Supporting Information

Manipulating Crystallization of Organolead Mixed-Halide Thin Films in Antisolvent Baths for Wide-Bandgap Perovskite Solar Cells

Yuanyuan Zhou,^{†,#} Mengjin Yang,^{‡,#} Onkar S. Game,[†] Wenwen Wu,[†] Joonsuh Kwun,[†] Martin A. Strauss,[†] Yanfa Yan[¶], Jinsong Huang,[§] Kai Zhu,^{‡,*} Nitin P. Padture^{†,*}

[†] School of Engineering, Brown University, Providence, RI 02912, USA.

[‡] Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.

[¶] Department of Physics & Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH 43606, USA

[§] Department of Mechanical and Materials Engineering, Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

[#] These authors contributed equally.

*Corresponding authors: kai.zhu@nrel.gov; nitin_padture@brown.edu

Supplementary Figures

Figure S1. SEM Surface morphologies of the MAPbI₃ (A), MAPbI₂Br (B), MAPbIBr₂ (C) and MAPbBr₃ (D) perovskite thin films as-formed in diethyl-ether (antisolvent) bath, showing enlargement of grains and reduced coverage with the increase of the Br content under the same processing condition. For the preparation of the film samples, a 42 wt% stoichiometric perovskite solution is used, and the procedure described Ref. 22 in the main text was followed. First, the precursor solution was spin-coated onto previously patterned fluorine-doped tin oxide (FTO) coated glass substrates, and the solution coated substrate was vertically dipped in an ~50 ml anhydrous diethyl-ether bath. The film was kept immersed for 2 min. The substrate was then taken out and dried rapidly with assistance of blowing N₂.

Figure S2. Tauc Plots of the as-prepared MAPbI₂Br (A) and MAPbIBr₂ (B) perovskite thin films

Figure S3. Fitting of (200) XRD peaks of MAPbI₂Br and MAPbIBr₂ films made from antisolvent baths with or without stirring.

Figure S4. (A) Schematic representation of thermally-driven crystallization of organolead mixed halide perovskite using the conventional one-step method; (B) The resultant mixed halide (MAPbI₂Br) perovskite thin films showing poor coverage.

Table S1. Statistics of the photovoltaic performance parameters of PSCs based on MAPbI₂Br and MAPbIBr₂ perovskite thin films fabricated with or without stirring.

		J_{SC} (mA cm ⁻²)	$V_{OC}(\mathbf{V})$	FF	PCE (%)
MAPbI ₂ Br, with stirring	Average	15.21	1.091	0.64	10.56
	Std.*	0.09	0.026	0.02	0.52
MAPbI ₂ Br, w/o stirring	Average	14.73	1.080	0.57	9.13
	Std.*	0.57	0.017	0.04	0.78
MAPbIBr ₂ , with stirring	Average	8.26	0.985	0.55	4.46
	Std.*	0.21	0.023	0.05	0.36
MAPbIBr ₂ , w/o stirring	Average	4.17	0.887	0.51	1.90
	Std.*	0.25	0.111	0.05	0.31

* Standard deviation based on 8-12 cells.