SUPPORTING INFORMATION

FOR

The Role of Architecture in the Melt-State Self-Assembly of (Polystyrene)_{star}-b-

(Polyisoprene)_{linear}-b-(Polystyrene)_{star} Pom-Pom Triblock Copolymers

Dilanji B. Wijayasekara¹, Tianzi Huang², Jacqueline M. Richardson², Daniel M. Knauss^{2,*} and Travis S. Bailey^{1,*}

¹Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523 ²Department of Chemistry, Colorado School of Mines, Golden, CO 80401

Table of Contents

S.1	Chemical Characterization of all 18 S _n IS _n Pom-Pom Triblock Copolymers	2
S.2	GPC-MALLS of Selected S _n IS _n Pom-Pom Triblock Copolymers and Precursor Molecules	2
S.3.	AFM Images of Selected S _n IS _n Pom-Pom Triblock Copolymers	3
S.4	References	7

S.1 Chemical Characterization of all 18 S_nIS_n Pom-Pom Triblock Copolymers

		n _{arms} ^b					$M_{n,a}$	
	$M_{n,star}^{\ a}$	$(M_{n,arms})^a$	PDI _{star} ^a	$w_{\rm PI}^{\rm c}$		dn/dc ^e	$(M_n)^f$	
Sample	[g mol ⁻¹]	[g mol ⁻¹]	$\left(PDI_{arm} \right)^a$	$(w_{\rm PI,feed})$	$f_{\mathrm{PI}}{}^{\mathrm{d}}$	[mL g ⁻¹]	$[g mol^{-1}]$	PDI ^a
TPE01	16,500	7.1 (2,160)	1.20 (1.02)	0.69 (0.70)	0.72	0.141	73,600 (106,000)	1.06
TPE02	16,500	7.1 (2,160)	1.20 (1.02)	0.77 (0.75)	0.80	0.133	89,800 (143,000)	1.07
TPE03 (B7)	16,500	7.1 (2,160)	1.20 (1.02)	0.81 (0.80)	0.83	0.131	105,000 (174,000)	1.07
TPE04	16,500	7.1 (2,160)	1.20 (1.02)	0.86 (0.85)	0.88	0.128	138,000 (236,000)	1.06
TPE05	14,300	4.1 (3,300)	1.08 (1.02)	0.69 (0.70)	0.72	0.141	73,500 (92,300)	1.07
TPE06 (C4)	14,300	4.1 (3,300)	1.08 (1.02)	0.75 (0.75)	0.78	0.136	92,000 (114,000)	1.06
TPE07 (B4)	14,300	4.1 (3,300)	1.08 (1.02)	0.80 (0.80)	0.82	0.132	107,000 (143,000)	1.04
TPE08 (A4)	14,300	4.1 (3,300)	1.08 (1.02)	0.87 (0.85)	0.89	0.127	158,000 (220,000)	1.06
TPE09	15,500	2.9 (5,400)	1.30 (1.01)	0.71 (0.70)	0.74	0.139	102,000 (107,000)	1.03
TPE10	15,500	2.9 (5,400)	1.30 (1.01)	0.75 (0.75)	0.78	0.136	113,000 (124,000)	1.03
TPE11 (B3)	15,500	2.9 (5,400)	1.30 (1.01)	0.80 (0.80)	0.82	0.132	132,000 (155,000)	1.02
TPE12	15,500	2.9 (5,400)	1.30 (1.01)	0.84 (0.85)	0.86	0.129	160,000 (194,000)	1.04
TPE13	10,600	4.5 (2,200)	1.20 (1.05)	0.56 (0.60)	0.60	0.150	34,600 (48,200)	1.10
TPE14	10,600	4.5 (2,200)	1.20 (1.05)	0.69 (0.70)	0.72	0.141	50,000 (68,400)	1.03
TPE15	10,600	4.5 (2,200)	1.20 (1.05)	0.81 (0.80)	0.83	0.131	74,200 (112,000)	1.03
TPE16	15,600	3.9 (3,890)	1.23 (1.01)	0.57 (0.60)	0.61	0.150	59,500 (72,600)	1.04
TPE17	15,600	3.9 (3,890)	1.23 (1.01)	0.69 (0.70)	0.72	0.141	76,700 (101,000)	1.03
TPE18	15,600	3.9 (3,890)	1.23 (1.01)	0.81 (0.80)	0.83	0.131	115,000 (164,000)	1.03

Table S1: Chemical characterization data

^acalculated from GPC-MALLS; ^bcalculated from $M_{n,star} = nM_{n,arm} + (n-1)M_{DMSS}$; ^ccalculated from ¹H NMR of fractionated product; ^d volume fraction of PI calculated using nominal densities at 140°C)¹; ^ccalculated based on the summation of the products of the *dn/dc* of each block times its weight fraction; ^fcalculated from $M_{n,star}$ in combination with ¹H NMR of final product.

Figure S1. GPC Chromatograms showing the molecular weight distribution for samples TPE01 and TPE03 (**B7**) throughout the multistep continuous polymerization process, including the final fractionated product. **A**: PS arm; **B**: PS star; **C**: S_nI diblock copolymer; **D**: Crude S_nIS_n triblock copolymer; **F**: Fractionated S_nIS_n triblock copolymer.

S.3. AFM Images of Selected $S_n IS_n \mbox{ Pom-Pom Triblock Copolymers}$

S _n IS _n	As Cast	Annealed	Annealed
TPE01	μμπ×1 μπ	1 μm X 1 μm	2 μm X 2 μm
TPE02	инининининининининининининининининини	1 μm × 1 μm	2 μm × 2 μm
TPE03 (B7)	1 μm × 1 μm	Тµт×1µт	2 μm × 2 μm
TPE04	Тµm X 1 µm	Г µm X 1 µm	2 μm × 2 μm

 Table S2: Chemical characterization data

$S_n IS_n$	As Cast	Annealed	Annealed
TPE05	1 μm × 1 μm	μm×1μm	2 μm × 2 μm
TPE06 (C4)	Тира 1 µm	1 μm × 1 μm	2 μm × 2 μm
TPE07 (B4)	1 μm × 1 μm	Гориалия 1 µm × 1 µm	2 μm × 2 μm
TPE08 (A4)	Тит X 1 µт	ин X 1 µm	2 μm × 2 μm

S _n IS _n	As Cast	Annealed	Annealed
TPE09	ини и на	μ μ μ μ μ μ μ μ μ μ	2 μm × 2 μm
TPE10	1 μm × 1 μm	1 μm × 1 μm	2 μm × 2 μm
TPE11 (B3)	Тµт×1µт	1 μm × 1 μm	2 μm × 2 μm
TPE12	1 μm × 1 μm	1 μm × 1 μm	2 μm × 2 μm

S _n IS _n	As Cast	Annealed	Annealed
TPE13	1 μm × 1 μm	1 μm × 1 μm	$2 \mu\text{m} \times 2 \mu\text{m}$
TPE14	1 μm × 1 μm	1 μm × 1 μm	2 μm × 2 μm
TPE15	1 μm × 1 μm	μm X 1 μm	Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο
TPE16	No image	No image	No image
TPE17	Тµm × 1 µm	Т µm × 1 µm	2 μm × 2 μm

S _n IS _n	As Cast	Annealed	Annealed
TPE18	Тит × 1 µт	Тµт×1µт	2 μm × 2 μm

S.4 References

1. Fetters, L. J.; Lohse, D. J.; Richter, D.; Witten, T. A.; Zirkel, A. *Macromolecules* **1994**, 27, (17), 4639-4647.