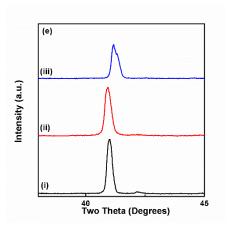
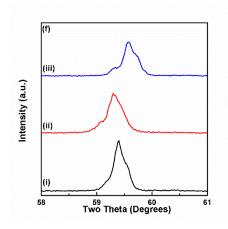
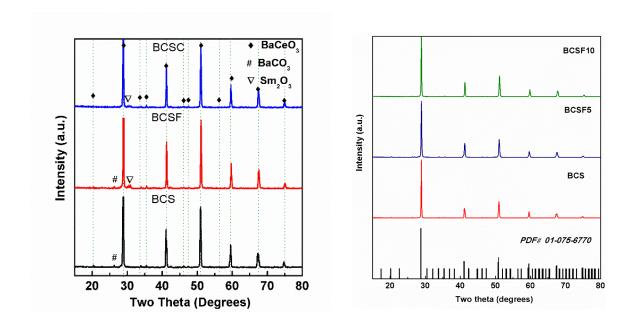
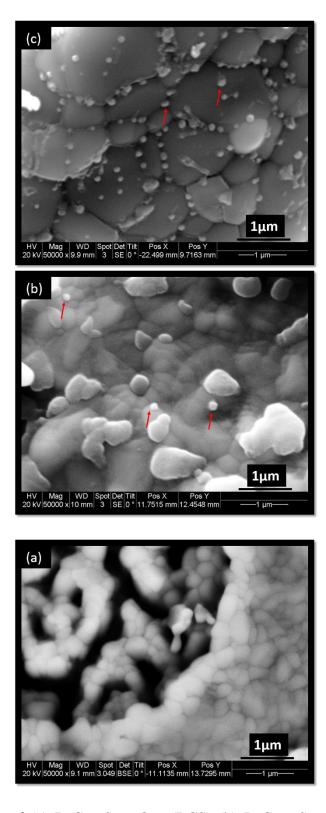

Profound Understanding of Effect of Transition Metal Dopant, Sintering Temperature and pO_2 on the Electrical and Optical Properties of Proton Conducting $BaCe_{0.9}Sm_{0.1}O_{3-\delta}$

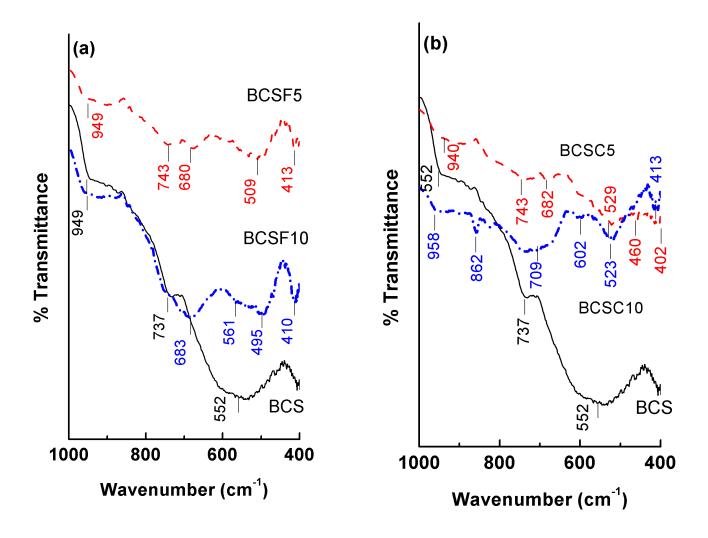

Hala T. Handal ^{a,b,} Azfar Hassan ^c, Ryan Leeson^a, Sherif M. Eloui ^b Martin Fitzpatrick ^a and Venkataraman Thangadurai^{a,*}


^a Department of Chemistry, University of Calgary, Calgary, AB, T2N 1N4 Canada
^b Department of Chemistry, National Research Centre, 12622 Dokki, Cairo, Egypt
^c Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4
Canada *Corresponding author e-mail: vthangad@ucalgary.ca

Supporting Information






Figure S1. Magnified PXRD peaks at (400) and (132) for the two theta between 38-45 ° and 58-61° of (a,b) BaCe_{0.9}Sm_{0.1}O_{3- δ} (BCS), (c,d) BaCe_{0.85}Sm_{0.1}Fe_{0.05}O_{3- δ} (BCSF), and (e,f) BaCe_{0.85}Sm_{0.1}Co_{0.05}O_{3- δ} (BCSC) samples sintered at 1200°C for 8h and followed by annealing in (i) air, (ii) N₂+3%H₂O and (iii) dry H₂ at 1000 °C/1h.

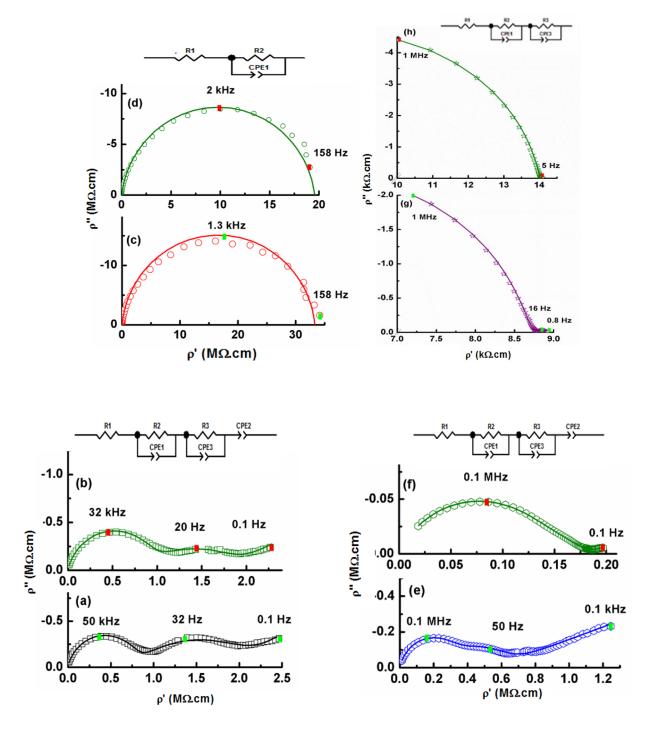

Figure S2. XRD patterns of samples sintered at (l.h.s.) 1300 °C/8h for BaCe_{0.9}Sm_{0.1}O_{3- δ} (BCS), BaCe_{0.85}Sm_{0.1}Fe_{0.05}O_{3- δ} (BCSF), and (c) BaCe_{0.85}Sm_{0.1}Co_{0.05}O_{3- δ} (BCSC), and (r.h.s.) 1400 °C/8h in ambient air for BaCe_{0.9}Sm_{0.1}O_{3- δ} (BCS), BaCe_{0.85}Sm_{0.1}Fe_{0.05}O_{3- δ} (BCSF5); BaCe_{0.8}Sm_{0.1}Fe_{0.1}O_{3- δ} (BCSF10). Phases have been recognized and indexed according to the corresponding PDF card.

Figure S3. SEM images of (a) $BaCe_{0.9}Sm_{0.1}O_{3-\delta}$ (BCS) (b) $BaCe_{0.85}Sm_{0.1}Fe_{0.05}O_{3-\delta}$ (BCSF5) and (c) $BaCe_{0.85}Sm_{0.1}Co_{0.05}O_{3-\delta}$ (BCSC5) powder samples sintered at 1200 °C /8h in air and subsequently reduced in dry H_2 at 1000 °C/1h.

Figure S4. Room temperature FTIR in the region 1000- 400cm^{-1} of (a) BaCe_{0.9}Sm_{0.1}O_{3-δ} (BCS), BaCe_{0.85}Sm_{0.1}Fe_{0.05}O_{3-δ} (BCSF5), BaCe_{0.8}Sm_{0.1}Fe_{0.1}O_{3-δ} (BCSF10) and (b) BaCe_{0.9}Sm_{0.1}O_{3-δ} (BCS), BaCe_{0.85}Sm_{0.1}Co_{0.05}O_{3-δ} (BCSC5), BaCe_{0.8}Sm_{0.1}Co_{0.1}O_{3-δ} (BCSC10) sintered powders at 1400 °C/8h.

Figure S5. Impedance spectra of the 1400 °C sintered pellets that have the composition of (a,b) BaCe_{0.85}Sm_{0.1}Fe_{0.05}O_{3- δ} (BCSF5), (c,d) BaCe_{0.8}Sm_{0.1}Fe_{0.1}O_{3- δ} (BCSF10), (e,f) BaCe_{0.85}Sm_{0.1}Co_{0.05}O_{3- δ} (BCSC5), and (g,h) BaCe_{0.8}Sm_{0.1}Co_{0.1}O_{3- δ} (BCSC10) measured at 90 °C in air, and H₂ + 3%H₂O, respectively. The solid line represents the best fit from applying the corresponding equivalent circuit. All the plots were normalized to both the area and the thickness.