## An Experimental Investigation of the Adsorption of a Phosphonic Acid on

## the Anatase TiO<sub>2</sub>(101) Surface

Michael Wagstaffe,<sup>†</sup> Andrew G. Thomas,<sup>\*,‡</sup> Mark. J. Jackman,<sup>†</sup> Maria Torres-Molina,<sup>¶</sup> Karen L. Syres,<sup>§</sup> and Karsten Handrup<sup>||</sup>

\*To whom correspondence should be addressed

<sup>†</sup>School of Physics and Astronomy, The University of Manchester, Oxford Road, M13 9PL, UK

<sup>‡</sup>School of Materials and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK

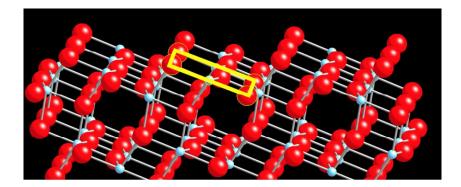
<sup>¶</sup>School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK

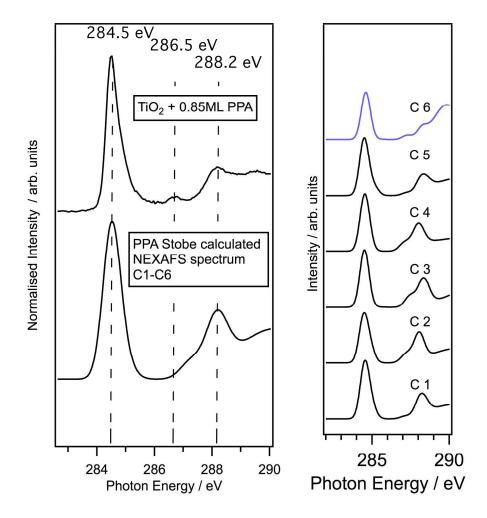
<sup>§</sup>Jeremiah Horrocks Institute, The University of Central Lancashire, Fylde Road, Preston, PR1 2HE, UK

<sup>II</sup>MaxLab, Ole Romers Vag, Lund, Sweden

**S.1**. Shows the survey scan recorded from the anatase  $TiO_2(101)$  surface, at 1000 eV photon energy, following cleaning by repeated sputter and anneal cycles. No surface contamination is observed other than a small amount of residual argon from the sputtering procedure.




**S.2.** Details of the calculation used to determine the surface coverage of PPA on anatase  $TiO_2(101)$  and the quantitative definition of a monolayer


Catechol is known to saturate at monolayer coverage at room temperature,  $^{[1,2]}$  therefore by comparing the C 1s:Ti 2p ratio in the catechol spectra to that of the PPA spectra, the coverage of PPA on anatase TiO<sub>2</sub>(101) can be estimated. This method assumes that PPA adsorbs on to the anatase TiO<sub>2</sub>(101) surface in a similar manner to catechol, i.e. through two oxygen atoms to neighboring Ti 5c atoms. The following equation has been used. <sup>[1]</sup>

% 
$$ML = \frac{I_{C \ 1s}/I_{Ti \ 2p}}{I_{C \ 1s \ (catechol)}/I_{Ti \ 2p \ (catechol)}} \times 100$$

|             | Ti 2p total | C1s total | C 1s/Ti 2p | % ML |
|-------------|-------------|-----------|------------|------|
|             | peak area   | peak area |            |      |
| Catechol ML | 4,744.95    | 3,836.10  | 0.81       | 100  |
| coverage    |             |           |            |      |
| PPA Dose 1  | 8,189.10    | 965.60    | 0.12       | ~15  |
|             |             |           |            |      |
| PPA Dose 2  | 32,365.80   | 21,651.10 | 0.67       | ~85  |
|             |             |           |            |      |

Below is a picture of the anatase (101) surface. In order to gain a quantitative approximation for monolayer coverage we defined the surface unit cell as highlighted by a yellow rectangle below. This has an area of 14.9Å<sup>2</sup> and contains a single Ti 5c atom. Since we are assuming that 1 molecule binds to two Ti 5c atoms, this means each "unit cell" contains 0.5 molecules at monolayer coverage. Therefore we can define 1 ML as 0.03 molecules/Å<sup>2</sup>.





**S.3**. A graph showing the expanded NEXAFS spectra, highlighting the asymmetry of the main  $\pi^*$  peak

- (1) Syres, K. L.; Thomas, A. G.; Flavell, W. R.; Spencer, B. F.; Bondino, F.; Malvestuto, M.; Preobrajenski, A.; Grätzel, M. Adsorbate-induced modification of surface electronic structure: pyrocatechol adsorption on the anatase TiO<sub>2</sub> (101) and rutile TiO<sub>2</sub> (110) surfaces. *J. Phys. Chem. C* **2012**, *116*, 23515–23525. ☑
- Li, S.-C.; Wang, J.-g.; Jacobson, P.; Gong, X.-Q.; Selloni, A.; Diebold, U. Correlation between bonding geometry and band gap states at organic-inorganic interfaces: catechol on rutile TiO<sub>2</sub> (110). *J. Am. Chem. Soc.* 2009, *131*, 980–984. 2