Supporting Information for:

Operating and Sensing Mechanism of Electrolyte-Gated Transistors with Floating Gates: Building a Platform for Amplified Biodetection

Scott P. White, Kevin D. Dorfman, C. Daniel Frisbie

Department of Chemical Engineering and Materials Science

University of Minnesota, Minneapolis, MN, 55455

1. Additional images of the device architecture. Figure S1 depicts an image of a printed P3HT film, an optical image of an FG-EGT, and a schematic of the microfluidic channels used to selectively functionalize the floating gate with SAMs.

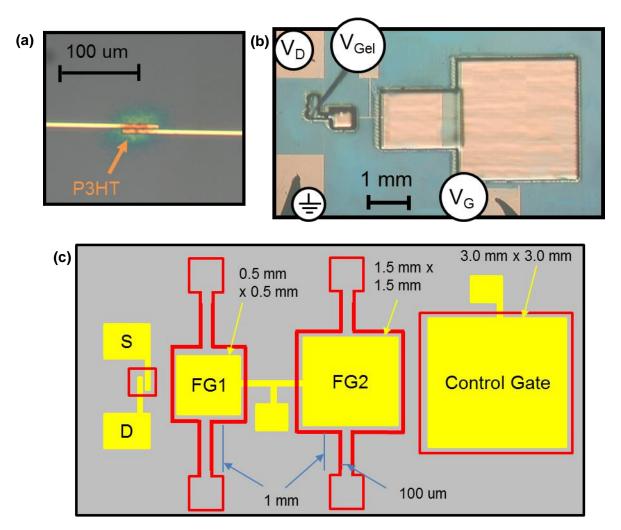


Figure S1: Device Structure. (a) is an image of the printed P3HT film (50 nm) with W/L = 40 μ m/2 μ m. (b) is an image of an FG-EGT with A_{FG1} = 150A_{P3HT}, A_{FG2} = 1500A_{P3HT} and A_{CG} = 6000A_{P3HT}. (c) is a schematic of the FG-EGT with the microfluidic channels (outlined in red) used to selectively functionalize the floating gate with SAMs.

2. Derivation of Equations 2-3

Considering the circuit in Figure 1C (two capacitors in series), a charge balance yields

$$Q_{Gate} + Q_{P3HT} = 0 \tag{S1}$$

substituting in the definition of capacitance (Q = CV)

$$C_{Gate}(V_{Gel} - V_G) + C_{P3HT}V_{Gel} = 0$$
(S2)

and rearranging for Equation 2 after substituting $C = C_i A$

$$V_{Gel} = \frac{1}{1 + \frac{C_{i,P3HT}A_{P3HT}}{C_{i,Gate}A_{Gate}}} V_G$$
⁽²⁾

Rearranging further results in Equation 3, the fraction of voltage dropped at the gate electrode

$$F^{Gate} = \frac{V_G - V_{Gel}}{V_G} = \frac{1}{1 + \frac{C_{i,Gate} A_{Gate}}{C_{i,P3HT} A_{P3HT}}}$$
(3)

To overcome experimental limitations, mainly the variability of open circuit voltage of the quasireference Pt electrode, we considered the slope of V_{Gel} - V_G

$$\frac{dV_G}{dV_{Gel}} = 1 + \frac{C_{i,P3HT}A_{P3HT}}{C_{i,Gate}A_{Gate}}$$
(S3)

When plotting this relationship, we found that the slope of dV_G/dV_{Gel} with respect to A_{P3HT}/A_{Gate}

is \sim 8, representing the ratio of specific capacitances. However, the intercept was not unity, and instead 1.17. We attribute this area-independent potential drop to a combination of series resistance through the ion-gel bulk and a parallel resistance at the gate electrode interface due to charge transfer and electrode polarization. This is sketched in Figure S2.

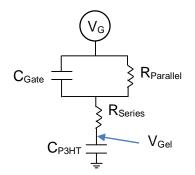


Figure S2: Sketch of a more advanced equivalent circuit of an EGT.

3. Additional data on hysteresis effects in FG-EGTs. In addition to altering the relationship between V_G and V_{Gel} , lowering the gate area also affects the hysteresis in an EGT. We observed a systematic increase in hysteresis, defined as the difference in V_G between the forward and reverse sweep at the same I_D (Figure S3A), with lowered gate area (Figure S3B). We attributed this to a combination of potential dependent capacitance, overpotentials associated with interfacial charge transfer, and mass transport limitations of ions into the P3HT film as discussed in the main text.

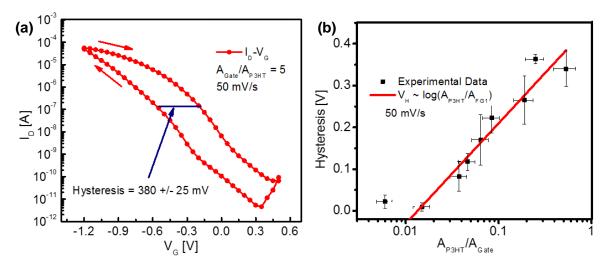


Figure S3: Hysteresis in an EGT. (a) is an EGT with $A_{Gate}/A_{P3HT} = 5$ and a significant hysteresis of 380 ± 25 mV, calculated by measuring the difference in V_G between the forward and reverse sweep at the same I_D. This calculation is repeated for multiple A_{Gate} values and plotted in (b) with a logarithmic fit in red.

4. Derivation of Equations 4-6

Considering the circuit in Figure 1F (two capacitors in series and an additional parasitic capacitor), we compared the effect of applying V_G to the floating gate (V_G^{EGT}) and control gate (V_G^{CG}) by performing a charge balance and assuming I_D directly reflects the charge on C_{1E} (Q_{1E}).

$$\Delta Q_{1E} = 0 \tag{S4}$$

Substituting in the definition of capacitance (Q = CV) yields

$$C_{1E}V_G^{EGT} - C_{1E}V_F = 0 (S5)$$

Next, perform a charge balance on the node labeled "V_F" in Figure 1F while assuming $Q^* = 0$ to express V_F in terms of V_G^{CG} analogous to the derivation of Equation 2

$$V_F = \frac{1}{1 + \frac{C_{1E}}{C_{2E}}} V_G^{CG}$$
(S6)

Substitute Equation S6 into Equation S5 for Equation 4 in the text,

$$V_G^{CG} = \left(\frac{C_{1E}}{C_{2E}} + 1\right) V_G^{EGT} \tag{4}$$

Next, introducing a stray capacitor with Q^* stored on it requires modification of the charge balance on the node labeled " V_F "

$$Q_{1E} + Q_{2E} + Q^* = 0 (S7)$$

Substituting in the definition of capacitance furnishes

$$C_{1E}V_F + C_{2E}(V_F - V_G^{CG}) + Q^* = 0$$
(S8)

Rearranging results in Equation 5 in the text,

$$V_F = \frac{C_{2E}}{C_{1E} + C_{2E}} V_G^{CG} - \frac{Q^*}{C_{1E} + C_{2E}}$$
(5)

To account for Q* empirically, we assumed that it is a constant fraction of the charge stored in C_{2E}, but opposite in sign, so that $f = Q^*/-Q_{2E}$ and substituted this into Equation 5

$$V_F = \frac{C_{2E}}{C_{1E} + C_{2E}} V_G^{CG} + \frac{f C_{2E} (V_F - V_G^{CG})}{C_{1E} + C_{2E}}$$
(S9)

Rearranging for V_F in terms of V_G^{CG} yields

$$V_F = (1 - f) \frac{1}{1 + \frac{C_{1E}}{C_{2E}}} V_G^{CG} + f \frac{1}{1 + \frac{C_{1E}}{C_{2E}}} V_F$$
(S10)

$$\left((1-f) + \frac{C_{1E}}{C_{2E}}\right) V_F = (1-f) V_G^{CG}$$
(S11)

$$V_F = \frac{1}{1 + \frac{1}{1 - f} \frac{C_{1E}}{C_{2E}}} V_G^{CG}$$
(S12)

Substituting Equation S12 back into Equation S5 above results in Equation 6 in the text,

$$V_G^{CG} = \left(\frac{C_{1E}}{C_{2E}}\frac{1}{1-f} + 1\right)V_G^{EGT}$$
(6)