Supporting Information for:

H₂ Photogeneration using a Phosphonate-Anchored Ni-PNP Catalyst on a Band-Edge Modified *p*-Si(111)|AZO Construct

Hark Jin Kim,[†] Junhyeok Seo,[†] and Michael J. Rose*

Department of Chemistry, University of Texas at Austin; Austin, Texas 78712, United States

*corresponding author: mrose@cm.utexas.edu

Table of Contents	Page
Experimental Procedures & Synthesis	2
Figure S1. XPS Survey Spectrum of Si CH ₃ AZO TiO ₂ PNP-Ni-PNP(C ₆ H ₄)Br	8
Figure S2. XPS Region Scans for Si CH ₃ AZO TiO ₂ PNP-Ni-PNP(C ₆ H ₄)Br	9
Figure S3. Scan rate dependence for Si R AZO TiO ₂ PNP-Ni electrodes	10
Figure S4. Catalytic CVs for comparison of confined and free Ni(PNP) ₂	11
Figure S5. AFM images for Si R AZO TiO ₂ substrates	12
Figure S6. Catalytic CVs for Si-diMeOPh devices in MeCN with TsOH	13
Figure S7. Catalytic CVs with alternate metal (Co) or capping ligands	14
Figure S8. <i>J-V</i> curves for Si CH ₃ AZO TiO ₂ Pt construct	15

Experimental

A. Surface Functionalization Procedures of Si(111) Semiconductor

- 1) Preparation of Cl-Terminated Si(111) Wafer. A single side polished p-type Si wafer (Virginia Semiconductor Inc., VA, B-doped Czochralski (CZ) grown p-type Si wafer (450 \pm 25 μ m thickness), 1.4–9 Ω •cm resistivity) was used. A silicon wafer was sonicated in acetone, ethanol, and distilled water sequentially for 10 min prior to the following etching procedure. After blowing N_2 gas onto the surface, the sample was immersed in Piranha solution (1:3 v/v of H_2O_2 (aq) (30%, Fisher Scientific): H_2SO_4 (96.6%, Fisher Scientific)) at 90 °C for 20 min. After rinsing with de-ionized water, the sample was dipped in a buffered HF solution (HF (aq), semiconductor grade, Transene Company, Inc.) for 1 min. The sample was rinsed with de-ionized water and subsequently dipped in a N_2 -bubbled NH_4F solution (40% in water, semiconductor grade, Transene Company, Inc.) for 20 min. The sample was rinsed with de-ionized water and dried with N_2 stream. For chlorination, the sample was moved inside a N_2 -purged flush box and immersed in a PCl_5 -saturated chlorobenzene with a few grains of benzoyl peroxide (Sigma Aldrich) at 90 °C for 1 h. Lastly, the resulted chlorinated sample was rinsed with chlorobenzene and THF thoroughly (1 mL × 10 each).
- 2) Attachment of Methyl and 3,5-Dimethoxyphenyl Groups on Si(111) Surface. *i*) Si–CH₃: The prepared Cl-terminated Si(111) wafer was immersed in 1 M CH₃MgCl solution (diluted from 3.0 M CH₃MgCl in THF, Sigma Aldrich) at 60 °C inside the N₂-purged flush box. After 30 min, the wafer was rinsed with THF thoroughly inside the flush box and then further cleansed by sonication in THF/MeOH for 10 min. The resulting Si–CH₃ sample was finally rinsed with MeOH/THF and dried by N₂ stream. *ii*) Si–diMeOPh: 0.08 g (0.36 mmol) of 1-bromo-3,5-

dimethoxybenzne (97 %, Acros) was prepared in 14 mL THF at –60 °C, where 0.2 mL nBuLi (1.6 M in diethyl ether, 0.32 mmol) was dropwise added. After stirring the solution for 40 min, the Cl-terminated Si(111) wafer was immersed in the solution, and the solution was warmed naturally to room temperature for 1 h. The remaining Si(111)–Cl sites were methylated by immersing in the 1 M CH₃MgCl solution (THF) at 60 °C for 30 min inside the N₂-purged flush box.

3) Atomic Layer Deposition (ALD) of Al-doped ZnO, TiO₂ and Pt. Savannah S100 apparatus (Cambridge Nanotechnology Inc., USA) was utilized for all atomic layer deposition (ALD) layers. Aluminum-doped Zinc oxide layer was deposited on methyl- or dimethoxyphenylfunctionalized Si(111) wafer using trimethylaluminum (TMA, Sigma Aldrich, unheated) and diethyl zinc (DEZ, Sigma Aldrich, unheated) as the Al and Zn precursors, respectively. The chromatography-grade H₂O was used for counter precursor and the reaction chamber was heated at 150 °C. Each pulse length of the Al, Zn and H₂O was 0.015 s, and the purging time of N₂ gas between pulses was 20 s. To make consistent film thickness, the unit ALD cycle consisted of x cycles of ZnO and 1 cycle of Al₂O₃ was repeated y times $[(x:1)\times y = (16:1)\times 5, (20:1)\times 4,$ (27:1)×3, (41:1)×2, and pure ZnO 83 cycles]. From the growth rate supported by instrument supplier, 1.66 Å and 1.01 Å for ZnO and Al₂O₃, respectively, the estimated film thickness was 138 \pm 0.2 Å. The deposition of a-TiO₂ and Pt were result of reaction of tetrakis(dimethylamido)titanium (TDMAT, Sigma Aldrich, 75 °C) with chromatography-grade H₂O and trimethyl(methylcyclopentadienyl)-platinum ([(MeCp)Pt(Me)₃], Strem, 70 °C) with high-purity O₂ (99.999%), respectively. For the capping a-TiO₂ layer, the temperature of the substrate was maintained at 150 °C, and each pulse length of the Ti precursor and H₂O was 0.1 s

and 0.015 s, respectively, with 20 s of N_2 gas purging between each pulse (50 cycles). For the Pt nanoparticles, the temperature of substrate was maintained at 240 °C, and each pulse length of the Pt precursor and O_2 was 1.0 s and 0.015 s, respectively, with 5 s of N_2 gas purging between each pulse (20 cycles).

4) Synthesis of Molecular Compounds

$$Br \longrightarrow NH_2 + HPO(OEt)_2 \xrightarrow{PPh_3, (\stackrel{\circ}{P}P)_2(Et)N} \xrightarrow{EtO} \xrightarrow{PPh_2} \xrightarrow{toluene} \xrightarrow{NH_2} \xrightarrow{2 (CH_2O)_n} \xrightarrow{2 HPPh_2} \xrightarrow{EtO} \xrightarrow{NPh_2} \xrightarrow{PPh_2} \xrightarrow{1) (CH_3)_3SiBr, DCM, 1 day} OH \xrightarrow{PPh_2} \xrightarrow{PPh_2} \xrightarrow{PPh_2} \xrightarrow{PPh_2}$$

Diethyl(4-aminophenyl)phosphonate (1). A mixture of 4-bromoaniline (1 g, 5.8 mmol) and diethylphosphite (1.13 mL, 8.76 mmol) was prepared in 40 mL of toluene. Into the reaction mixture were added [Pd(PPh₃)₄] (0.15 g, 2.5%), PPh₃ (1.53 g, 5.83 mmol), and disopropylethylamine (5.0 mL, 25 mmol). After stirring overnight, the solution was treated with saturated NH₄Cl (aq), and the organic compounds were extracted with dichloromethane. The organic layer was dried over Na₂SO₄, and the product was purified by column chromatography (hexanes/EA gradient of 1:10 to 1:3 ratio) as resulting in 0.11 g (~3% isolated yield). There was no attempt to improve yield, as minimal material was required for surface studies. ¹H NMR (d⁶-DMSO): δ 1.19 (t 6H), 3.90 (q 4H), 5.81 (s 2H), 6.61 (d 2H), 7.32 (d 2H) ppm. ³¹P NMR (d⁶-DMSO): δ 21.2 ppm.

Diethyl(4-(bis((diphenylphosphanyl)methyl)amino)phenyl)phosphonate (2). Into 20 mL of toluene solution of 1 (0.11 g, 0.48 mmol) was added HPPh₂ (0.18 g, 0.96 mmol) and

paraformaldehyde (0.029 g) under N_2 atmosphere. The solution was then heated at 100 °C for 20 h under N_2 atmosphere, and all volatiles were removed under vacuum as heating at 60 °C to give 0.27 g product (90% yield), also isolated and stored under N_2 . ¹H NMR (CDCl₃): δ 1.31 (t 6H), 3.89 (d 4H), 4.08 (q 4H), 6.71 (d 2H), 7.33 (m 22H) ppm. ³¹P NMR (CDCl₃): δ –27.5, 21.4 ppm.

(4-(Bis((diphenylphosphanyl)methyl)amino)phenyl)phosphonic Acid (3). The above compound 2 (0.270 g, 0.43 mmol) was dissolved in 5 mL dichloromethane under N_2 atmosphere, where bromotrimethylsilane (0.270 g, 1.76 mmol) was added. After stirring the reaction mixture for 1 day, the volatiles were removed by vacuum. The residue was dissolved in MeOH, and the solution was stirred for 1 h. After removing the solvent by vacuum, the residue was washed with DCM as resulting in 0.10 g product (41%). ¹H NMR (d⁶-DMSO): δ 3.90 (d 4H), 7.16 (d 2H), 7.23 (d 2H), 7.32 (m 8H), 7.39 (m 12H). ³¹P NMR (d⁶-DMSO): δ –27.4 (PPh₂), 14.7 (PO₃) ppm. HR-MS(CI-MS): calcd. for $[C_{32}H_{30}NO_4P_3]^+$ 585.13480; found: 585.13680.

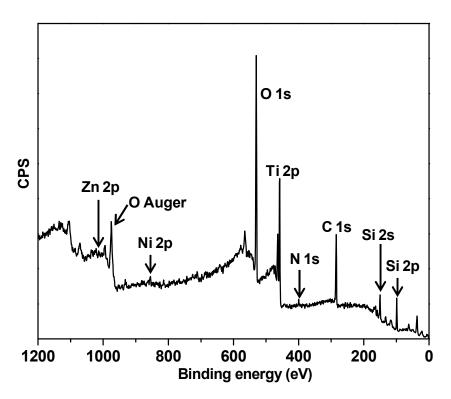
5) Preparation of p-Si|R|Metal Oxide|O₃P(C₆H₄)PNP-Ni-PNP(C₆H₄)Br/(ClO₄)₂

Attachment of the PNP Ligand to Metal Oxide on Si(111) Surface: The metal oxide (AZO/TiO₂) modified Si substrate was brought into an Ar glovebox, and immersed in a 9 mM solution of **3** in DMF for 24 h. The sample was then thoroughly rinsed with DMF and acetonitrile (10×1 mL each) and kept rigorously under argon atmosphere for storage and subsequent experiments.

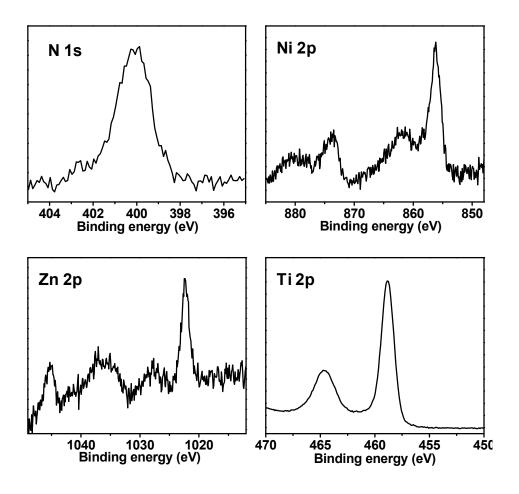
Metalation: All of these operations were carried out in an argon atmosphere glovebox. A small portion of [Ni(H₂O)₆](ClO₄)₂ (30 mg, 0.08 mmol, Sigma Aldrich) was stirred in 14 mL of MeCN in the presence of Na₂SO₄ for 4 h. The resulting blue solution was filtered and used directly for

the reaction. The O_3P -Ar-PNP functionalized substrate was immersed in the Ni solution for 1 h. For samples prepared with the 'capping' PNP ligand: After rinsing with MeCN and toluene, the sample was immersed in a toluene solution containing the PNP(C_6H_4)Br ligand (*4-bromo-N,N-bis((diphenylphosphanyl)methyl)aniline*) (10 mg in 6 mL of toluene) for 1 h. The sample was then rinsed thoroughly with toluene and THF (10×1 mL each).

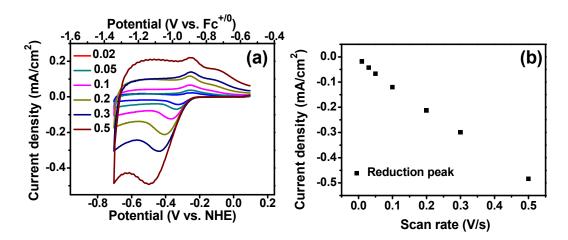
B. Physical Measurements and Photoelectrochemical (PEC) Characterization

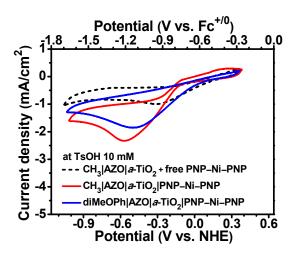

X-ray Photoelectron Spectra (XPS) were obtained by using a Kratos Axis Ultra X-ray photoelectron spectrometer with a monochromated Al K α X-ray source (hv = 1486.5 eV). Photoelectron take-off angle was 45° with respect to the X-ray beam, and the analysis chamber pressure was maintained ~2 × 10⁻⁹ Torr during the measurement. The obtained spectra were analyzed by the Casa XPS software (version 2.3.15, Casa Software Ltd.). The sheet resistance of Al-doped ZnO layers as a function of Al₂O₃:ZnO ALD ratio was obtained using a Lucas Labs SP4 four-point probe head combined with a Keithley 2400 source meter. The Park Scientific CP Research AFM (force constant of 0) was used for comparison of surface roughness of the methyl- and dimethoxyphenyl-functioalized p-Si|R|metal oxide surfaces. Vapor transfer of dodecylamine was performed for 10 minutes before analysis in a small glass chamber, and WSxM was used to analyze the images.¹

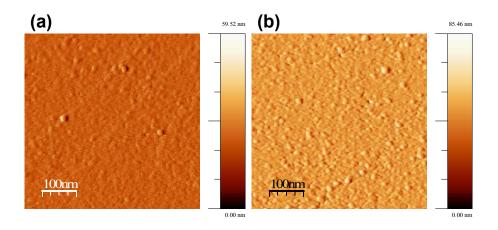
PEC measurements were performed using an Interface 1000 (Gamry Instruments, USA) potentiostat. A three-electrode setup was composed of a Si wafer working electrode, a Pt-wire (99.95%, Strem Chemicals, USA) counter electrode, and an Ag-wire quasi-reference electrode (CHI-112, CH Instruments, Inc., USA). To assemble the PEC cell, copper tape (Electron Microscopy Sciences, USA) was attached on a stainless steel base, where the Si wafer was

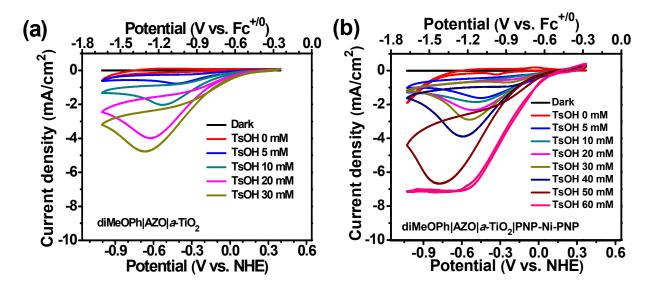

placed after scratching the back side with a diamond scribe. The ohmic contact was made with Ga/In eutectic (99.99%, Alfa Aesar). An O-ring (size 0.07 cm²) was placed on the Si wafer, and the Teflon cell was placed on the top. A broadband LED bulb (Osram Sylvania Inc., Ultra LED 50 W) was used as a light source, and the light intensity was measured as ~33 mW cm⁻² at the sample site. All PEC measurements were performed under argon atmosphere and room temperature. Ferrocene was used as an internal reference, and the obtained potentials were converted versus NHE ($E_{1/2}$ of Fc^{0/+} = 0.64 V vs. NHE). The dataset for the Mott-Schottky plots was obtained under analogous conditions with a 10 kHz modulation frequency in 0.2 M LiClO₄/MeCN solution. The electrochemical impedance spectroscopy (EIS) measurements were carried out at various potentials between 0 V to -0.8 V vs. Ag under illumination with 10 mV AC amplitude over a frequency range of $10^5-0.1$ Hz. For the extraction of charge transfer resistance (R_{ct}) from the EIS results, the Randles equivalent circuit was applied with Zview software (version 2.8d, Scribner Associate Inc.).

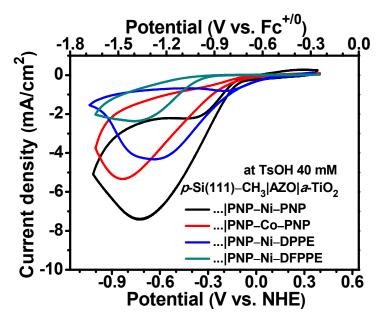
Reference


(1) I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Homez-Herrero, and A.M. Baro, *Rev. Sci. Instruments* **2007**, *78*, 013705.


 $\label{eq:Figure S1.} \textbf{Figure S1.} Survey X-ray photoelectron spectra for \\ Si|CH_3|AZO|TiO_2|O_3P(C_6H_4)PNP-Ni-PNP(C_6H_4)Br/(ClO_4)_2.$


Figure S2. High-resolution region X-ray photoelectron spectra for selected elements for $Si|CH_3|AZO|TiO_2|O_3P(C_6H_4)PNP-Ni-PNP(C_6H_4)Br/(ClO_4)_2$.


Figure S3. (*a*) Cyclic voltammograms for p-Si(111)–CH₃|AZO|a-TiO₂|PNP–Ni–PNP as a function of scan rate (0.02 to 0.5 V s⁻¹) and its scan-rate dependence of (*b*) reduction current; *Experimental conditions*: 0.2 M LiClO₄ electrolyte in MeCN, 33 mW cm⁻² broadband LED, argon atmosphere (glove box).


Figure S4. Catalytic CVs for comparison of p-Si(111)–CH₃|AZO|a-TiO₂ + free Ni(PNP(C₆H₄)Br)₂](ClO₄)₂ (dashed dark) solution, p-Si(111)–CH₃|AZO|a-TiO₂|PNP–Ni–PNP (red) and p-Si(111)–diMeOPh|AZO|a-TiO₂|PNP–Ni–PNP (blue) at 10 mM TsOH. *Experimental conditions*: 0.2 M LiClO₄ electrolyte in MeCN, 33 mW cm⁻² broadband LED, 100 mV s⁻¹ scan rate, argon atmosphere (glove box).

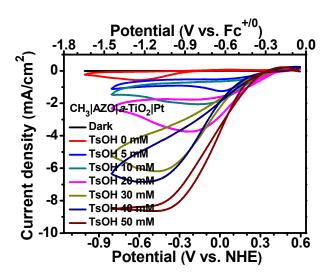

Figure S5. Atomic force microscopy images of (a) p-Si(111)–diMeOPh|AZO|TiO₂ and (b) p-Si(111)–CH₃|AZO|TiO₂.

Figure S6. Catalytic CVs for (a) p-Si(111)–diMeOPh|AZO|a-TiO₂, (b) p-Si(111)–diMeOPh|AZO|a-TiO₂|PNP–Ni–PNP as a function of [TsOH]; *Experimental conditions*: 0.2 M LiClO₄ electrolyte in MeCN, 33 mW cm⁻² broadband LED, 100 mV s⁻¹ scan rate, argon atmosphere (glove box).

Figure S7. Catalytic CVs as a function of metal/ligand couples at 40 mM TsOH; *Experimental conditions*: 0.2 M LiClO₄ electrolyte in MeCN, 33 mW cm⁻² broadband LED, 100 mV s⁻¹ scan rate, argon atmosphere (glove box).

Figure S8. Catalytic CVs for p-Si(111)–CH₃|AZO|a-TiO₂|Pt as a function of [TsOH]; *Experimental conditions*: 0.2 M LiClO₄ electrolyte in MeCN, 33 mW cm⁻² broadband LED, 100 mV s⁻¹ scan rate, argon atmosphere (glove box).