Supporting Information

A Highly Sensitive Thin-Film Field-Effect Transistor Sensor for Ammonia with the DPP-Bithiophene Conjugated Polymer Entailing Thermally Cleavable *tert*-Butoxy Groups in the Side Chains

Yang Yang, Guanxin Zhang,* Hewei Luo, JingJing Yao, Zitong Liu, Deqing Zhang*

†Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China.

E-mails: dqzhang@iccas.ac.cn (D. Z.), gxzhang@iccas.ac.cn (G. Z.).

Contents

1.	GIXRD	patterns	of th	in films	of	pDPPBu-
BT······S-3						
2.	Variation of	I_{DS} upon	exposure	to different	concentra	tions of
ammonia·····S-3						
3.	Reusability	of	the	FET	sensor	for
ammonia·····S-4						
4. Transfer characteristics and the variation of I_{DS} vs time for FET of pDPPBu-BT after exposure to						
ammonia····						
S-4						
5. Variation of FT-IR spectra of pDPPCOOH-BT before and after exposure to ammonia						
6. Variation of hole mobility upon exposure to different concentrations of ammonia ··························S-5						
7.	$^{1}\mathrm{H}$	NMR		and	¹³ C	NMR
spectra·····S-6						

1. GIXRD patterns of thin films of pDPPBu-BT

Figure S1. GIXRD patterns of thin films of pDPPBu-BT before (a) and after (b) thermal annealing at 240 °C for 30 min.

2. Variation of I_{DS} upon exposure to different concentrations of ammonia

Figure S2. Variation of I_{DS} for FET with pDPPCOOH-BT after exposure to different concentrations of ammonia (10 ppb-100 ppm).

3. Reusability of the FET sensor for ammonia

Figure S3. The variation of I_{DS} after exposure to ammonia and the reusability of this FET sensor for ammonia; the FET after exposure to ammonia was annealed at 80° C for 1.0 h under vacuum, followed by exposure to ammonia again.

4. Transfer characteristics for FET of pDPPBu-BT before and after exposure to ammonia and the variation of I_{DS} vs time after exposure to ammonia (1000 ppm)

Figure S4. (a) Transfer characteristics for FET of pDPPBu-BT before and after exposure to ammonia (1000 ppm) and (b) variation of $I_{DS}vs$ time for FET of pDPPBu-BT after exposure to ammonia (1000 ppm).

5. Variation of FT-IR spectra of pDPPCOOH-BT before and after exposure to ammonia

FigureS5. FT-IR spectra of pDPPCOOH-BT, which was obtained from pDPPBu-BT after thermal annealing at 240 °C for 30 min. before and after exposure to ammonia.

6. Variation of hole mobility upon exposure to different concentrations of ammonia

Figure S6. Variation of hole mobility upon exposure to different concentrations of ammonia.

7. ¹H NMR and ¹³C NMR spectra

Figure S7. ¹H NMR of 2BrDPPBu.

Figure S8. ¹³C NMR of 2BrDPPBu.

Figure S9. ¹H NMR of pDPPBu-BT

Figure S10. ¹³C NMR of pDPPBu-BT.