Supporting information

Toward Understanding of Branching in RAFT Copolymerization of Methyl Methacrylate through a Cleavable Dimethacrylate

Shao-Ning Liang, ${ }^{\text {a }}$ Xiaohui Li, ${ }^{\text {a }}$ Wen-Jun Wang, ${ }^{\text {a,b,* }}$ Bo-Geng Li, ${ }^{a}$ and Shiping Zhu, ${ }^{\text {c }}$
${ }^{\text {a }}$ State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
${ }^{\mathrm{b}}$ Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
${ }^{\text {c }}$ Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7

${ }^{*}$ Corresponding authors. (W.-J. W.) Telephone: +86-571-8795-2772. Fax: +86-571-8795-2772. E-mail: wenjunwang@zju.edu.cn.

Figure 1S. GPC traces of b-PMMA samples collected at different monomer conversions in Run 7
(a) 90° light scattering (LS) detector and (b) refractive index (RI) detector

Figure 2S. GPC traces of b-PMMA sample at 99.6% conversion in Run 7 after cleavage acquired at 90°
LS detector (LS90), RI detector, and intrinsic viscosity (DP) detector.

Figure 3S. ${ }^{1} \mathrm{H}$ NMR spectra of b-PMMA sample at 42.1% conversion in Run 5 (a) before and (b) after cleavage

Model Development for RAFT Copolymerization of Vinyl/Divinyl Monomer System with Branching

The equations and kinetic parameters are listed as follows. The details for the model development can also be seen in Ref S1.

Polymerization scheme and kinetic equations

The elementary reactions of RAFT batch copolymerization of vinyl/divinyl monomer system are showed in Table 1S.

Table 1S. Elementary Reactions of RAFT Copolymerization of Vinyl/Divinyl Monomer System

Initiation	$I \xrightarrow{f, k_{d}} 2 P_{0,1,0}$
	$P_{0,1,0}+M_{i} \xrightarrow{k_{p, i}} P_{1,1,0}$
Propagation with comonomer	$P_{n, r, c}+M_{i} \xrightarrow{k_{p, i}} P_{n+1, r, c}$
Transfer to RAFT species	$P_{n, r, c}+P_{m, s, d} \xrightarrow{r d k_{r r r}} P_{n, r-1, c+1}+P_{m, s+1, d-1}$
Termination by disproportionation	$P_{n, r, c}+P_{m, s, d} \xrightarrow{r s k_{d, d}} P_{n, r-1, c}+P_{m, s-1, d}$
Termination by recombination	$P_{n, r, c}+P_{m, s, d} \xrightarrow{r s k_{c c}} P_{n+m, r+s-2, c+d}$
intermolecular cross-linking	$P_{n, r, c}+P_{m, s, d} \xrightarrow{r m k_{\text {inter }}} P_{n+m, r+s, c+d}$
intramolecular cross-linking	$P_{n, r, c} \xrightarrow{r m k_{\text {intra }}} P_{n, r, c}$

Herein, $P_{n, r, c}$ denotes the macromolecule containing n monomeric units, r radical centers and c RAFT moieties. I and M_{i} represent conventional initiator and monomer i, respectively. M_{1} is vinyl monomer MMA and M_{2} is divinyl monomer BMAODS.

The kinetic parameters (or pseudokinetic rate constants ${ }^{\text {S1 }}$) listed in Table 1S are the functions of radical fractions, ϕ_{i}, which can be calculated by the instantaneous monomer composition, f_{i}. So the pseudo rate constants can be expressed as

$$
\begin{gather*}
k_{p, i}=\sum_{j} k_{p, j i} \phi_{j} \tag{1a}\\
k_{t r}=\sum_{j} k_{t r, j} \phi_{j} \tag{1b}\\
k_{t}=\sum_{i} \sum_{j} k_{t, i j} \phi_{i} \phi_{j} \tag{1c}\\
k_{\text {inter }}=\sum_{j} k_{\text {inter }, j}^{*} \phi_{j}\left(\overline{F_{2}}-\bar{C}-\bar{D}\right) \tag{1d}\\
k_{\text {intraa }}=\sum_{j} k_{\text {int } r a, j}^{*} \phi_{j}\left(\overline{F_{2}}-\bar{C}-\bar{D}\right) \tag{1f}
\end{gather*}
$$

where $\overline{F_{2}}$ is the divinyl density in the total copolymer, \bar{C} is the intermolecular cross-linkage density, and \bar{D} is the intramolecular cross-linkage density.

Based on elementary reactions, the population balance for $P_{n, r, c}$ is

$$
\begin{align*}
\frac{d P_{n, r, c}}{d t}= & \sum_{i} r k_{p, i} M_{i} P_{n-1, r, c}-\sum_{i} r k_{p, i} M_{i} P_{n, r, c} \\
& +\sum_{m=0}^{\infty} \sum_{s=0}^{\infty} \sum_{d=1}^{\infty}(r+1) d k_{t r} P_{n, r+1, c-1} P_{m, s, d}-\sum_{m=0}^{\infty} \sum_{s=0}^{\infty} \sum_{d=1}^{\infty} r d k_{t r} P_{n, r, c} P_{m, s, d} \\
& +\sum_{m=0}^{\infty} \sum_{s=1}^{\infty} \sum_{d=0}^{\infty} s(c+1) k_{t r} P_{n, r-1, c+1} P_{m, s, d}-\sum_{m=0}^{\infty} \sum_{0}^{\infty} \sum_{s=1}^{\infty} s c k_{t r} P_{n, r, c} P_{m, s, d} \\
& +\sum_{m=0}^{\infty} \sum_{s=1}^{\infty} \sum_{d=0}^{\infty}(r+1) s k_{t d} P_{n, r+1, c} P_{m, s, d}-\sum_{m=0}^{\infty} \sum_{s=1}^{\infty} \sum_{d=0}^{\infty} r s k_{t d} P_{n, r, c} P_{m, s, d} \\
& +\frac{1}{2} \sum_{m=0}^{n} \sum_{s=1}^{r+1} \sum_{d=0}^{\infty}(r+2-s) s k_{t c} P_{m, s, d} P_{n-m, r+2-s, c-d}-\sum_{m=0}^{\infty} \sum_{s=1}^{\infty} \sum_{d=0}^{\infty} r s k_{t c} P_{n, r, c} P_{m, s, d} \\
& +\sum_{m=0}^{n} \sum_{s=0}^{r} \sum_{d=0}^{c} s(n-m) k_{p, \text { inter }} P_{m, s, d} P_{n-m, r-s, c-d}-\sum_{m=0}^{\infty} \sum_{s=0}^{\infty} \sum_{d=0}^{\infty} r m k_{p, \text { inter }} P_{n, r, c} P_{m, s, d} \\
& -\sum_{m=0}^{\infty} \sum_{s=1}^{\infty} \sum_{d=0}^{\infty} s n k_{p, \text { inter }} P_{n, r, c} P_{m, s, d} \tag{2}
\end{align*}
$$

Method of moments

The moments of $P_{n, r, c}$ are defined as

$$
\begin{equation*}
Y_{i, j, k}=\sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{c=0}^{\infty} n^{i} r^{j} c^{k} P_{n, r, c} \tag{3}
\end{equation*}
$$

A complete set of moment equations can be derived as summarized in Table 2S.

Table 2S. Different Moment Equations

zeroth-order moments	$\frac{d Y_{0,0,0}}{d t}=2 f k_{d}[I]-\frac{1}{2} k_{t c} Y_{0,1,0}^{2}-k_{p, \text { inter }} Y_{1,0,0} Y_{0,1,0}$
first-order moments	$\frac{d Y_{1,0,0}}{d t}=\sum_{i} k_{p, i} M_{i} Y_{0,1,0}$
$\frac{d Y_{0,1,0}}{d t}=2 f k_{d}[I]-k_{t d} Y_{0,1,0}^{2}-k_{t c} Y_{0,1,0}^{2}$	
$\frac{d Y_{0,0,1}}{d t}=0$	

$$
\text { second-order moments } \begin{aligned}
\frac{d Y_{2,0,0}}{d t}= & 2 \sum_{i} k_{p, i} M_{i} Y_{1,1,0}+\sum_{i} k_{p, i} M_{i} Y_{0,1,0}+k_{t c} Y_{1,1,0}^{2} \\
& +2 k_{p, \text { inter }} Y_{1,1,0} Y_{2,0,0} \\
\frac{d Y_{0,2,0}}{d t}= & 2 f k_{d}[I]-2 k_{t d} Y_{0,2,0} Y_{0,1,0}+k_{t d} Y_{0,1,0}^{2} \\
& +2 k_{t c} Y_{0,1,0}^{2}-4 k_{t c} Y_{0,2,0} Y_{0,1,0}+k_{t c} Y_{0,2,0}^{2} \\
& -2 k_{t r} Y_{0,2,0} Y_{0,0,1}+2 k_{t r} Y_{0,1,0} Y_{0,0,1}+2 k_{t r} Y_{0,1,1} I_{0,1,0} \\
& +2 k_{p, \text { inter }} Y_{0,2,0} Y_{1,1,0} \\
\frac{d Y_{0,0,2}}{d t}= & k_{t c} Y_{0,1,1}^{2}-2 k_{t r} Y_{0,0,2} Y_{0,1,0}+2 k_{t r} Y_{0,1,1} Y_{0,0,1}+2 k_{t r} Y_{0,1,0} Y_{0,0,1} \\
& +2 k_{p, \text { inter }} Y_{0,1,1} Y_{1,0,1} \\
\frac{d Y_{1,1,0}}{d t}= & \sum_{i} k_{p, i} M_{i} Y_{0,2,0}-k_{t d} Y_{1,1,0} Y_{0,1,0}+k_{t c} Y_{1,1,0} Y_{0,2,0}-2 k_{t c} Y_{1,1,0} Y_{0,1,0} \\
& -k_{t r} Y_{1,1,0} Y_{0,0,1}+k_{t r} Y_{1,0,1} Y_{0,1,0}+k_{p, \text { inter }} Y_{2,0,0} Y_{0,2,0}+k_{p, \text { inter }} Y_{1,1,0}^{2} \\
\frac{d Y_{1,0,1}}{d t}= & \sum_{i} k_{p, i} M_{i} Y_{0,1,1}+k_{t c} Y_{1,1,0} Y_{0,1,1}+k_{t r} Y_{1,1,0} Y_{0,0,1}-k_{t r} Y_{1,0,1} Y_{0,1,0} \\
& +k_{p, \text { inter }} Y_{2,0,0} Y_{0,1,1}+k_{p, \text { inter }} Y_{1,1,0} Y_{1,0,1} \\
\frac{d Y_{0,1,1}}{d t}= & -k_{t d} Y_{0,1,1} Y_{0,1,0}+k_{t c} Y_{0,1,1} Y_{0,2,0}-2 k_{t c} Y_{0,1,1} Y_{0,1,0}+k_{t r} Y_{0,2,0} Y_{0,0,1} \\
& +k_{t r} Y_{0,0,2} Y_{0,1,0}-k_{t r} Y_{0,1,1} Y_{0,0,1}-k_{t r} Y_{0,1,1} Y_{0,1,0}-2 k_{t r} Y_{0,1,0} Y_{0,0,1} \\
& +k_{p, \text { inter }} Y_{0,1,1} Y_{1,1,0}+k_{p, \text { inter }} Y_{0,2,0} Y_{1,0,1}
\end{aligned}
$$

intermolecular
cross-linkage

$$
\frac{d[C]}{d t}=k_{p, \text { inter }} Y_{0,1,0} Y_{1,0,0}
$$

intramolecular
cross-linkage

$$
\frac{d[D]}{d t}=k_{p, \text { int } r a} Y_{1,1,0}
$$

pendant double bond
$\frac{d[P]}{d t}=k_{p, 2} Y_{0,1,0}\left[M_{2}\right]-\frac{d[C]}{d t}-\frac{d[D]}{d t}$
small molecules
initiator: $\frac{d[I]}{d t}=-k_{d}[I]$
monomer: $\frac{d\left[M_{i}\right]}{d t}=-k_{p, i} Y_{0,1,0}\left[M_{i}\right]$
polymerization volume

$$
\frac{d V}{d t}=-\sum_{i=1}^{2} m_{i} R_{p, i}\left(\frac{1}{\rho_{i}}-\frac{1}{\rho_{p}}\right) V
$$

The chain properties can be described within the above definitions as shown in Table 3S.

Table 3S. Definition of Important Chain Structural Properties

chain property	Expression
number-average chain length	$r_{n}=\frac{Y_{1,0,0}}{Y_{0,0,0}}$
weight-average chain length	$r_{w}=\frac{Y_{2,0,0}}{Y_{1,0,0}}$
polydispersity index	$P D I=\frac{r_{w}}{r_{n}}$
divinyl density in copolymer*	$\bar{F}_{2}=\frac{n_{20}-n_{2}}{n_{10}-n_{1}+n_{20}-n_{2}}$
intermolecular cross-linkage density	$\bar{C}=\frac{C}{Y_{1,0,0}}$
intramolecular cross-linkage density	$\bar{D}=\frac{D}{Y_{1,0,0}}$
number-average molecular weight**	$M_{n}=r_{n} \times\left[\overline{F_{2}} \times m_{2}+\left(1-\overline{F_{2}}\right) \times m_{1}\right]$
branching density	$B D=1000 \times \frac{C \times V}{n_{10}-n_{1}+2\left(n_{20}-n_{2}\right)}$
cyclization density	$C D=1000 \times \frac{D \times V}{n_{10}-n_{1}+2\left(n_{20}-n_{2}\right)}$
branching frequency	$B F=\frac{M_{n}}{m_{1}} \times \frac{B D}{1000}$
cyclization frequency	$C F=\frac{M_{n}}{m_{1}} \times \frac{C D}{1000}$

* n_{10} and n_{20} are initial mole number of vinyl and divinyl monomers, respectively. $\mathrm{n}_{1}, \mathrm{n}_{2}$ are mole number of unreacted vinyl and divinyl monomers, respectively
${ }^{* *} \mathrm{~m}_{1}$ and m_{2} are molecular weight of vinyl and divinyl monomers, respectively.

The kinetic parameters at $70^{\circ} \mathrm{C}$ are summarized in Table 4S
Table 4S. Kinetic Rate Constants in RAFT Copolymerization of MMA/BMAODS

Parameter Description	Value	Reference
$f k_{d}\left(s^{-1}\right) \quad$ decomposition rate constant	1.61×10^{-5}	[S2]
$k_{p 11}\left(L \cdot \mathrm{~mol}^{-1} \cdot s^{-1}\right)$ propagation rate constant of MMA	1.05×10^{3}	[S3]
$k_{p 22}\left(L \cdot \mathrm{~mol}^{-1} \cdot s^{-1}\right)$ propagation rate constant of BMAODS	2.15×10^{3}	[S4]
$k_{p 12}\left(L \cdot m o l^{-1} \cdot s^{-1}\right) \quad$ cross propagation rate constant of BMAODS	3.22×10^{3}	$k_{p 12}=k_{p 11} / r_{1}$
$k_{p 21}\left(L \cdot m o l^{-1} \cdot s^{-1}\right)$ cross propagation rate constant of MMA	1.43×10^{3}	$k_{p 21}=k_{p 22} / r_{2}$
$k_{t c 11}\left(L \cdot \mathrm{~mol}^{-1} \cdot s^{-1}\right)$ recombination termination rate constant of MMA	2.07×10^{7}	[S5, S6]
$k_{t c 22}\left(L \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}\right)$ recombination termination rate constant of BMAODS	2.07×10^{7}	Equal to $k_{\text {tol1 }}$
$k_{t d 11}\left(L \cdot m o l^{-1} \cdot s^{-1}\right)$ disproportionation termination rate constant of MMA	3.11×10^{7}	[S5, S6]
$k_{t d 22}\left(L \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}\right)$ disproportionation termination rate constant of MMA	3.11×10^{7}	Equal to $k_{t d 11}$
$k_{t 12}, k_{t 21}\left(L \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}\right)$ cross termination rate constant	$\left(k_{t 11} \times k_{t 22}\right)^{1 / 2}$	[S7]
$k_{t r 1}\left(L \cdot m o l^{-1} \cdot s^{-1}\right) \quad$ chain transfer rate constant of MMA	1×10^{7}	[S1]
$k_{t r 2}\left(L \cdot \mathrm{~mol}^{-1} \cdot s^{-1}\right) \quad$ chain transfer rate constant of BMAODS	1×10^{7}	Equal to $k_{t r 2}$
$k_{p, \text { inter1 }}^{*}\left(L \cdot m o l^{-1} \cdot s^{-1}\right)$ intermolecular cross-linkage rate constant of MMA	500	This work
$k_{p, \text { inter } 2}^{*}\left(L \cdot m o l^{-1} \cdot s^{-1}\right.$ intermolecular cross-linkage rate constant of BMAODS	500	Equal to $k_{p, \text { inter } 1}^{*}$
$k_{p, \text { intral }}^{*}\left(L \cdot \mathrm{~mol}^{-1} \cdot s^{-1}\right)^{\text {intramolecular cross-linkage rate constant of MMA }}$	30	This work
$k_{p, \text { intr } a_{2}}^{*}\left(L \cdot m o l l^{-1} \cdot s^{-1}\right)^{\text {intramolecular cross-linkage rate constant of BMAODS }}$	30	Equal to $k_{p, \text { intral }}^{*}$

The overall conversion X correlated to M_{1} conversion x_{1} and M_{2} conversion x_{2} can be expressed as

$$
\begin{equation*}
X=\frac{w_{1}+w_{2}}{w_{1,0}+w_{2,0}}=\frac{x_{1} w_{1,0}+x_{2} w_{2,0}}{w_{1,0}+w_{2,0}} \tag{4}
\end{equation*}
$$

where $w_{1,0}$ and $w_{2,0}$ are the initial mass of M_{1} and M_{2} in the solution, respectively. w_{1} and w_{2} are the mass of M_{1} and M_{2} incorporated in the polymer chains, respectively.

The numbers of M_{1} and M_{2} monomer units bound in the polymer chains were determined by ${ }^{1} \mathrm{H}$ NMR spectra (listed in Table S2). Therefore, conversions of MMA and BMAODS can be calculated using the following equations

$$
\begin{align*}
& x_{1}=\frac{X\left(\frac{n_{2,0} m_{2}}{n_{1,0} m_{1}}+1\right)}{\frac{n_{2} m_{2}}{n_{1} m_{1}}+1} \tag{5}\\
& x_{2}=\frac{X\left(\frac{n_{1,0} m_{1}}{n_{2,0} m_{2}}+1\right)}{\frac{n_{1} m_{1}}{n_{2} m_{2}}+1} \tag{6}
\end{align*}
$$

where m_{1} and m_{2} are the molecular weight of M_{1} and M_{2}, respectively. $\mathrm{n}_{1,0}$ and $\mathrm{n}_{2,0}$ are the initial moles of M_{1} and M_{2} in the solution while n_{1} and n_{2} are the accumulated moles of M_{1} and M_{2} in polymer chains.

Figure 4S. Evolution of overall conversion in RAFT copolymerization of MMA (1) and BMAODS (2) at various $\left[\mathrm{M}_{1}\right]_{0} /\left[\mathrm{M}_{2}\right]_{0}$ (Run $1=50 / 0.5$, Run $2=50 / 1$, and Run $3=50 / 1.5$). Curves are model prediction values.

Figure 5S. Evolution of overall conversion in RAFT copolymerization of MMA (1) and BMAODS (2) at various primary chain lengths by controlling $[\mathrm{CTA}]_{0} /\left[\mathrm{M}_{1}\right]_{0}$ at $1 / 50$ (Run 2), $1 / 75$ (Run 4), and $1 / 100$ (Run 5).

Curves are model prediction values.

Figure 5S. Evolution of overall conversion in RAFT copolymerization of MMA (1) and BMAODS (2) at various initial monomer concentrations of $15 \mathrm{wt} \%$ (Run 6), $30 \mathrm{wt} \%$ (Run 2), and $45 \mathrm{wt} \%$ (Run 7). Curves are model prediction values.

Figure 7S. Deconvolution of GPC trace of the b-PMMA sample from Run 6

REFFERENCE

(S1) D. Wang, X. Li, W. J. Wang, X. Gong, B. G. Li, S. Zhu, Macromolecules 2012, 45, 28-38.
(S2) Taylor DR, Berkel KY, Alghamdi MM, Russell GT. Macromol Chem Phys 2010, 211, 563-579.
(S3) Beuermann S, Buback M, Davis TP, Gilbert RG, Hutchinson RA, Olaj, OF, Russell GT, Schweer, J, van Herk, AM. Macromol Chem Phys 1997, 198, 1545-1560.
(S4) Li WH, Hamielec AE, Crowe CM. Polymer 1989, 30, 1513.
(S5) Moad G, Solomon DH. The Chemistry of Radical Polymerization, 2nd ed., Elsevier, Oxford 2006.
(S6) Fernandez-Garcia M, Martinez JJ, Madruga EL. Polymer 1998, 39, 991.
(S7) M. Zhang, W. H. Ray, J. Appl. Polym. Sci. 2002, 86, 1630-1662.

