Supporting Information

Efficient Catalytic Epoxidation in Water by Axial N-Ligand-Free Mn-Porphyrins within a Micellar Capsule

Takumi Omagari, Akira Suzuki, Munetaka Akita, Michito Yoshizawa*

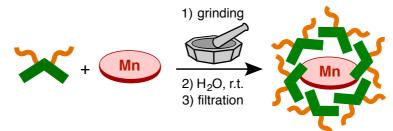
Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan; *E-mail: yoshizawa.m.ac@m.titech.ac.jp

Contents

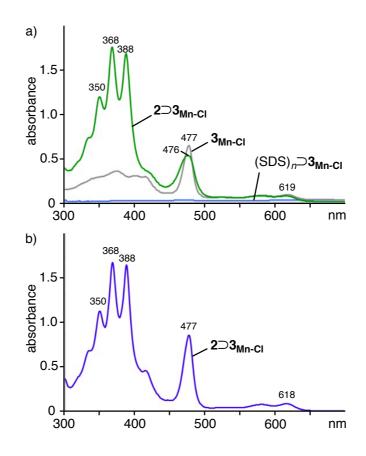
- Materials and methods
- Synthesis of $2\supset 3_M$ (M = Mn-Cl, Zn, Ni, and Co) and $2\supset 4_{Mn-Cl}$ (UV-visible and ¹H NMR spectra, DLS analysis)
- General procedure for the catalytic epoxidation of styrenes by 2⊃3_{Mn-Cl}
 (¹H NMR spectra and GC chart)
- Control experiments of the catalytic epoxidation of **5**
- Catalytic epoxidation of various styrenes
- UV-visible spectra of $\mathbf{3}_{Mn-O-Mn}$ and $\mathbf{3}_{Mn-Cl}$ before/after the catalytic reaction within 2
- UV-visible spectra of 3_{Mn-Cl} and $3_{Mn=O}$ within/without 2
- UV-visible spectra of $2 \supset 3_{Mn-Cl}$ and 3_{Mn-Cl} after the addition of 5 and 6
- Time course of the epoxidation of **5** by $2 \supset 3_{Mn-Cl}$ without imidazole

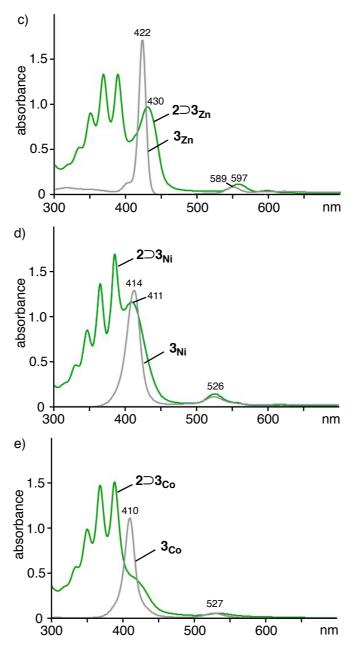
Materials and methods

NMR: Bruker AVANCE-400 (400 MHz), MALDI-TOF MS: Shimadzu AXIMA-CFR Plus, ESI-TOF MS: Bruker micrOTOF II, Particle Size Analysis (DLS): Wyatt Technology DynaPro Nanostar, FT-IR: JASCO FT/IR-4200, UV-vis: JASCO V-670DS, Gas Chromatograph: Shimadzu GC-2014AFsc.


Solvents and reagents: TCI Co., Ltd., Wako Pure Chemical Industries Ltd., Kanto Chemical Co., Inc., Sigma-Aldrich Co., and Cambridge Isotope Laboratories, Inc.

Compounds: 1, 2, and metallo-porphyrins 3_M and 4_{Mn-Cl} were synthesized according to previously published procedures.^[1,2]


References


- Kondo, K.; Suzuki, A.; Akita, M.; Yoshizawa, M. Angew. Chem. Int. Ed. 2013, 52, 2308–2312.
- [2] Alder, A. D.; Longo, F. R.; Kampas, F.; Kim, J. J. Inorg. Nucl. Chem. 1970, 32, 2443–2445.
- [3] Guo, C. C.; Li, H. P.; Xu, J. B. J. Catal. 1999, 185, 345–351.

Synthesis of $2 \supset 3_M$ and $2 \supset 4_{Mn-Cl}$

mixture of amphiphilic compound **1** (1.5 mg, 2.0 µmol) and А tetraphenylporphine manganese(III) chloride (3_{Mn-Cl}; 0.7 mg, 1.0 µmol) was ground for 5 min by using an agate mortar and pestle followed by the addition of H_2O (1.0 mL) at r.t. After an excess $\mathbf{3}_{Mn-Cl}$ was removed by centrifugation and filtration, a clear green solution of 2 containing 3_{Mn-Cl} (63%) was obtained. The formation of $2 \supset 3_{Mn-Cl}$ composite was confirmed by ¹H NMR, UV-visible, and DLS analyses. By using zinc(II) tetraphenylporphine nickel(II) tetraphenylporphine $\mathbf{3}_{Ni}$, $\mathbf{3}_{\mathbf{Zn}}$, cobalt(II) tetraphenylporphine $\mathbf{3}_{Co}$, and fluorinated tetraphenylporphyrin manganese(III) chloride 4_{Mn-Cl} , host-guest composites $2\supset 3_{Zn}$, $2\supset 3_{Ni}$, $2\supset 3_{Co}$, and $2\supset 4_{Mn-Cl}$ were also prepared by the same procedure. The host-guest ratios were estimated by UV-visible analysis in CH₂Cl₂ after freeze-drying of the aqueous solutions.

Figure S1. UV-visible spectra (r.t.) of $\mathbf{3}_{M}$ in CH₂Cl₂ (0.05 mM) and $\mathbf{2}\supset\mathbf{3}_{M}$ in H₂O (1.0 mM based on **1**). M = a) Mn-Cl, c) Zn, d) Ni, and e) Co. b) UV-visible spectrum (r.t.) of $\mathbf{2}\supset\mathbf{3}_{Mn-Cl}$ in CH₂Cl₂ after freeze-drying of the aqueous $\mathbf{2}\supset\mathbf{3}_{Mn-Cl}$ solution.

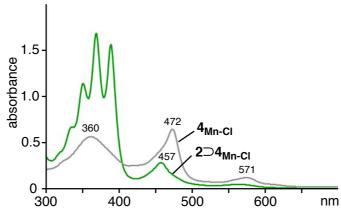


Figure S2. UV-visible spectra (r.t.) of 4_{Mn-Cl} in CH₂Cl₂ (0.05 mM) and $2\supset 4_{Mn-Cl}$ in H₂O (1.0 mM based on 1).

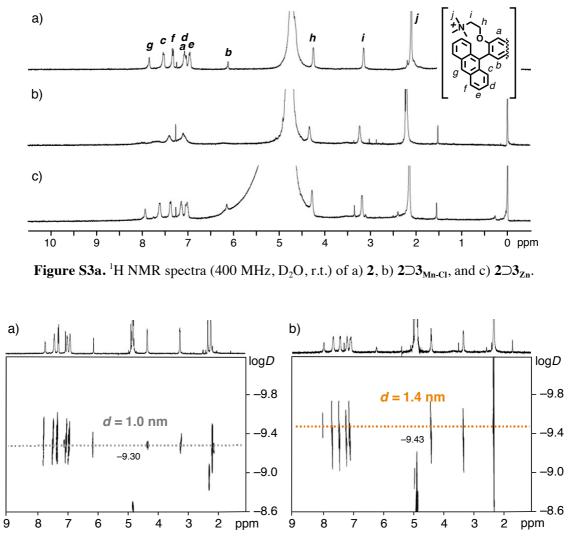
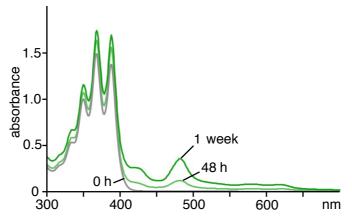
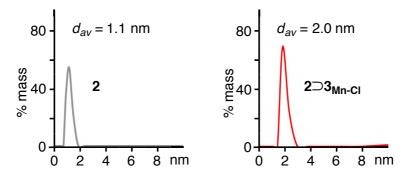
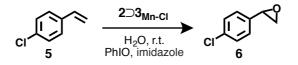
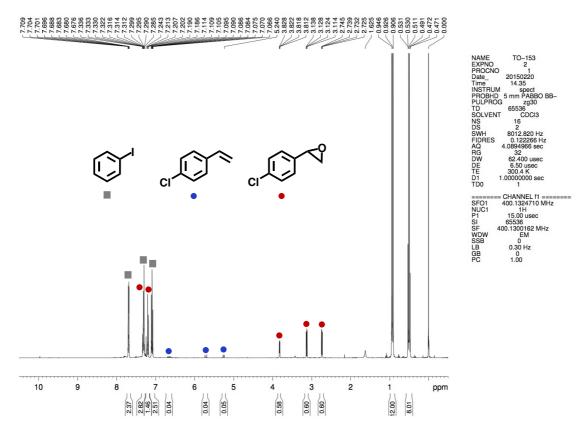



Figure S3b. DOSY NMR spectra (400 MHz, D_2O , r.t.) of a) 2 and b) $2\supset 3_{Zn}$.

Figure S4. UV-visible spectra (H₂O, r.t., 1.0 mM based on 1) of $2\supset 3_{Mn-Cl}$ by the preparation through stirring a mixture of capsule 2 and 3_{Mn-Cl} in H₂O at r.t. without grinding.


Figure S5. Size distribution of 2 and $2\supset 3_{Mn-C1}$ in H₂O (1.0 mM based on 1) by DLS measurement at r.t.

General procedure for the catalytic epoxidation of styrenes by 2D3_{Mn-Cl}

A H₂O solution (1.0 mL) of $2\supset 3_{Mn-Cl}$ (0.2 µmol based on 3_{Mn-Cl}), imidazole (0.7 mg, 10 µmol), and iodosylbenzene (44.0 mg, 200 µmol) were added to a microtube containing 4-chlorostyrene (13.9 mg, 100 µmol). The reaction mixture was vigorously stirred (600 rpm) for 4 h at r.t. under air. NaCl (~10 mg) was added to the resultant solution and then the products were extracted with CDCl₃ (2 × 0.25 mL). The organic layer was separated after centrifuging for 1 min at 13000 rpm. The obtained products

were analyzed by ¹H NMR after adding tetraethylsilane (7.2 mg, 50 μ mol) as an internal standard to the organic solution. After the addition of naphthalene (12.8 mg, 100 μ mol) as an internal standard, the products were further analyzed by GC.

Figure S6. ¹H NMR spectrum (400 MHz, CDCl₃, r.t.) of crude products after the catalytic epoxidation of **5** by $2\supset 3_{Mn-Cl}$ (Table 1, entry 1).

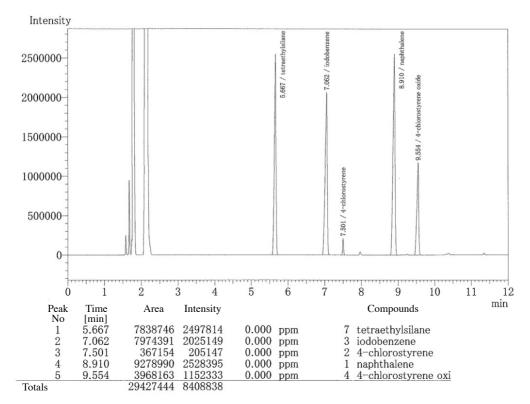
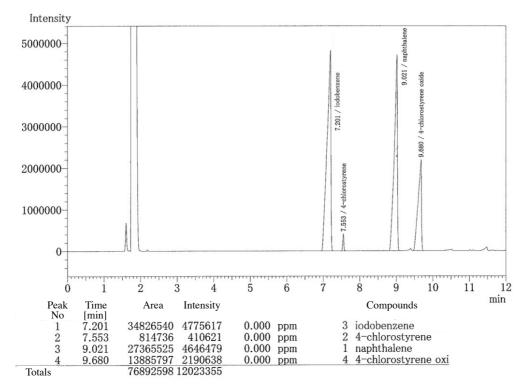
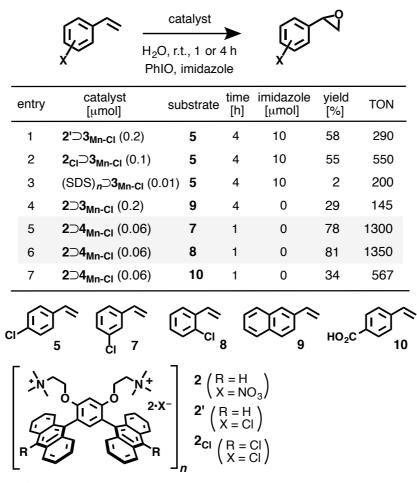
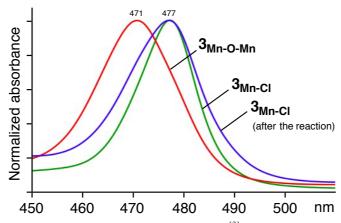


Figure S7a. GC chart of crude products after the catalytic epoxidation of 5 by $2\supset 3_{Mn-Cl}$.




Figure S7b. GC chart of crude products after the catalytic epoxidation of 5 by $2 \supset 4_{Mn-Cl}$.

С		conditions H ₂ O, r.t., 4			\checkmark
entry	catalyst [µmol]	imidazole [µmol]	PhIO [µmol]	yield [%]	TON
1	2 ⊃ 3 _{Mn-Cl} (0.2)	10	200	69	345
2	-	10	200	0	0
3	2 ⊃ 3_{Mn-Cl} (0.2)	0	200	56	280
4	2 ⊃ 3_{Mn-Cl} (0.2)	10	0	0	0
5	2	10	200	0	0


Table S1. Control experiments of the catalytic epoxidation of 5.

Conditions: catalyst (0.2 or 0 μ mol), **5** (100 μ mol), imidazole (10 or 0 μ mol), PhIO (200 or 0 μ mol) in H₂O at r.t. for 4 h.

Table S2. The catalytic epoxidation of various styrenes.

Conditions: catalyst (0.01-0.2 μ mol), styrenes (100 μ mol), imidazole (10 or 0 μ mol), PhIO (200 μ mol) in H₂O at r.t. for 1 or 4 h.

Figure S8. UV-visible spectra (CH₂Cl₂, r.t.) of $\mathbf{3}_{Mn-O-Mn}^{[3]}$ and $\mathbf{3}_{Mn-Cl}$ before/after the catalytic reaction within capsule 2.

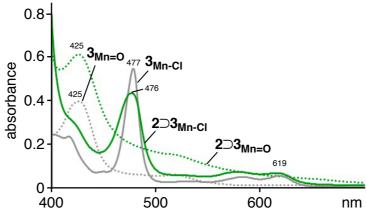
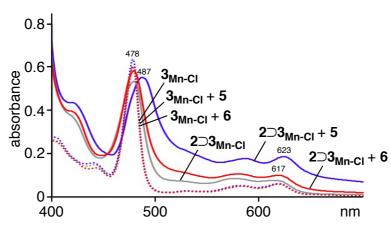



Figure S9. UV-visible spectra (r.t.) of $\mathbf{3}_{Mn-Cl}$ and $\mathbf{3}_{Mn=O}$ in CH₂Cl₂ (0.05 mM) and $\mathbf{2}\supset\mathbf{3}_{Mn-Cl}$ and $\mathbf{2}\supset\mathbf{3}_{Mn=O}$ (1.0 mM based on 1) in H₂O.

Figure S10. UV-visible spectra of 3_{Mn-Cl} before and after the addition of **5** or **6** (50 equiv. each) in CH₂Cl₂ (dot lines) and $2\supset 3_{Mn-Cl}$ before and after the addition of **5** or **6** (50 equiv. each) in H₂O (solid lines).

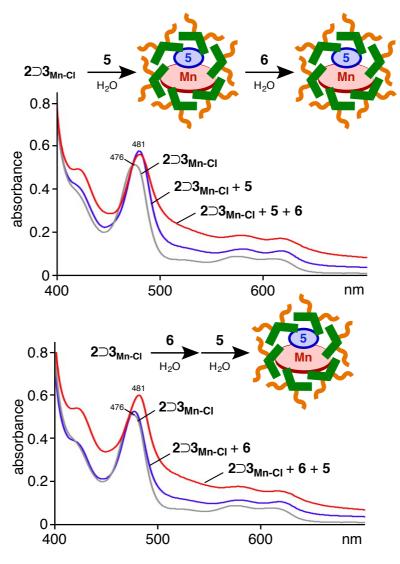


Figure S11. UV-visible spectra of $2 \supset 3_{Mn-Cl}$ after the addition of 5 and/or 6 (25 equiv. each) in H₂O.

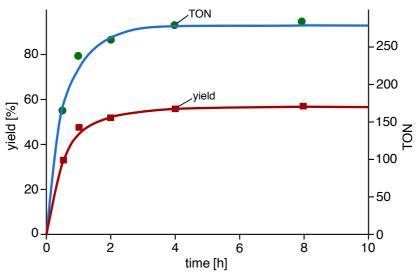


Figure S12. Time course of the epoxidation of 5 by $2\supset 3_{Mn-Cl}$ without imidazole in H₂O.