## **Supporting Information**

## **Deciphering How Pore Formation Causes Strain-Induced Membrane Lysis of Lipid Vesicles**

Joshua A. Jackman $^{\dagger}$ , Haw Zan Goh $^{\dagger}$ , Vladimir P. Zhdanov $^{\dagger,|}$ , Wolfgang Knoll $^{\dagger,\pm}$ , Nam-Joon Cho $^{*,\dagger,\ddagger}$ 

<sup>†</sup>School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore

<sup>‡</sup>School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore

Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia

<sup>±</sup>Austrian Institute of Technology (AIT), Donau-City-Strasse 1, 1220 Vienna, Austria

E-mail: njcho@ntu.edu.sg

## **Table Caption**

**Table S1.** Size distribution of extruded lipid vesicles measured by dynamic light scattering.

## **Figure Captions**

**Figure S1.**  $\Delta f$ - $\Delta D$  plots for AH peptide-induced degradation of POPC lipid vesicles for representative peptide concentrations.

**Figure S2.** Rupture time as a function of peptide concentration in solution. For POPC lipid vesicles, the fit was obtained by  $t_r = Dc^{-\beta}$ , where  $t_r$  is the rupture time, c is the peptide concentration in solution, and  $\beta$  and D are fitting parameters. The rupture time was defined as follows: (a) Time from initial peptide attachment until there was rupture of the majority of adsorbed vesicles ( $\Delta f = -45$  Hz, as compared to baseline), with fit showing  $\beta = 0.97 \pm 0.20$  (p-value < 0.1, ANOVA). (b) Time from initial peptide attachment until the QCM-D inflection point (minimum value of  $\Delta f$ ), with fit showing  $\beta = 1.41 \pm 0.23$  (p-value is 0.62, ANOVA). (c) Time from initial peptide attachment until the ellipsometry inflection point (maximum value of optical mass), with fit showing  $\beta = 0.90 \pm 0.20$  (p-value is 0.41, ANOVA). The inflection points define rupture time as the ensemble-averaged onset at which acoustic or optical mass loss, accordingly inferred as vesicle rupture, becomes the predominant event observed in the QCM-D or ellipsometric measurement, respectively. Rupture times based on the inflection point characterizing an ensemble of vesicles do not have a physical meaning on the single-vesicle level, and were more sensitive to variation between individual experiments at each peptide concentration (p-value > 0.1, ANOVA).

**Figure S3.** Normalized (a)  $\Delta f$ , (b)  $\Delta D$ , and (c) optical mass shifts for AH peptide-induced degradation of 85 mol% POPC lipid and 15 mol% cholesterol vesicles.

**Figure S4.** Normalized (a)  $\Delta f$ , (b)  $\Delta D$ , and (c) optical mass shifts for AH peptide-induced degradation of 70 mol% POPC lipid and 30 mol% cholesterol vesicles.

**Figure S5.** Normalized (a)  $\Delta f$ , (b)  $\Delta D$ , and (c) optical mass shifts for AH peptide-induced degradation of 55 mol% POPC lipid and 45 mol% cholesterol vesicles.

**Figure S6.** Normalized (a)  $\Delta f$ , (b)  $\Delta D$ , and (c) optical mass shifts for AH peptide-induced degradation of HIV envelope-mimicking vesicles.

| Lipid Composition          | Diameter (nm) | Polydispersity Index |
|----------------------------|---------------|----------------------|
| POPC                       | 56.4          | 0.078                |
| 85% POPC + 15% Cholesterol | 56.8          | 0.074                |
| 70% POPC + 30% Cholesterol | 59.9          | 0.093                |
| 55% POPC + 45% Cholesterol | 99.9          | 0.240                |
| HIV Envelope Mimic         | 89.6          | 0.117                |

Table S1.



Fig. S1.



Fig. S2.



**S**6







**S**9