β〉/|ϕ|
√
N and β = x′, y′, z′. To study the behavior of the atoms in the time

interval 0 to t = nπ due to a vibrational mode ωi, the associated wavefunction ϕi is projected
on x, y and z coordinate of the atoms as:

q̂i(t) = qi +
A

M
ϕisin(t) (15)

The q̂i(t) are then recorded to make the animations as shown in the SI. The transport calcu-
lation is carried out using our implementation of the Greens function method, Gollum[11] with
the same method as described in [12]. Also the iso-surfaces of the frontier orbitals has been
computed with the same method as described in [12, 13, 14].

2.2 Molecular geometry
The molecular structures of the cis-2 and cis-3 isomers of bisadducts are shown in Figure S11.
The geometry relaxation using DFT (see methods) shows that the bis pyrene anchors are not
symmetric around the center of the central C60. The angle between the anchors on the two side
of C60 is higher for cis-2 isomer compared to cis-3.

2.3 Local density of states
Figure S12 shows the iso-surfaces of the frontier orbitals of the bisadducts. The wavefunctions
are localized in the central C60 for LUMO levels whereas they are localized in both the central
C60 and pyrene anchors for HOMO levels. This suggests HOMO dominated transport in this
molecule. The DFT calculated KohnSham HOMO and LUMO energies are -4.41 and -3.07 for
cis-2 and -4.59 and -3.12 for cis-3 isomer, respectively as shown in Table 1.
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Figure S12: Iso-surfaces of the frontier orbitals of C60 bisadducts in gas phase. Local density
of states of HOMO and LUMO level for cis-2 (a,b) and cis-3 (c,d) isomers.

Level cis-2 (eV) cis-3 (eV)
HOMO-2 -4.71 -4.69
HOMO-1 -4.64 -4.60
HOMO -4.41 -4.59
LUMO -3.07 -3.12
LUMO+1 -3.05 -2.86
LUMO+2 -2.76 -2.86
HOMO-LUMO Energy gap 1.34 1.47

Table 1: The Kohn-Sham gap and energy levels around the Fermi energy.

2.4 Device geometry
For the cis-2 configuration, geometrical relaxation shows that the pyrene anchors of cis-2 isomer
makes a planar structure with the graphene surface on one side but not the other due to the larger
angle between the two anchors. In contrast, for the cis-3 configuration, the pyrene anchors
makes a planar structure with the graphene surfaces on both sides. The distance between the
pyrene anchors and graphene surface is 3.24 Å. The transport mechanism can be described by
the interaction of wavefunctions localized in the π-orbitals of the graphene electrodes and the
π-orbitals of the pyrene anchors.
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Figure S13: Electron transport through (a) graphene–bisadducts–graphene structure in (b) zero
and (c) room temperature.

2.5 Electron transport
The electron transport is calculated with our implementation of NEGF method, Gollum (See
methods). Figure S13 shows the transmission probability for the electrons with energy E pass-
ing from the left graphene electrode to the right through the π−π interaction with the bisadducts.
The conductance through the cis-3 isomer (green curves) is predicted to be lower than cis-2
isomer (blue curves) around EF = 0 eV. Consistent with LDOS calculations of the gas phase
molecule, the HOMO resonance is close to the DFT predicted Fermi energy, suggesting HOMO
dominated transport.

2.6 Vibrational modes of the cis-3 and cis-2 isomers.
The vibrational analysis of the cis-3 isomer is shown in Figure S14. Figure S14a is the analysis
performed in the limit where the atomic mass of the pyrene anchor groups approach infinity.
In this limit the anchor groups are effectively clamped and the modes corresponding to internal
vibrations of the pyrene are filtered out of the vibrational spectrum. Red lines represent the
total participation ratio while green corresponds to the participation ratio of modes associated
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Figure S14: Vibrational analysis of bisadducts cis-3 isomer. (a) Atomic mass of pyrene groups
approach infinity. (b) Normal mass.

Figure S15: Vibrational analysis of bisadducts cis-2 isomer. (a) Atomic mass of pyrene groups
approach infinity. (b) Normal mass.
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with the center-of-mass motion. Figure S14b corresponds to the analysis performed using the
normal mass for all atoms. The same vibrational analysis for cis-2 isomer is shown in Figure
S15.
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