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Sq Formulation: 

Table S1. Expressions for the calculation of the fiber Gibbs energy (Gfiber) for Sq with the different 

values of n. 

Sq0 
𝐺!"#$% = (2𝑓! + 𝑓!) ∙ 𝛾!" + (4𝑓! + 5𝑓! + 6𝑓!) ∙ 𝛾!" 

Sq1 𝐺!"#$% = (𝑓! + 𝑓!) ∙ 𝛾!" + 𝑓! ∙ 𝛾!" + 𝑓! ∙ 𝛾!" + (4𝑓! + 5𝑓! + 5𝑓!) ∙ 𝛾!" 

Sq2 𝐺!"#$% = (2𝑓! + 𝑓!) ∙ 𝛾!" + (𝑓! + 2𝑓!) ∙ 𝛾!" + (4𝑓! + 4𝑓! + 4𝑓!) ∙ 𝛾!" 

Sq3 
𝐺!"#$% = (2𝑓! + 𝑓!) ∙ 𝛾!" + (𝑓! + 2𝑓! + 3𝑓!) ∙ 𝛾!" + (3𝑓! + 3𝑓! + 3𝑓!) ∙ 𝛾!" 

 

Table S2. Expressions and minimum values for the crystal Gibbs energy (Gcrys) and solvation excess 

Gibbs energies (Gsolv) for Sq with the different values of n. 

 𝑮𝒄𝒓𝒚𝒔 𝑮𝒔𝒐𝒍𝒗 𝑮𝒄𝒓𝒚𝒔,𝒎𝒊𝒏 𝑮𝒔𝒐𝒍𝒗,𝒎𝒊𝒏 

Sq0 6 ∙ 𝛾!" 6 ∙ 𝛾!" 6 12 

Sq1 𝛾!" + 5 ∙ 𝛾!" 𝛾!" + 5 ∙ 𝛾!" 5 10 

Sq2 2 ∙ 𝛾!" + 4 ∙ 𝛾!" 2 ∙ 𝛾!" + 4 ∙ 𝛾!" 4 8 

Sq3 3 ∙ 𝛾!" + 3 ∙ 𝛾!" 3 ∙ 𝛾!" + 3 ∙ 𝛾!" 3 6 
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Regular Shapes: 

Squares based prims may not always be the best way of representing LMWGs but the 

theory can be extended to other prisms: with triangular (Tr) and with hexagonal (Hx) 

base. These are with Sq the simplest prism with perfect packing in the cross sections. All 

the faces are considered to have the same area. The formulation was derived as described 

for Sq. Hx show a main difference with the other two units, their fiber faces units expose 

2 faces to the solvent (m=2) and the corner units 3 (mmax=3), while for Sq and Tr they are 

1 and 2 respectively (Fig. S1).  
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Figure S1. Cross sections of the three shapes with n=1 and n=2 for the three and with n=3 for the 

hexagons. It shows solvophilic faces (red) and solvophobic faces (black) exposed to the solvent. 

The cross sections show buried units in green, units on the fiber faces in blue and units in the fiber 

corners in yellow (mmax). *Cross sections which propitiate fibers exposing both solvophilic and –

phobic faces to the solvent. 

The fm changes with d differ for the different shapes (Fig. S2). All have in common the 

fast decrement of fmax and that the three components are important at low d´s. Sq is the 

only unit which has only corner units at d=0 and the fraction of core units increases the 
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fastest for Hx. The formulation for different shapes gives different possibilities to fit the 

model to real LMWG. 

 

 

Figure S2. Evolution of the fractions of units which can be buried (green), on the faces of the fiber 

(blue) and on the corners of the fiber (yellow) as a function of d, for the different units. Examples for 

d=2-4 (left) and graphic for d=2-30 (right). 

The fractions equations for the three shapes are presented in Table S3 and the equations 

for the Gfiber of the different units with the different n´s are presented in Table S4. 
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Table S3. Fractions of units (fm) with m faces exposed to the solvent for the different regular shapes. 

 Triangle (Tr) Square (Sq) Hexagon (Hx) 

Buried 𝑓! =
𝑑! − 3𝑑 + 3

𝑑!
 𝑓! =

(𝑑 − 2)!

𝑑!
 𝑓! =

3𝑑! − 9𝑑 + 7
3𝑑! − 3𝑑 + 1

 

Fiber side 𝑓! =
3(𝑑 − 2)

𝑑!
 𝑓! =

4(𝑑 − 2)
𝑑!

 𝑓! =
6(𝑑 − 2)

3𝑑! − 3𝑑 + 1
 

Fiber corner 𝑓! =
3
𝑑!

 𝑓! =
4
𝑑!

 𝑓! =
6

3𝑑! − 3𝑑 + 1
 

 

 
 
Table S4. Expressions for the calculation of the fiber Gibbs energy (Gfiber) for the different regular 

shapes. 

Tr1 
𝐺!"#$% = (𝑓! + 𝑓!) ∙ 𝛾!" + 𝑓! ∙ 𝛾!" + 𝑓! ∙ 𝛾!" + (3𝑓! + 4𝑓! + 4𝑓!) ∙ 𝛾!" 

Sq1 𝐺!"#$% = (𝑓! + 𝑓!) ∙ 𝛾!" + 𝑓! ∙ 𝛾!" + 𝑓! ∙ 𝛾!" + (4𝑓! + 5𝑓! + 5𝑓!) ∙ 𝛾!" 

Hx1 𝐺!"#$% = (𝑓! + 𝑓!) ∙ 𝛾!" + 𝑓! ∙ 𝛾!" + (2𝑓! + 𝑓!) ∙ 𝛾!" + (5𝑓! + 6𝑓! + 7𝑓!) ∙ 𝛾!" 

Tr2 𝐺!"#$% = (2𝑓! + 𝑓!) ∙ 𝛾!" + (𝑓! + 2𝑓!) ∙ 𝛾!" + (3𝑓! + 3𝑓! + 3𝑓!) ∙ 𝛾!" 

Sq2 
𝐺!"#$% = (2𝑓! + 𝑓!) ∙ 𝛾!" + (𝑓! + 2𝑓!) ∙ 𝛾!" + (4𝑓! + 4𝑓! + 4𝑓!) ∙ 𝛾!" 

Hx2 𝐺!"#$% = (2𝑓! + 2𝑓!) ∙ 𝛾!" + 2𝑓! ∙ 𝛾!" + 𝑓! ∙ 𝛾!" + (5𝑓! + 6𝑓! + 6𝑓!) ∙ 𝛾!" 

Hx3 𝐺!"#$% = (3𝑓! + 2𝑓!) ∙ 𝛾!" + (𝑓! + 3𝑓!) ∙ 𝛾!" + (5𝑓! + 5𝑓! + 5𝑓!) ∙ 𝛾!" 
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Table S5. Expressions and minimum values for the crystal Gibbs energies (Gcrys) and solvation 

excess Gibbs energies (Gsolv) for the different regular shapes. 

 𝑮𝒄𝒓𝒚𝒔 𝑮𝒔𝒐𝒍𝒗 𝑮𝒄𝒓𝒚𝒔,𝒎𝒊𝒏 𝑮𝒔𝒐𝒍𝒗,𝒎𝒊𝒏 

Tr1 𝛾!" + 4 ∙ 𝛾!" 𝛾!" + 4 ∙ 𝛾!" 4 8 

Sq1 𝛾!" + 5 ∙ 𝛾!" 𝛾!" + 5 ∙ 𝛾!" 5 10 

Hx1 𝛾!" + 7 ∙ 𝛾!" 𝛾!" + 7 ∙ 𝛾!" 7 14 

Tr2 2 ∙ 𝛾!" + 3 ∙ 𝛾!" 2 ∙ 𝛾!" + 3 ∙ 𝛾!" 3 6 

Sq2 2 ∙ 𝛾!" + 4 ∙ 𝛾!" 2 ∙ 𝛾!" + 4 ∙ 𝛾!" 4 8 

Hx2 2 ∙ 𝛾!" + 6 ∙ 𝛾!" 2 ∙ 𝛾!" + 6 ∙ 𝛾!" 6 12 

Hx3 3 ∙ 𝛾!" + 5 ∙ 𝛾!" 3 ∙ 𝛾!" + 5 ∙ 𝛾!" 5 10 

 

 

The results are separated in amphiphilic (n<mmax) and non-amphiphilic (n=mmax) fibers. 

The ΔGfiber plots as a function of γks for amphiphilic fibers (Fig. S3) use a fixed value of 

γlb (=2). They show a similar profile for Tr1 and Sq1 (Fig. S3 A and B). Both shapes (n=1) 

present values of ΔGfiber lower than 0 and with dmin lower than 10 for a wide range of γks. 

The global minimum in the surface appears at the minimum value of γks, which involves 

the minimum possible destabilization that results from exposing a solvophobic face to 

solvent. It corresponds with the minimum value of dmin and hence the thinnest fiber (d=3). 

As γks increases the thermodynamically favored fiber is wider because that reduces the 

fraction of solvophobic faces exposed to the solvent (f2, Fig. S2). But even after 

increasing it by a factor of 4, the fiber width is only 3 times greater.  
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Figure S3. ΔGfiber as a function of d and γks with fixed γlb for amphiphilic fibers: Tr1 (A), Sq1 (B), Hx1 

(C) and Hx2 (D). dmin is represented with a white line. 

The plot for the Hx1 clearly differs from the rest (Fig. S3 C). This plot shows that dmin 

rises faster when increasing the value of γks than for the other cases. Even for values of 

γks only slightly greater than 3, dmin is already higher than 30, which suggest that the fiber 

is not the thermodynamic favored product on this case. This is not surprising because for 

this shape more than the half of the faces exposed to solvent are solvophobic. This can 

only be stable when the loss of stabilization due to this exposure is very low, as shown in 

the graph. Nevertheless, when the Hx unit has two solvophilic faces (Hx2), it reduces the 

number of solvophobic faces exposed to the solvent to almost the half and the plot shows 

a profile more similar to the Tr1 and Sq1 (Fig. S3 A and B). It actually tends to form 

thinner fibers than these, due to the fact that N increases faster with d for the Hx and 

hence the number of core units with solvophilic faces buried as well (Fig. S2). 
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The ΔGfiber plots as a function of γlb (Fig. S4) take into account that Gcrys<Gsolv, and hence, 

the fixed value for Gsolv is the highest Gcrys in the plot range plus 1. The value of γks is then 

calculated: 3.5 (Tr1), 3 (Sq1), 2.4 (Hx1) and 3.8 (Hx2). 

 

Figure S4. ΔGfiber as a function of d and γlb with fixed γks for amphiphilic fibers: Tr1 (A), Sq1 (B), Hx1 

(C) and Hx2 (D). dmin is represented with a white line. 

The ΔGfiber plots show similar profiles for the four cases (Fig. S4). All show a minimum 

with ΔGfiber lower than 0.  This is a shallow minimum for low values of γlb which 

becomes deeper as the parameter increases. dmin also decreases as this parameter rises. 

These tendencies are due to the increasing destabilization of the buried solvophilic faces 

with the parameter γlb, which also enhances the destabilizing effect of increasing d. 

In general, the minimum dmin correspond to the minimum difference between Gcrys and 

Gsolv. This is consistent with the experimental observations which shows that molecules 

with a limited solubility have a higher tendency to form fibers. Bigger fibers are expected 

as this difference gets higher (Gcrys << Gsolv). 
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For non-amphiphilic fibers (Tr2, Sq2 and Hx3) the trends in the plots are different to the 

previous (Fig. S5). First of all, as there is no solvophobic face exposed to the solvent 

there is no dependence with the parameter γks and therefore the plots with the fixed γlb are 

only shown as a function of d (Fig. S5 D). All the plots show negative ∆Gfiber supporting 

the idea that also non-amphiphilic fibers can also be at thermodynamic equilibrium. 

Furthermore, the dmin adopts the minimum possible value in all the cases (d=2) because 

the only destabilizing effect corresponds to burying solvophilic faces, the number of 

which increases with d. 

 

Figure S5. ∆Gfiber for non-amphiphilic fibers as a function of d and: γlb with fixed γks Tr2 (A), Sq2 (B), 

Hx3 (C) and with fixed γlb for Tr2, Sq2 and Hx3 (D). dmin is represented with a white line in graphs A-C. 

The fact that similar results are obtained even changing the shape of the units confirms 

the validity of the model and gives more possibilities to mimic real systems. 
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Irregular Shapes: 3D Cross Section for Hx. 

Experimentally there are other types of nanostructures besides fibers, like the 2D objects, 

tapes and sheets. These nanostructures can still be assumed to grow infinitely in the z-

direction but they also considerably grow in one direction of the xy-plane. Hx were 

reformulated in function of three dimensions (dx, dy and dz) in the xy-plane (Fig. S6) using 

Hx2 and Hx3 as units because they showed good results in the one-dimensional 

formulation. 

Table S6. Fractions of units (fm) with m faces exposed to the solvent for the Hx as a function of dx, dy 

and dz. 

 Hexagon (Hx) 

Buried 𝑓! =
𝑑!𝑑! + 𝑑!𝑑! + 𝑑!𝑑! − 3 𝑑! + 𝑑! + 𝑑! + 7
𝑑!𝑑! + 𝑑!𝑑! + 𝑑!𝑑! − 𝑑! + 𝑑! + 𝑑! + 1

 

Fiber side 𝑓! =
2 𝑑! + 𝑑! + 𝑑! − 6

𝑑!𝑑! + 𝑑!𝑑! + 𝑑!𝑑! − 𝑑! + 𝑑! + 𝑑! + 1
 

Fiber corner 𝑓! =
6

𝑑!𝑑! + 𝑑!𝑑! + 𝑑!𝑑! − 𝑑! + 𝑑! + 𝑑! + 1
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Figure S6. Evolution of the fractions of units which can be buried (green), on the faces of the fiber 

(blue) and on the corners of the fiber (yellow) as a function of three directions (dx, dy and dz) on the 

cross section plane (xy-plane). 

The ∆Gfiber are shown as a function of two of the dimensions in the xy-plane: dx and dy. As 

the three directions are equivalent to each other, this is enough to see if the system tends 

to grow or not in just one of these dimensions. It can be seen that for non-amphiphilic 

fibers, Hx3, the system shows the minimum excess Gibbs energy for small d’s with no 

difference between them (Fig. S7 D-F), suggesting fibers to be the thermodynamic 

favored product for these systems independently to the different interaction parameters 

tried. However, the amphiphilic fibers show different behaviors with different interaction 

parameters (Fig. S7 A-C). The case where the excess energy of burying a solvophilic face 

is more favorable than exposing a solvophobic face (γlb<γks) the structure clearly shows 
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(Fig. S7 A) a preference for a 2D growth (Gfiber,min corresponds to dx=30 and dy=2). For 

the other two cases the preference is not that clear and the Gfiber is relatively shallow. For 

the case where both parameters have the same value (γlb=γks) the actual ∆Gfiber, min (Fig. S7 

B) corresponds also to a 2D structure (dx=30 and dy=2) while when the energy penalty of 

burying solvophilic faces is greater (γlb>γks) the fibers (dx= dy=2) are the preferred 

product (Fig. S7 C). 

 

Figure S7. ∆Gfiber as a function of dx and dy for Hx2 (A-C) and Hx3 (D-F) with fixed values of γlb and γks: 

2:4 (A), 2:2 (B), 4:2.5 (C), 2:4 (D), 3:3 (E) and 6:5 (F). 
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Application to Real LMWG. 

 

Figure S8. ∆Gfiber as a function of d and as a function of γlb for Hx1 (A) and Hx1+1 (B). The rest of the 

parameters change as indicated in Fig. 3 E. 


