SUPPORTING INFORMATION

CO₂ Capture by Temperature Swing Adsorption:

Use of Hot CO₂-Rich Gas for Regeneration

Augustine Ntiamoah^{1,2}, Jianghua Ling^{1,2,3}, Penny Xiao^{1,2}, Paul A. Webley^{1,2,*}, Yuchun Zhai³

¹Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), Australia.

²Department of Chemical &Biomolecular Engineering, The University of Melbourne,
Parkville, VIC 3010, Victoria, Australia.

³School of Material and Metallurgy, Northeastern University, Shenyang, Liaoning 110004, PR China

*Corresponding author: e-mail address: paul.webley@unimelb.edu.au

Table S1: Calculation of theoretical working capacities from isotherm data at different regeneration temperatures

Adsorption/Desorption Temperature	30°C	150°C	200°C	250°C
q1 (mol. CO ₂ /kg.ads) = quantity of CO ₂ adsorbed at adsorption conditions i.e. 0.15 bar, 30 °C	2.080			
$q2$ (mol. CO ₂ /kg.ads) = quantity of CO ₂ adsorbed at regeneration conditions i.e. 1 bar, T_{des}		0.740	0.380	0.096
Working capacity (mol. $CO_2/kg.ads$) = $q_1 - q_2$		1.34	1.700	1.984

Table S2: Summary of molar flows of CO₂ into and out of the bed: Cycle 2- regeneration by indirect heating followed by hot gas purge

	Regeneration temperature (°C)				
	150	200	250		
Adsorption step					
Total feed flow	0.2758	0.3228	0.3420		
Flow of CO ₂ into bed	0.04137	0.0484	0.0513	mol	
Amount of CO ₂ in vent stream	0.0023	0.00175	0.00168	mol	
Regeneration step					
Amount of CO ₂ desorbed	0.1031	0.1167	0.1246	mol	
Total Flow of purge gas into bed	0.0816	0.0796	0.0805	mol	
CO2 recovered from bed	0.0215	0.0371	0.0441	mol	
Cooling (N ₂ purge) step					
Amount of CO ₂ in vent stream	0.0175	0.0095	0.00552	mol	
Potential improved performance					
*Additional amount of product to recover	0.01024	0.00558	0.00434	mol	
*Purity	84.66	87.86	89.24	$%CO_{2}$	
*Recovery	76.72	88.18	94.43	%CO ₂	

^{*} New performance figures resulting from recycling the initial effluent of the N_2 purge step up to a CO_2 concentration of 50% directly to the product.

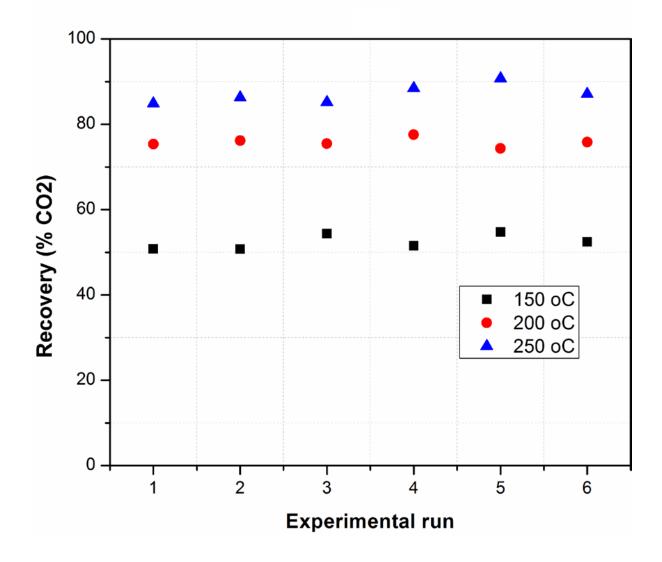


Figure S1. Effect of regeneration temperature on CO₂ recovery

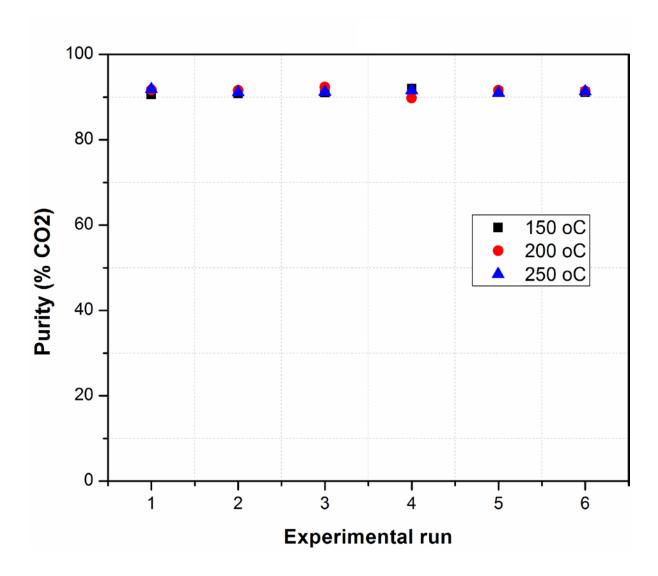


Figure S2. Effect of regeneration temperature on CO₂ purity

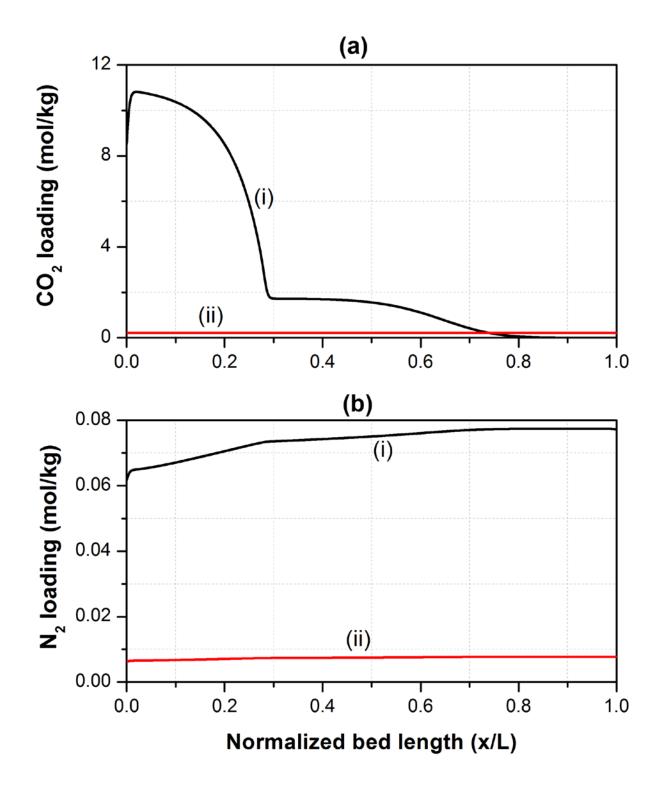


Fig. S3. Cyclic steady state (a) CO_2 loading profiles and (b) N_2 loading profiles on the adsorbent at the ends of product rinse and desorption steps (for regeneration temperature of 250 °C); (i) = profile at end of rinse step, (ii) = profile at end of desorption step.

Working Selectivity =
$$\frac{CO_2 \text{ working capacity}}{N_2 \text{ working capacity}} = \frac{CO_2 \text{ loading }_{\text{(prod rinse)}} - CO_2 \text{ loading }_{\text{(des)}}}{N_2 \text{ loading }_{\text{(prod rinse)}} - N_2 \text{ loading }_{\text{(des)}}}$$
 Eq. S1