Supporting information

Toward Understanding of Branching in RAFT Copolymerization of Methyl Methacrylate through a Cleavable Dimethacrylate

Shao-Ning Liang,^a Xiaohui Li,^a Wen-Jun Wang,^{a,b,*} Bo-Geng Li,^a and Shiping Zhu,^c

^a State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China

^b Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China

^c Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7

*Corresponding authors. (W.-J. W.) Telephone: +86-571-8795-2772. Fax: +86-571-8795-2772. E-mail: wenjunwang@zju.edu.cn.

Figure 1S. GPC traces of b-PMMA samples collected at different monomer conversions in Run 7 (a) 90° light scattering (LS) detector and (b) refractive index (RI) detector

Figure 2S. GPC traces of b-PMMA sample at 99.6% conversion in Run 7 after cleavage acquired at 90° LS detector (LS90), RI detector, and intrinsic viscosity (DP) detector.

Figure 3S. ¹H NMR spectra of b-PMMA sample at 42.1% conversion in Run 5 (a) before and (b) after cleavage

Model Development for RAFT Copolymerization of Vinyl/Divinyl Monomer System with Branching

The equations and kinetic parameters are listed as follows. The details for the model development can also be seen in Ref S1.

Polymerization scheme and kinetic equations

The elementary reactions of RAFT batch copolymerization of vinyl/divinyl monomer system are showed in Table 1S.

Table 1S. Elementary	v Reactions of RAFT	^C Copolymerizatior	of Vinvl/Divin	vl Monomer System
		000000000000000000000000000000000000000		j = ==================================

Initiation	$I \xrightarrow{f,k_d} 2P_{0,1,0}$
	$P_{0,1,0} + M_i \xrightarrow{k_{p,i}} P_{1,1,0}$
Propagation with comonomer	$P_{n,r,c} + M_i \xrightarrow{k_{p,i}} P_{n+1,r,c}$
Transfer to RAFT species	$P_{n,r,c} + P_{m,s,d} \xrightarrow{rdk_{tr}} P_{n,r-1,c+1} + P_{m,s+1,d-1}$
Termination by disproportionation	$P_{n,r,c} + P_{m,s,d} \xrightarrow{-rsk_{td}} P_{n,r-1,c} + P_{m,s-1,d}$
Termination by recombination	$P_{n,r,c} + P_{m,s,d} \xrightarrow{-rsk_{tc}} P_{n+m,r+s-2,c+d}$
intermolecular cross-linking	$P_{n,r,c} + P_{m,s,d} \xrightarrow{-rmk_{inter}} P_{n+m,r+s,c+d}$
intramolecular cross-linking	$P_{n,r,c} \xrightarrow{-rnk_{intra}} P_{n,r,c}$

Herein, $P_{n,r,c}$ denotes the macromolecule containing *n* monomeric units, *r* radical centers and *c* RAFT moieties. *I* and M_i represent conventional initiator and monomer *i*, respectively. M_1 is vinyl monomer MMA and M_2 is divinyl monomer BMAODS.

The kinetic parameters (or pseudokinetic rate constants^{S1}) listed in Table 1S are the functions of radical fractions, ϕ_i , which can be calculated by the instantaneous monomer composition, f_i . So the pseudo rate constants can be expressed as

$$k_{p,i} = \sum_{j} k_{p,ji} \phi_j \tag{1a}$$

$$k_{ir} = \sum_{j} k_{ir,j} \phi_j \tag{1b}$$

$$k_t = \sum_i \sum_j k_{t,ij} \phi_i \phi_j$$
(1c)

$$k_{\text{int}er} = \sum_{j} k_{\text{int}er,j}^* \phi_j (\overline{F_2} - \overline{C} - \overline{D})$$
(1d)

$$k_{\text{int}ra} = \sum_{j} k_{\text{int}ra,j}^* \phi_j (\overline{F_2} - \overline{C} - \overline{D})$$
(1f)

where $\overline{F_2}$ is the divinyl density in the total copolymer, \overline{C} is the intermolecular cross-linkage density, and \overline{D} is the intramolecular cross-linkage density.

Based on elementary reactions, the population balance for $P_{n,r,c}$ is

$$\frac{dP_{n,r,c}}{dt} = \sum_{i} rk_{p,i} M_{i} P_{n-1,r,c} - \sum_{i} rk_{p,i} M_{i} P_{n,r,c}
+ \sum_{m=0}^{\infty} \sum_{s=0}^{\infty} \sum_{d=1}^{\infty} (r+1) dk_{tr} P_{n,r+1,c-1} P_{m,s,d} - \sum_{m=0}^{\infty} \sum_{s=0}^{\infty} \sum_{d=1}^{\infty} r dk_{tr} P_{n,r,c} P_{m,s,d}
+ \sum_{m=0}^{\infty} \sum_{s=1}^{\infty} \sum_{d=0}^{\infty} s(c+1) k_{tr} P_{n,r-1,c+1} P_{m,s,d} - \sum_{m=0}^{\infty} \sum_{s=1}^{\infty} \sum_{d=0}^{\infty} sck_{tr} P_{n,r,c} P_{m,s,d}
+ \sum_{m=0}^{\infty} \sum_{s=1}^{\infty} \sum_{d=0}^{\infty} (r+1) sk_{td} P_{n,r+1,c} P_{m,s,d} - \sum_{m=0}^{\infty} \sum_{s=1}^{\infty} \sum_{d=0}^{\infty} r sk_{td} P_{n,r,c} P_{m,s,d}
+ \frac{1}{2} \sum_{m=0}^{n} \sum_{s=1}^{r+1} \sum_{d=0}^{\infty} (r+2-s) sk_{tc} P_{m,s,d} P_{n-m,r+2-s,c-d} - \sum_{m=0}^{\infty} \sum_{s=1}^{\infty} \sum_{d=0}^{\infty} r sk_{tc} P_{n,r,c} P_{m,s,d}
+ \sum_{m=0}^{n} \sum_{s=1}^{r} \sum_{d=0}^{c} s(n-m) k_{p,int\,er} P_{m,s,d} P_{n-m,r-s,c-d} - \sum_{m=0}^{\infty} \sum_{s=0}^{\infty} \sum_{d=0}^{\infty} r m k_{p,int\,er} P_{n,r,c} P_{m,s,d}
- \sum_{m=0}^{\infty} \sum_{s=1}^{\infty} \sum_{d=0}^{\infty} snk_{p,int\,er} P_{n,r,c} P_{m,s,d}$$
(2)

Method of moments

The moments of $P_{n,r,c}$ are defined as

$$Y_{i,j,k} = \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{c=0}^{\infty} n^{i} r^{j} c^{k} P_{n,r,c}$$
(3)

A complete set of moment equations can be derived as summarized in Table 2S.

Table 28. Different Moment Equations				
zeroth-order moments	$\frac{dY_{0,0,0}}{dt} = 2fk_d[I] - \frac{1}{2}k_{tc}Y_{0,1,0}^2 - k_{p,\text{int}er}Y_{1,0,0}Y_{0,1,0}$			
first-order moments	$\frac{dY_{1,0,0}}{dt} = \sum_{i} k_{p,i} M_i Y_{0,1,0}$			
	$\frac{dY_{0,1,0}}{dt} = 2fk_d[I] - k_{td}Y_{0,1,0}^2 - k_{tc}Y_{0,1,0}^2$			
	$\frac{dY_{0,0,1}}{dt} = 0$			

Table 2S. Different Moment Equations

second-order moments

$$\begin{aligned} \frac{dY_{2,0,0}}{dt} &= 2\sum_{i} k_{p,i} M_{i} Y_{1,1,0} + \sum_{i} k_{p,i} M_{i} Y_{0,1,0} + k_{k} Y_{1,1,0}^{2} \\ &+ 2k_{p,inter} Y_{1,1,0} Y_{2,0,0} \end{aligned}$$

$$\begin{aligned} \frac{dY_{0,2,0}}{dt} &= 2f k_{d} [I] - 2k_{ul} Y_{0,2,0} Y_{0,1,0} + k_{ul} Y_{0,2,0}^{2} \\ &+ 2k_{k} Y_{0,2,0}^{2} - 4k_{k} Y_{0,2,0} Y_{0,1,0} + k_{kl} Y_{0,2,0}^{2} \\ &- 2k_{kr} Y_{0,2,0} Y_{0,0,1} + 2k_{kr} Y_{0,1,0} Y_{0,0,1} + 2k_{kr} Y_{0,1,1} Y_{0,0,1} + 2k_{kr} Y_{0,1,0} Y_{0,0,1} \\ &+ 2k_{p,inter} Y_{0,2,0} Y_{1,1,0} \end{aligned}$$

$$\begin{aligned} \frac{dY_{0,0,2}}{dt} &= k_{kr} Y_{0,1,1}^{2} - 2k_{kr} Y_{0,0,2} Y_{0,1,0} + 2k_{kr} Y_{0,1,1} Y_{0,0,1} + 2k_{kr} Y_{0,1,0} Y_{0,0,1} \\ &+ 2k_{p,inter} Y_{0,2,0} Y_{1,1,0} \end{aligned}$$

$$\begin{aligned} \frac{dY_{1,0,0}}{dt} &= \sum_{i} k_{p,i} M_{i} Y_{0,2,0} - k_{id} Y_{1,1,0} Y_{0,1,0} + k_{re} Y_{1,1,0} Y_{0,2,0} - 2k_{ic} Y_{1,1,0} Y_{0,1,0} \\ &- k_{o} Y_{1,1,0} Y_{0,0,1} + k_{o} Y_{1,0,1} Y_{0,1,0} + k_{p,inter} Y_{2,0,0} Y_{0,2,0} + k_{p,inter} Y_{1,1,0} Y_{0,1,0} \\ &- k_{o} Y_{1,1,0} Y_{0,0,1} + k_{o} Y_{1,0,1} Y_{0,1,0} + k_{r,0,1} Y_{0,1,0} - k_{rr} Y_{1,0,1} Y_{0,1,0} \\ &- k_{o} Y_{1,0,1} Y_{0,1,0} + k_{ic} Y_{0,1,1} Y_{0,2,0} - 2k_{ic} Y_{0,1,1} Y_{0,1,0} \\ &+ k_{p,inter} Y_{2,0,0} Y_{0,1,1} + k_{kr} Y_{1,0,0} Y_{0,0,1} \\ &+ k_{r,j} Y_{0,0,2} Y_{0,1,0} - k_{kr} Y_{0,1,1} Y_{1,0,0} \\ &- k_{kr} Y_{0,0,2} Y_{0,1,0} - k_{kr} Y_{0,1,1} Y_{0,0,0} - k_{kr} Y_{0,1,0} Y_{0,0,0} \\ &+ k_{p,inter} Y_{0,1,0} Y_{1,0,0} \\ \\ \frac{d[C]}{dt} = k_{p,inter} Y_{1,1,0} \\ \\ \frac{d[C]}{dt} = k_{p,inter} Y_{1,1,0} \\ \frac{d[C]}{dt} = -k_{cl} I \end{bmatrix}$$
monomer:
$$\frac{d[M_{i}]}{dt} = -k_{cl} I_{0,1} \\ \\ \frac{dW_{i}}{dt} = -\sum_{i=1}^{2} m_{i} R_{p,i} (\frac{1}{\rho_{i}} - \frac{1}{\rho_{p}}) W$$

polymerization volume

intermolecular

cross-linkage intramolecular

cross-linkage

small molecules

pendant double bond

The chain properties can be described within the above definitions as shown in Table 3S.

chain property	Expression
number-average chain length	$r_n = \frac{Y_{1,0,0}}{Y_{0,0,0}}$
weight-average chain length	$r_w = \frac{Y_{2,0,0}}{Y_{1,0,0}}$
polydispersity index	$PDI = \frac{r_w}{r_n}$
divinyl density in copolymer [*]	$\overline{F}_2 = \frac{n_{20} - n_2}{n_{10} - n_1 + n_{20} - n_2}$
intermolecular cross-linkage density	$\overline{C} = \frac{C}{Y_{1,0,0}}$
intramolecular cross-linkage density	$\overline{D} = \frac{D}{Y_{1,0,0}}$
number-average molecular weight**	$M_n = r_n \times [\overline{F_2} \times m_2 + (1 - \overline{F_2}) \times m_1]$
branching density	$BD = 1000 \times \frac{C \times V}{n_{10} - n_1 + 2(n_{20} - n_2)}$
cyclization density	$CD = 1000 \times \frac{D \times V}{n_{10} - n_1 + 2(n_{20} - n_2)}$
branching frequency	$BF = \frac{M_n}{m_1} \times \frac{BD}{1000}$
cyclization frequency	$CF = \frac{M_n}{m_1} \times \frac{CD}{1000}$

Table 3S. Definition of Important Chain Structural Properties

* n_{10} and n_{20} are initial mole number of vinyl and divinyl monomers, respectively. n_1 , n_2 are mole number of unreacted vinyl and divinyl monomers, respectively

** m₁ and m₂ are molecular weight of vinyl and divinyl monomers, respectively.

The kinetic parameters at 70 $^{\circ}\mathrm{C}$ are summarized in Table 4S

Parameter	Description	Value	Reference
$fk_d(s^{-1})$	decomposition rate constant	1.61×10^{-5}	[82]
$k_{p11}(L \cdot mol^{-1} \cdot s^{-1})$	propagation rate constant of MMA	1.05×10^{3}	[83]
$k_{p22}(L \cdot mol^{-1} \cdot s^{-1})$	propagation rate constant of BMAODS	2.15×10^{3}	[S4]
$k_{p12}(L \cdot mol^{-1} \cdot s^{-1})$	cross propagation rate constant of BMAODS	3.22×10^{3}	$k_{p12} = k_{p11} / r_1$
$k_{p21}(L \cdot mol^{-1} \cdot s^{-1})$	cross propagation rate constant of MMA	1.43×10^{3}	$k_{p21} = k_{p22} / r_2$
$k_{tc11}(L \cdot mol^{-1} \cdot s^{-1})$	recombination termination rate constant of MMA	2.07×10^{7}	[S5, S6]
$k_{tc22}(L \cdot mol^{-1} \cdot s^{-1})$	recombination termination rate constant of BMAODS	2.07×10^{7}	Equal to k_{tc11}
$k_{td11}(L \cdot mol^{-1} \cdot s^{-1})$	disproportionation termination rate constant of MMA	3.11×10 ⁷	[S5, S6]
$k_{td22}(L \cdot mol^{-1} \cdot s^{-1})$	disproportionation termination rate constant of MMA	3.11×10 ⁷	Equal to k_{td11}
$k_{t12}, k_{t21} (L \cdot mol^{-1} \cdot s^{-1})$	¹)cross termination rate constant	$(k_{t11} \times k_{t22})^{1/2}$	[S7]
$k_{tr1}(L \cdot mol^{-1} \cdot s^{-1})$	chain transfer rate constant of MMA	1×10^{7}	[S1]
$k_{tr2}(L \cdot mol^{-1} \cdot s^{-1})$	chain transfer rate constant of BMAODS	1×10^{7}	Equal to k_{tr2}
$k_{p,\text{interl}}^*(L \cdot mol^{-1} \cdot s^{-1})$) intermolecular cross-linkage rate constant of MMA	500	This work
$k_{p,\text{int}er2}^*(L \cdot mol^{-1} \cdot s^{-1})$	-1 intermolecular cross-linkage rate constant of BMAODS	500	Equal to $k_{p,\text{int}er1}^*$
$k_{p,\text{int}ra1}^*(L\cdot mol^{-1}\cdot s^{-1})$)intramolecular cross-linkage rate constant of MMA	30	This work
$k_{p,\mathrm{int}ra2}^*(L\cdot mol^{-1}\cdot s^{-1})$)intramolecular cross-linkage rate constant of BMAODS	30	Equal to $k_{p,\text{int }ral}^*$

The overall conversion X correlated to M_1 conversion x_1 and M_2 conversion x_2 can be expressed as

$$X = \frac{w_1 + w_2}{w_{1,0} + w_{2,0}} = \frac{x_1 w_{1,0} + x_2 w_{2,0}}{w_{1,0} + w_{2,0}}$$
(4)

where $w_{1,0}$ and $w_{2,0}$ are the initial mass of M₁ and M₂ in the solution, respectively. w_1 and w_2 are the mass of M₁ and M₂ incorporated in the polymer chains, respectively.

The numbers of M_1 and M_2 monomer units bound in the polymer chains were determined by ¹H NMR spectra (listed in Table S2). Therefore, conversions of MMA and BMAODS can be calculated using the following equations

$$x_{1} = \frac{X(\frac{n_{2,0}m_{2}}{n_{1,0}m_{1}} + 1)}{\frac{n_{2}m_{2}}{n_{1}m_{1}} + 1}$$
(5)

$$x_{2} = \frac{X(\frac{n_{1,0}m_{1}}{n_{2,0}m_{2}} + 1)}{\frac{n_{1}m_{1}}{n_{2}m_{2}} + 1}$$
(6)

where m_1 and m_2 are the molecular weight of M_1 and M_2 , respectively. $n_{1,0}$ and $n_{2,0}$ are the initial moles of M_1 and M_2 in the solution while n_1 and n_2 are the accumulated moles of M_1 and M_2 in polymer chains.

Figure 4S. Evolution of overall conversion in RAFT copolymerization of MMA (1) and BMAODS (2) at various $[M_1]_0/[M_2]_0$ (Run 1 = 50/0.5, Run 2 = 50/1, and Run 3 = 50/1.5). Curves are model prediction values.

Figure 5S. Evolution of overall conversion in RAFT copolymerization of MMA (1) and BMAODS (2) at various primary chain lengths by controlling [CTA]₀/[M₁]₀ at 1/50 (Run 2), 1/75 (Run 4), and 1/100 (Run 5). Curves are model prediction values.

Figure 5S. Evolution of overall conversion in RAFT copolymerization of MMA (1) and BMAODS (2) at various initial monomer concentrations of 15 wt% (Run 6), 30 wt% (Run 2), and 45 wt% (Run 7). Curves are model prediction values.

Figure 7S. Deconvolution of GPC trace of the b-PMMA sample from Run 6

REFFERENCE

- (S1) D. Wang, X. Li, W. J. Wang, X. Gong, B. G. Li, S. Zhu, Macromolecules 2012, 45, 28-38.
- (S2) Taylor DR, Berkel KY, Alghamdi MM, Russell GT. Macromol Chem Phys 2010, 211, 563-579.
- (S3) Beuermann S, Buback M, Davis TP, Gilbert RG, Hutchinson RA, Olaj, OF, Russell GT, Schweer, J, van Herk, AM. *Macromol Chem Phys* 1997, 198, 1545-1560.
- (S4) Li WH, Hamielec AE, Crowe CM. Polymer 1989, 30, 1513.
- (S5) Moad G, Solomon DH. The Chemistry of Radical Polymerization, 2nd ed., Elsevier, Oxford 2006.
- (S6) Fernandez-Garcia M, Martinez JJ, Madruga EL. Polymer 1998, 39, 991.
- (S7) M. Zhang, W. H. Ray, J. Appl. Polym. Sci. 2002, 86, 1630-1662.