## Supplementary Information

## Sequence-specific recognition of microRNAs and other short nucleic acids with

## solid-state nanopores

Osama K. Zahid, Fanny Wang, Jan A. Ruzicka, Ethan W. Taylor, and Adam R. Hall

| Oligonucleotide Label                          | Sequences $(5^{\prime} \rightarrow 3^{\prime})$   |
|------------------------------------------------|---------------------------------------------------|
| ssBio34                                        | CAGTTGAGGATCCCCATAA <mark>T</mark> GCGGCTGTTTTCTG |
| ssBio34 complement<br>(i.e. 'target' sequence) | CAGAAAACAGCCGCATTATGGGGATCCTCAACTG                |
| Decoy 1                                        | CAGGGCTAGCAAAGGATTTTGCTATAACATGGGTGGCAAG          |
| Decoy 2                                        | TTTTTAAAACCTGATGAAACATTTGTACATTCAGGTTTTATC        |
| Decoy 3                                        | ATCAGGACCACATTCAAGAGGCCAGGAACCAAGACAGTGA          |
| ssBio23                                        | TCCCCTATCACGAT <u>T</u> AGCATTAA                  |
| miR155                                         | UUAAUGCUAAUCGUGAUAGGGGU                           |
| DNA miR155 homolog                             | TTAATGCTAATCGTGATAGGGGT                           |

 Table S1. Oligonucleotide sequences <u>T</u> signifies biotinylated thymine.



**Figure S1. miRNA annealing gel** Agarose gel electrophoresis showing miR155 (lane 1), 23 nt miR155 DNA homolog (lane 2), ssBio23 (lane 3), ssBio23+MS (lane 4), annealed ssBio23-miR155 heteroduplex (lane 5), annealed ssBio23-miR155+MS (lane 6), ssBio23 annealed to miR155 DNA homolog (lane 7), and ssBio23 annealed to miR155 DNA homolog +MS (lane 8).



Figure S2. Additional DNA data set Event rate vs. applied voltage for ssBio34 (red) and dsBio34 (blue) with MS bound (1  $\mu$ M) on a second SS-nanopore. All solid lines are exponential fits to the data.