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Dependence of Au Plasmon Resonance Absorptionr&pecAverage Metal Thickness

The enhancement effect in ATR IR spectroscopy aeed using the polarization of metal
nanoparticles (NPS) and the off-resonant excitatidocal surface plasmon (LSP) resonances
which stem from structured metal surfaces (see4ig.the main text and Fig. SI 3 belot).
Au NPs exhibit pronounced LSP resonances with dantiabsorption in the spectral region
between 500 — 800 nm. This is demonstrated herednyrding broadband absorption spectra
from sputter-coated CaFsubstrates of varying average thicknesses inteoséay UV-Vis
spectrometer. As depicted in Fig. Sl 1, the peaR k&onance of the Au NPs is located at
about 580 nm for 0.2 nm Au, strongly broadens adeshifts with increasing average thickness
to about 660 nm. This is indicative for a growthtleé Au NPs on the prisms surface as the

average sputtered thickness increddes.
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Fig. SI 1. Surface plasmon resonance spectra redadimm sputtered ultrathin Au layers
between 0.2 nm and 1.0 nm. (a) Stationary UV-Visoation spectra from Au on CaKb)
Stationary ATR IR spectra of Au on ZzO
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Calculation of the x, y, and z-Components of thenégcent Wave in the CaMeOH System

As discussed in the main text, p- and s-polarimatid the incident light induce differently
polarized evanescent waves at the solid-liquidrfiate in ATR IR spectroscopyThat is, p-
polarized incident light generates an ellipticglglarized evanescent wave in the optically-
rarer medium (here: MeOH). Here, the evanescentevexhibits a major z-component (for
definitions, see Figs. 1 and 3 in the main text) amminor x-component as evidenced for a
projection of a temporal oscillation of the evamdcwave in the x-z-plane (Fig. SI 2 (a)).
Conversely, s-polarization generates a linearlapoéd evanescent wave in the optically rarer
medium with only a y-component (Fig. Sl 2 (b)) toprojection of a temporal oscillation of

the evanescent wave in the x-y-plane.
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Figure SI 2. Calculation of the x, y, and z-compdseof the evanescent wave at the £aF
MeOH interface. Shown are the projections of a temlposcillation of the electric field vector

to indicated planes for (a) p-polarized incideghtiand (b) s-polarized incident light.
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Large Scale SEM Images from Au-coated and non-AtedcCak Substrates

The main text discusses SEM images of Au sputtatetband non-Au coated CGesubstrates
in terms of the structure of the corresponding ARRsNHere we show large range SEM images
of the same substrates in order to allow for eebetmparison of the surface structure (Fig. Sl
3). The order of the images is the same as in thia mxt,i.e.0.2 nm Au (a), 0.5 nm Au (b),
1.0 nm Au (c), and no Au (d). The growing sizetwf Au NPs with increasing average thickness

and the formation of pronounced gaps between theddR be discerned.

Figure Sl 3. Large Scale SEM images of £sifibstrates which have been sputter-coated with
(@) 0.2 nm Au, (b) 0.5 nm Au, and (c) 1.0 nm Ay.$thows an SEM image of a non-Au-coated
Cak substrate. Note that all substrates have beeni@ully coated with 2 nm of Carbon in
order to allow for high enough conductivity whichoas a high-resolution SEM analysis.
Regions of white dashed margins correspond to xberpts shown in the main text (Fig. 4).
All images have been acquired with an acceleratimtage of 5 kV and the magnification
(300 k) leads to an image pixel size of 372.2 pm.
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Vibrational Relaxation Dynamics of Samples

Vibrational relaxation can influence the value&6t for delays other than T = 0 ps if relaxation
time constants drastically differ. Here, we showat ttine calculation of EFs is only minimally
influenced through vibrational relaxation for theargple systems investigated here. Fig. Sl 4
shows 2D ATR IR signal magnitudes for p-PhCN an@® 20 both bulk solution as well as
ML data. Symbols represent experimental data ok malution samples (black) and ML
samples (red), while solid lines represent expaaktitis (same color code). For p-PhCN (Fig.
Sl 4 (a)) dissolved in (bulk) or incubated with (MMeOH, vibrational relaxation takes place
with time constants of 7.6 £ 0.3 ps (bulk) and8@2 ps. Which indicates negligible influence
of vibrational relaxation on EFs for calculationEifs at 5 ps as done in the main text. Fig. SI
4 (b) shows the same data for 2N3 bulk solutionMhdelaxation dynamics. Exponential fits
to the data yield time constants for vibrationdxation of 1.3 £ 0.1 ps (bulk) and 1.7 + 0.1 ps
(ML). This slight difference in the vibrational esdation time constants would yield for a
population delay of 1 ps (in the absence of anyarobment effects discussed in the main text)
an EF for the ML sample of 1.2. This is thus sigaifhtly lower as the experimentally observed

value for 2N3 on 1 nm Au (E& 7).
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Figure Sl 4. Vibrational relaxation of (a) p-PhChdab) 2N3 for bulk solution samples (black)
and ML samples (red). Experimental data are reptedeéoy symbols while exponential fits are

represented by solid lines.
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Enhancement Factors for Aliphatic Nitrile Functidriiaroups

The main text discusses the previously observeden€e of polarity and polarizability in
surface-enhanced IR signafs°Here we show that the polarity and polarizabitifythe two
different employed vibrational probes (azide artdla) per sehave a negligible influence on
the EFs of aliphatic MLs on Au in 2D ATR IR spectcopy*!~*Fig. SI 5 (a) shows ATR IR
absorption spectra of 4-Cyanobutanethiol (4CN)ahiesl in bulk MeOH (black) as well as for
4CN MLs on 1 nm Au on CaFunder the same experimental conditions as foother ML
samples in the main text. Fig. SI 5 (b) shows theesponding diagonal cuts of the 2D ATR
IR spectra. A relation of the obtained signal magies according to egn. (1) in the main text
reveals an EF of 7. This demonstrates that theasgmhancement for the aliphatic nitrile and

azide containing ML samples is similar.
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Figure SI 5. Determination of the EF for 4-Cyanaimgthiol (4CN) MLs on 1 nm Au in 2D
ATR IR spectroscopy. (a) ATR IR absorption speci@CN in bulk MeOH (black) and as
MeOH-incubated MLs (red). (b) Corresponding diadanas of the 2D ATR IR spectra at a
population delay of 1 ps. The calculated EE i& To the right is a sketch of the ML sample.

Sl 6



Enhancement Factors for Aromatic Azide FunctionaduUps

Figs. 2 and 5 in the main text together with Fi.5Sshow that aromatic samples exhibit
different EFs as compared to aliphatic sampless Tit@nd is further supported here by the
determination of EFs for aromatic azide functiogr@ups in para-Azidophenyl-isothiocyanate
(p-PhN3) MLs on 1 nm Au. Fig. SI 6 (a) shows ATRadBsorption spectra of p-PhN3 dissolved
in bulk MeOH (black) as well as for p-PhN3 MLs onnfin Au on Cak under the same
experimental conditions as for the other ML sampiethe main text. Fig. SI 6 (b) shows the
corresponding diagonal cuts of the 2D ATR IR speck relation of the obtained signal
magnitudes according to egn. (1) in the main texeals an EF of 24. This demonstrates that
the signal enhancement for the aromatic ML samiglesmilar and in general stronger than

enhancement of aliphatic MLs, irrespective of tinectional group.
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Figure SI 6. Determination of the EF for para-Azilenyl-isothiocyanate (p-PhN3) MLs on
1 nm Au in 2D ATR IR spectroscopy. (a) ATR IR algan spectra of PhN3 in bulk MeOH
(black) and as MeOH-incubated MLs (red). (b) Cquaesling diagonal cuts of the 2D ATR IR
spectra at a population delay of 0.1 ps. The caledlEF isc 24. To the right is a sketch of the
ML sample.

Note that for p-PhN3 the bulk solution sample eikilbwo peaks which may arise from

intramolecular coupling between the SCN functiggralup and the MNlabel. Interestingly, the
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double band structure is abrogated for the ML sampt a single peak is observed both in the
stationary signals as well as in the 2D ATR IR dBuae to the exploitation of the SCN group
as a linker to the Au surface, it can be expedtatithe vibrational properties of the linker group
are significantly affected through the adsorpticwwcess. This may eliminate vibrational

coupling between the two functional groups.

Note additionally, that p-PhN3 is linked to the layers via an isothiocyanate functional group
as compared to the thiol-linkers for 4CN, 2N3 ahd PhCN compounds in the main text.
Therefore, the lower increase in enhancement fBthjd3 as compared to 2N3 might be
reasoned by different conformational arrangememtthe two ML samples based on the

different linkers in the two systems.
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