Supporting Information for: Late-Stage Diversification of Biologically Active Molecules via Chemoenzymatic C-H Functionalization

Landon J. Durak, James T. Payne, and Jared C. Lewis*
Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.
jaredlewis@uchicago.edu

Table of Contents Page
Materials 2
General Comments 2
General Procedure for 10 mg Scale Bioconversions 3
General Procedure for Suzuki-Miyaura Coupling on Crude Extract of Bioconversion 4
General Procedure for Buchwald-Hartwig Amination on Crude Extract of Bioconversion 4
Preparation of Compounds 6
Scheme Showing Cofactor Regeneration System 14
NMR Spectra 15
References 47

Materials

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. HPLC analyses were performed using HPLC grade acetonitrile (Fisher Scientific), $18 \mathrm{M} \Omega$ water from a Milli-Q purification system (model No. QGARD00D2), and trifluoroacetic acid (Oakwood Chemicals). RebH and MBP-RebF were expressed and purified according to published procedures. ${ }^{1}$ Water and isopropanol used in Suzuki-Miyaura reactions were deoxygenated by sparging with N_{2} for 30 minutes. Anhydrous dioxane was purchased from Acros in an AcroSeal bottle and used as received. Toluene was obtained from an Innovative Technologies solvent purification system (solvent deoxygenated by sparging with N_{2} and dried over alumina). $[(\text { allyl }) \mathrm{PdCl}]_{2}$ was prepared according to the literature. ${ }^{2}$ Thenalidine was obtained from Novartis through the CCHF. Glucose dehydrogenase (GDH, product No. GDH-105), and NAD (product No. NAD-004626) were purchased from Codexis (Redwood City, CA). FAD (product No. 00151) was purchased from Chem-Impex International (Wood Dale, IL). Catalase (product No. C1345-1G) was purchased from Aldrich. Biotage reversed-phase columns were purchased from Biotage (FSUL-0401-0012). AeraSeal film was purchased from Research Products International (product No. 202504). Representative batches of proteins expressed and purified (3-SS, 4-V, and MBP-RebF) were analyzed by SDS-PAGE and estimated to be $>95 \%$ pure with regards to the desired protein. ${ }^{3}$

General Comments

Reversed-phase chromatography was carried out using a Biotage Isolera One. NMR spectra (${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$) were obtained using a Bruker Ultrashield 500 Plus 500 MHz spectrometer at room temperature. Chemical shifts are reported in ppm and referenced to residual solvent peaks. ${ }^{4}$ Coupling constants are reported in Hz . In some cases the carbon atoms in the trifluoroacetate ion
cannot be observed in a reasonable number of scans. ${ }^{5}$ Mass spectra were obtained from the University of Chicago mass spectrometry facility using an Agilent Technologies 6224 TOF LC/MS.

General Procedure for 10 mg Scale Bioconversions

Substrate (10.0 mg), $\mathrm{NaBr} / \mathrm{NaCl}$ (20 equiv., 10 mM final concentration), glucose (40 equiv., 20 mM final concentration), glucose dehydrogenase ($9 \mathrm{U} / \mathrm{mL}$ final concentration GDH), and catalase ($35 \mathrm{U} / \mathrm{mL}$ final concentration) were added as solids to a crystallization dish (100×50 mm) containing a magnetic stir bar. The resulting mixture was diluted to an appropriate volume with phosphate buffer ($25 \mathrm{mM} \mathrm{K} \mathrm{K}_{2} \mathrm{HPO}_{4}, \mathrm{pH} 8.0$) and isopropanol ($3.5 \% \mathrm{v} / \mathrm{v}$) was added until a concentration of 0.5 mM with respect to substrate is reached (typically $80-120 \mathrm{~mL}$ final volume). 10 mM aqueous solutions of FAD and NAD were prepared and added to the reaction mixture (0.20 equiv., 0.10 mM final concentration each). Stock solutions of RebH and RebF, stored in a HEPES/glycerol buffer (25 mM HEPES, $\mathrm{pH} 7.4,10 \%$ glycerol v / v) following purification, were thawed in an ice water bath. RebH (0.01-0.05 equiv., $5-25 \mu \mathrm{M}$ final concentration) and MBPRebF (0.0005 equiv. $0.25 \mu \mathrm{M}$ final concentration) were added to the reaction mixture as solutions to give the indicated final enzyme concentrations. The reaction vessel was sealed with an AeraSeal film and gently stirred at room temperature for 16 hours. The reactions were monitored by UPLC (Agilent 1200 UPLC with an Agilent Eclipse Plus C18 $4.6 \times 150 \mathrm{~mm}$ column, $3.5 \mu \mathrm{~m}$ particle size; solvent $\mathrm{A}=\mathrm{H}_{2} \mathrm{O} / 0.1 \% \mathrm{TFA}$, solvent $\mathrm{B}=\mathrm{MeCN}$) until maximum conversion was observed. The following method was used for all substrates: $0-10 \mathrm{~min}, \mathrm{~B}=$ $15 \% ; 10-20 \mathrm{~min}, \mathrm{~B}=15-100 \% ; 20-24 \mathrm{~min}, \mathrm{~B}=100 \%$. The bioconversion were quenched with $\mathrm{HCl}(5 \mathrm{M}$, until $\mathrm{pH}<2)$ and saturated with solid NaCl . Precipitated protein was filtered out through a pad of Celite and the filtrate was brought to $\mathrm{pH}>12$ through addition of $\mathrm{NaOH}(5 \mathrm{M})$.

The filtrate was extracted 3 x with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic extracts were concentrated using a rotary evaporator.

General Procedure for Suzuki-Miyaura Coupling on Crude Extract of Bioconversion

The crude extracts from an enzymatic halogenation were transferred to a 50 mL round bottomed flask, and $\operatorname{Ar}-\mathrm{B}(\mathrm{OH})_{2}$ (1.5 equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.05 equiv.), sodium 2'-dicyclohexylphosphino-2,6-dimethoxy-1,1'-biphenyl-3-sulfonate hydrate (water soluble Sphos, 0.05 equiv.), and a magnetic stir bar were added. The flask was equipped with a reflux condenser and capped with a rubber septum. The apparatus was purged by three cycles of evacuation and N_{2} refill. A deoxygenated 1:1 mixture (20 mL) of isopropanol and phosphate buffer $\left(170 \mathrm{mM} \mathrm{K}_{2} \mathrm{HPO}_{4}, \mathrm{pH}\right.$ 8.5) was added via syringe and the mixture was allowed to stir under reflux in an oil bath. After 1 hour, the reaction vessel was allowed to cool to room temperature, and the isopropanol was removed by rotary evaporation. The aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}, 10 \mathrm{~mL}$ each), and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by rotary evaporation. The crude mixture was purified by reversed-phase chromatography (Biotage SNAP-KP-C18-HS, gradient from pure $\mathrm{H}_{2} \mathrm{O}$ to $60 \% \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$) and isolated as the trifluoroacetate (TFA) salt.

General Procedure for Buchwald-Hartwig Amination on Crude Extract of Bioconversion

The crude extracts from an enzymatic halogenation were transferred to a 20 mL round scintillation vial, and ArNH_{2} (3 equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.03 equiv.), BrettPhos (0.03 equiv.), $\mathrm{NaO} t-$ Bu (6 equiv.) and a magnetic stir bar were added. The vial was transferred to an inert atmosphere dry box, dioxane (1 mL) was added, and the vial was sealed with a Teflon lined cap. The vial was removed from the dry box and the mixture was allowed to stir in a $100^{\circ} \mathrm{C}$ oil bath.

After 14 hours, the reaction vessel was allowed to cool to room temperature, and the contents filtered over silica, eluting with $150 \mathrm{~mL} 4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$. The filtrate was collected and concentrated by rotary evaporation. The crude mixture was purified by reversed-phase chromatography (Biotage SNAP-KP-C18-HS, gradient from pure $\mathrm{H}_{2} \mathrm{O}$ to $60 \% \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$) and isolated as the trifluoroacetate (TFA) salt.

Preparation of Compounds

Preparation of 6-(4-methoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (1a)
1a was prepared from tryptoline ($10 \mathrm{mg}, 0.058 \mathrm{mmol}$) and 4-methoxyphenylboronic acid following the general procedure for enzymatic bromination with 3-SS and Suzuki-Miyaura Coupling outlined above in $>99 \%$ yield (23.17 mg of $\mathbf{1 a} \cdot \mathrm{TFA}, 0.059 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{MeOD}) \delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.46(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , MeOD) $\delta 160.08,137.43,136.34,129.31,129.04,128.09,127.06,122.81,121.35,116.72$, 115.16, 112.49, 55.76, 43.77, 42.30, 19.50. HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 279.1498, found: 279.1515 .

Preparation of 6-(benzo[d][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (1b) 1b was prepared from tryptoline ($10 \mathrm{mg}, 0.058 \mathrm{mmol}$) and 3,4-(methylenedioxy)phenylboronic acid following the general procedure for enzymatic bromination with 3-SS and Suzuki-Miyaura Coupling outlined above in 64% yield ($15.1 \mathrm{mg} \mathbf{1 b} \cdot \mathrm{TFA}, 0.037 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD) $\delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.41$ - $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H})$, $4.45(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}\right) \delta$ $149.52,147.84,138.30,137.55,134.26,128.04,127.16,122.96,121.45,117.00,112.50,109.35$, $108.60,107.39,102.31,43.77,42.30$ 19.49. HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 293.1290, found: 293.1291.

Preparation of methyl 4-(2,3,4,9-tetrahydro-1 H -pyrido[3,4-b]indol-6-yl)benzoate (1c)
1c was prepared from tryptoline ($10 \mathrm{mg}, 0.058 \mathrm{mmol}$) and 4-methoxycarbonylphenylboronic acid following the general procedure for enzymatic bromination with 3-SS and Suzuki-Miyaura Coupling outlined above in 55% yield ($13.5 \mathrm{mg} \mathbf{1} \mathbf{c} \cdot \mathrm{TFA}, 0.032 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD) $\delta 8.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~m}, J=27.9,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~s}$, 2H), $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{br}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 181.67$, $168.72,148.56,138.32,132.89,131.02,129.08,128.01,127.98,127.60,123.00,117.80,112.87$, 107.73, 52.53, 43.76, 42.29, 19.48. HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$307.1447, found: 307.1446 .

Preparation of 4-(2,3,4,9-tetrahydro-1 H-pyrido[3,4-b]indol-6-yl)benzonitrile (1d)
1d was prepared from tryptoline $(10 \mathrm{mg}, 0.058 \mathrm{mmol})$ and 4-cyanophenylboronic acid following the general procedure for enzymatic bromination with 3-SS and Suzuki-Miyaura Coupling outlined above in 73% yield ($16.5 \mathrm{mg} \mathbf{1 d} \cdot \mathrm{TFA}, 0.043 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) δ $7.83(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~m}, 3 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD) $\delta 148.49,138.48,133.64,132.09,128.77,128.24$, 127.86, 122.85, 120.08, 117.95, 113.03, 110.65, 107.81, 43.71, 42.23, 19.46. HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 274.1344$, found: 274.1345 .

Preparation of N -(4-(2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-6-yl)phenyl)acetamide (1e)
$\mathbf{1 e}$ was prepared from tryptoline $(10 \mathrm{mg}, 0.058 \mathrm{mmol})$ and (4-acetamido)phenylboronic acid following the general procedure for enzymatic bromination with 3-SS and Suzuki-Miyaura Coupling outlined above in 58% yield ($14.1 \mathrm{mg} \mathbf{1 e} \cdot \mathrm{TFA}, 0.034 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD) $\delta 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 4 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.14(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 170.03,152.37,138.37$, $133.82,131.77,128.54,128.27,122.84,121.64,121.56,116.98,113.95,112.59,43.79,42.32$, 23.79, 19.50. HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 306.1606$, found: 306.1614.

Preparation of 4-(2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-6-yl)phenol (1f)
1f was prepared from tryptoline ($10 \mathrm{mg}, 0.058 \mathrm{mmol}$) and 4-hyroxyphenylboronic acid following the general procedure for enzymatic bromination with 3-SS and Suzuki-Miyaura Coupling outlined above in 97% yield in roughly 90% purity ($21.2 \mathrm{mg} \mathbf{1 f} \cdot \mathrm{TFA}, 0.056 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, MeOD) $\delta 7.61(\mathrm{~s}, 4 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 8 \mathrm{H}), 7.37(\mathrm{~s}, 6 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $8 \mathrm{H}), 4.45(\mathrm{~s}, 8 \mathrm{H}), 3.68-3.48(\mathrm{~m}, 10 \mathrm{H}), 3.12(\mathrm{t}, J=5.7 \mathrm{~Hz}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}\right) \delta$ $137.32,135.29,134.47,129.09,128.07,126.95,126.09,122.81,121.63,113.96,112.43,107.28$, 43.79, 42.32, 19.51. HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}:$265.1341, found: 265.1356.

Preparation of V 6-(6-fluoropyridin-3-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (1g)
$\mathbf{1 g}$ was prepared from tryptoline ($10 \mathrm{mg}, 0.058 \mathrm{mmol}$) and 6-fluoro-3-pyridinylboronic acid following the general procedure for enzymatic bromination with 3-SS and Suzuki-Miyaura Coupling outlined above in 86% yield ($19.0 \mathrm{mg} \mathbf{1 g} \cdot \mathrm{TFA}, 0.050 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\mathrm{MeOD}) \delta 8.44(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=$ 8.4, 2.4 Hz, 1H), $4.48(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126
$\mathrm{MHz}, \mathrm{MeOD}) \delta 146.12\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=13.8 \mathrm{~Hz}\right), 141.72\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 138.17,137.86(\mathrm{~d}, J=4.3$ Hz), 129.38, 128.26, 127.80, 122.69, 117.66, 113.10, 110.56, 110.27, 107.64, 43.72, 42.24, 19.46. ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{MeOD}$) $\delta-75.51(\mathrm{~s}),-76.97$ (s) (TFA). HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FN}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$268.1250, found: 268.1265 .

Preparation of N -(4-(trifluoromethyl)pyridin-2-yl)-2,3,4,9-tetrahydro-1 H -pyrido[3,4-b]indol-6amine ($\mathbf{1 h}$)

1h was prepared from tryptoline ($10 \mathrm{mg}, 0.058 \mathrm{mmol}$) and 2-amino-4-trifluromethylpyridine following the general procedure for enzymatic bromination with 3-SS and Buchwald-Hartwig amination outlined above in 87% yield ($22.4 \mathrm{mg} \mathbf{1 h} \cdot \mathrm{TFA}, 0.050 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD) $\delta 7.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{br} 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{MeOD}) \delta 160.75,139.54,137.93,129.09,128.69,123.38,120.71,120.53,118.89,116.54$, 114.47, 112.28, 109.35, 107.86, 43.60, 42.12, 19.36. ${ }^{19}$ F NMR (470 MHz, MeOD) $\delta-68.18,-$ 77.67 (TFA). HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 333.1327, found: 333.1327.

Preparation of N-(6-methylpyridin-2-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-6-amine (1i) $\mathbf{1 i}$ was prepared from tryptoline $(10 \mathrm{mg}, 0.058 \mathrm{mmol})$ and 2-amino-6-methylpyridine following the general procedure for enzymatic bromination with 3-SS and Buchwald-Hartwig amination outlined above in 63% yield ($14.3 \mathrm{mg} \mathbf{1 i} \cdot \mathrm{TFA}, 0.036 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{MeOD}) \delta$ $7.81(\mathrm{dd}, J=17.4,9.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD) δ 149.46, 145.92, 137.41, 128.97, 128.70, 128.50, 121.07, 116.37,
$114.25,113.94,113.23,110.36,107.64,43.62,42.13,19.36,19.07$. HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 279.1609$, found: 279.1621.

Preparation of N -(quinolin-3-yl)-2,3,4,9-tetrahydro-1 H -pyrido[3,4-b]indol-6-amine (1j)
$\mathbf{1} \mathbf{j}$ was prepared from tryptoline (10 mg 0.058 mmol) and 3-aminoquinoline following the general procedure for enzymatic bromination with 3-SS and Buchwald-Hartwig amination outlined above in 51% yield ($12.7 \mathrm{mg} \mathbf{1 j} \cdot \mathrm{TFA}, 0.030 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{MeOD}) \delta$ $8.70(\mathrm{~s}, N-\mathrm{H}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H})$, $7.42(\mathrm{~m}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{br}, 3 \mathrm{H}), 3.05(\mathrm{br}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD) $\delta 143.91,137.94,136.13,133.41,131.69,130.48,130.03,128.51$, $128.10,128.02,123.35,122.66,120.98,119.69,113.69,113.30,107.25,43.73,42.26,19.45$. HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 315.1609$, found: 315.1619.

Preparation of 1-(2-(2-methoxyphenoxy)ethylamino)-3-(1-(4-methoxyphenyl)-9H-carbazol-4-yloxy)propan-2-ol (2a)

2a was prepared from carvedilol ($10 \mathrm{mg}, 0.025 \mathrm{mmol}$) and 4-methoxyphenylboronic acid following the general procedure for enzymatic chlorination with $4-\mathrm{V}$. The crude extracts from the bioconversion were transferred to a 20 mL round scintillation vial, and $\mathrm{Pd}(\mathrm{OAc})_{2}(0.28 \mathrm{mg}$, $0.0012 \mathrm{mmol}, 0.05$ equiv.), Sphos ($0.50 \mathrm{mg}, 0.0012 \mathrm{mmol}, 0.05$ equiv.), $4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{B}(\mathrm{OH})_{2}$ ($5.61 \mathrm{mg}, 0.037 \mathrm{mmol}, 1.5$ equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}(10.4 \mathrm{mg}, 0.043 \mathrm{mmol}, 2$ equiv.), and a magnetic stir bar were added. The vial was transferred to an inert atmosphere dry box, dioxane (0.8 mL) and water $(0.2 \mathrm{~mL})$ were added, and the vial was sealed with a teflon lined cap. The vial was removed from the dry box and the mixture was allowed to stir in a $100^{\circ} \mathrm{C}$ oil bath. After 12 hours, the reaction vessel was allowed to cool to room temperature, and the contents filtered over
silica, eluting with $150 \mathrm{~mL} 4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$. The filtrate was collected and concentrated by rotary evaporation. The crude mixture was purified by reversed-phase chromatography (Biotage SNAP-KP-C18-HS, gradient from pure $\mathrm{H}_{2} \mathrm{O}$ to $60 \% \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$) and isolated in 93% yield $(14.3 \mathrm{mg} 2 \mathbf{a} \cdot \mathrm{TFA}, 0.023 \mathrm{mmol}) .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{MeOD}) \delta 8.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (dd, $J=6.6,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.05-6.95(\mathrm{~m}, 4 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dt}, J=9.5,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.42(\mathrm{dd}, J=9.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dt}, J=13.5,6.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.67$ $(\mathrm{dd}, J=12.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{dd}, J=12.6,9.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{MeOD}) \delta 160.36,155.19,151.14,148.43,141.07,140.21,132.82,130.53,127.21,125.84$, $124.25,123.69,123.56,122.35,120.47,120.04,116.69,115.46,113.97,113.38,111.75,102.35$, $71.05,66.83,66.23,56.42,55.84,51.76,48.38$. HRMS calculated for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 513.2389, found: 513.2400.

Preparation of 1-(isopropylamino)-3-(7-(4-methoxyphenyl)-1H-indol-4-yloxy)propan-2-ol (3a) 3a was prepared from pindolol ($10 \mathrm{mg}, 0.040$) and 4-methoxyphenylboronic acid following the general procedure for enzymatic bromination with 4-V and Suzuki-Miyaura Coupling outlined above in $>99 \%$ yield ($19.4 \mathrm{mg} \mathbf{3 a} \cdot \mathrm{TFA}, 0.041 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 7.50(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.10-6.95(\mathrm{~m}, 3), 6.68-6.56(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.29(\mathrm{~m}, 1 \mathrm{H})$, $4.25(\mathrm{dd}, J=9.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=9.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dt}, J=13.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ (dd, $J=12.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=12.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{dd}, J=6.5,4.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD) $\delta 160.22,152.36,133.10,130.22,124.99,124.83,122.76,121.42$, $120.62,115.36,102.08,99.94,71.07,67.08,55.79,52.10,19.33,18.81$. HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 355.2021$, found: 355.2036.

Preparation of N-(4'-methoxybiphenyl-4-yl)-1-methyl- N-(thiophen-2-ylmethyl)piperidin-4-amine (4a)

4a was prepared from thenalidine ($10 \mathrm{mg}, 0.035 \mathrm{mmol}$) and 4-methoxyphenylboronic acid following the general procedure for enzymatic bromination with 4-V and Suzuki-Miyaura Coupling outlined above in 74% yield ($13.1 \mathrm{mg} \mathbf{4 a} \cdot \mathrm{TFA}, 0.026 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, MeOD) $\delta 7.44(\mathrm{dd}, J=15.2,8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.88(\mathrm{~m}, 5 \mathrm{H}), 4.65(\mathrm{~s}$, $2 \mathrm{H}), 4.06(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.87(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{MeOD}\right) \delta$ $128.36,128.25,128.11,128.04,127.76,125.51,125.15,118.01,115.21,115.16,55.74,55.49$, 47.04, 43.82, 31.11, 28.46 (Some aryl carbons cannot be distinguished due to overlap). HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 393.2000$, found: 393.2000.

Preparation of 1-methyl- N -(thiophen-2-ylmethyl)- N -(4-(2,2,2-trifluoroethoxy)phenyl)piperidin-4-amine (4b)

4b was prepared from thenalidine ($10 \mathrm{mg}, 0.035 \mathrm{mmol}$) following the general procedure for enzymatic bromination with 4-V. The crude extracts from the bioconversion were transferred to a 20 mL round scintillation vial, and $[(\text { allyl }) \mathrm{PdCl}]_{2}\left(0.06 \mathrm{mg}, 1.74 \times 10^{-4} \mathrm{mmol}, 0.005\right.$ equiv. $)$, RockPhos ($0.24 \mathrm{mg}, 5.22 \times 10^{-4} \mathrm{mmol}, 0.015$ equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($20.6 \mathrm{mg}, 0.070 \mathrm{mmol}, 2$ equiv.), and a magnetic stir bar were added. The vial was transferred to an inert atmosphere dry box, toluene (1 mL) and trifluoroethanol ($5.3 \mu \mathrm{~L}, 0.070 \mathrm{mmol}$, 2 equiv.) were added, and the vial was sealed with a teflon lined cap. The vial was removed from the dry box and the mixture was allowed to stir in a $90^{\circ} \mathrm{C}$ oil bath. After 14 hours, the reaction vessel was allowed to cool to
room temperature, and the contents filtered over silica, eluting with $150 \mathrm{~mL} 4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$. The filtrate was collected and concentrated by rotary evaporation. The crude mixture was purified by reversed-phase chromatography (Biotage SNAP-KP-C18-HS, gradient from pure $\mathrm{H}_{2} \mathrm{O}$ to $60 \% \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$) and isolated in 33% yield ($5.6 \mathrm{mg} \mathbf{4 b} \cdot \mathrm{TFA}, 0.011 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, MeOD) $\delta 7.24(\mathrm{dd}, J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.87(\mathrm{~m}$, $1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{dd}, J=17.0,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.11(\mathrm{t}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{~m}, J=23.9,11.2 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 161.32$, 127.59, 126.52, 125.84, 124.10, 123.30, 120.17, 117.73, 116.83, 67.38, 67.10, 55.26, 49.85, 43.72, 28.59. ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(470} \mathrm{MHz}, \mathrm{MeOD)} \mathrm{\delta} \mathrm{-75.89}$, -77.13 (TFA). HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 385.1561$, found: 385.1574 .

Scheme Showing Cofactor Regeneration System

Figure S1:

In this system, glucose dehydrogenase (GDH) uses glucose to reduce NAD, generating glucono δ-lactone as a byproduct. MBP-RebF then reduces FAD using the NADH generated by GDH, but given that MBP-RebF and the RebH variants employed are not perfectly coupled, the reduced FAD can then react with O_{2} to generate $\mathrm{H}_{2} \mathrm{O}_{2}$. Catalase is thus added to remove this unwanted $\mathrm{H}_{2} \mathrm{O}_{2}$, converting it to $\mathrm{H}_{2} \mathrm{O}$ and O_{2}. Reduced FAD that reacts as desired is able to reduce O_{2} in the RebH active site in order to ultimately effect halogenation. ${ }^{6} \mathrm{H}_{2} \mathrm{O}$ is generated as a byproduct of this reaction.

NMR Spectra

4a

References

(1) Payne, J. T.; Poor, C. B.; Lewis, J. C. Angew. Chem. Int. Ed. Engl. 2015, 54 (14), 42264230.
(2) Tatsuno, Y.; Yoshida, T.; Otsuka, S. Inorganic Syntheses; Angelici, R. J., Ed.; Inorganic Syntheses; John Wiley \& Sons, Inc.: Hoboken, NJ, USA, 1990; Vol. 28.
(3) Payne, J. T.; Andorfer, M. C.; Lewis, J. C. Angew. Chemie - Int. Ed. 2013, 52 (20), 52715274.
(4) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29 (9), 2176-2179.
(5) Durak, L. J.; Lewis, J. C. Organometallics 2013, 32 (11), 3153-3156.
(6) Yeh, E.; Blasiak, L. C.; Koglin, A.; Drennan, C. L.; Walsh, C. T. Biochemistry 2007, 46, 1284-1292.

