## Supplementary Information

## Membrane Inspired Acidically Stable Dye-Sensitized Photocathode for Solar Fuel Production

Kevin A. Click<sup>†</sup>, Damian R Beauchamp<sup>†</sup>, Zhongjie Huang<sup>†</sup>, Weilin Chen<sup>‡</sup>, and Yiying Wu<sup>\*†</sup>

<sup>†</sup>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, United States

<sup>‡</sup>Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China

## **Supplementary Figures**

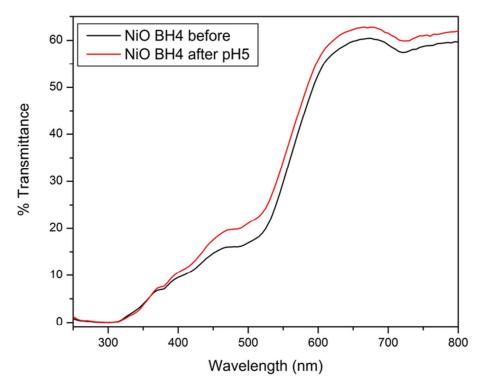



Figure S1. Sensitized BH<sub>4</sub> NiO film before and after 2.7 hours of light chopped chronoamperometry at an applied potential of o v vs. NHE in a pH 5 citric acid / citrate buffer with 5mM  $[Mo_3S_4]^{4+}$ 

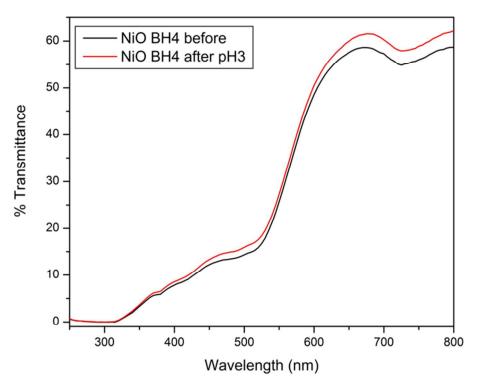



Figure S2. Sensitized BH<sub>4</sub> NiO film before and after 2.8 hours of light chopped chronoamperometry at an applied potential of o v vs. NHE in a pH 3 citric acid / citrate buffer with  $5mM [Mo_3S_4]^{4+}$ .

| Solution                       | Ni (ppm) |  |  |
|--------------------------------|----------|--|--|
| pH 3 Buffer                    | < 0.25   |  |  |
| Bare NiO                       | 1.2      |  |  |
| BH <sub>4</sub> Sensitized NiO | < 0.25   |  |  |

Table S1. ICP-OES results for 3 hour soak in pH 3 citrate/citric acid buffer of a bare NiO film and a BH4 sensitized NiO film.

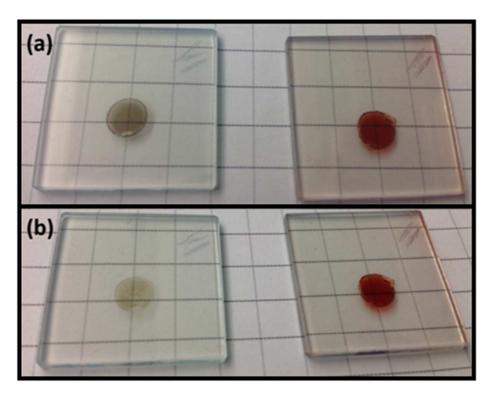



Figure S<sub>3</sub>. Bare NiO (left) and sensitized BH<sub>4</sub> NiO films (right) before (**a**) and after (**b**) soaking in a pH <sub>3</sub> citric acid / citrate buffer for 2.75 hours.

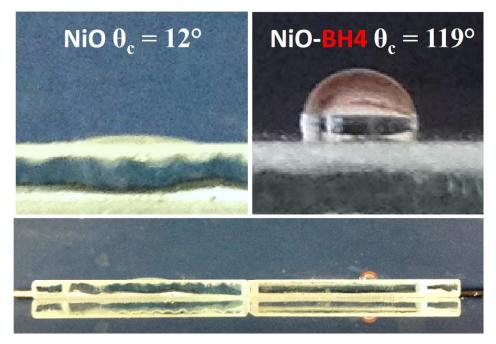



Figure S4. Contact angles for pH o (1M HCl) drop on bare NiO (left,  $\theta_C = 12^\circ$ ) and a BH4 sensitized NiO film (right,  $\theta_C = 119^\circ$ ).

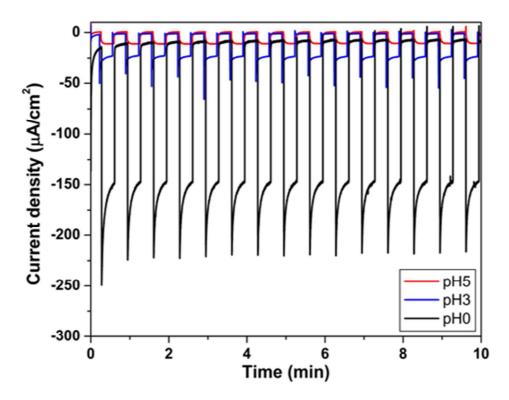



Fig. S5. Chronoamperometry of pH 5, 3 and 0 solutions all with  $5mM [Mo_3S_4]^{4+}$  at an applied potential of o V vs. NHE.

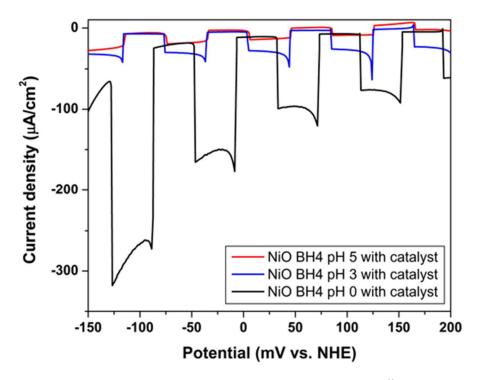



Fig. S6. Linear Sweep Voltametery of pH 5, 3 and 0 solutions all with 5 mM  $[Mo_3S_4]^{4+}$  at an applied potential of o V vs. NHE with light chopping.

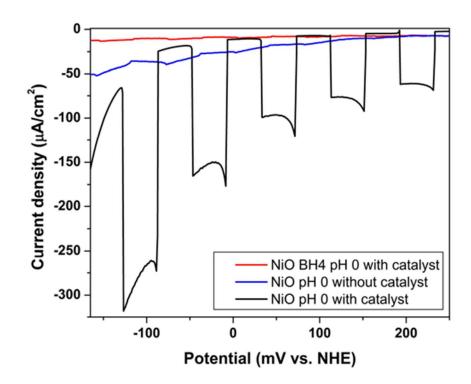



Fig. S7. Linear Sweep Voltammetry with light chopping of all pH 0 (1M HCl) solutions: BH4 sensitized NiO with 5 mM  $[Mo_3S_4]^{4+}$  (black trace). Bare NiO without  $[Mo_3S_4]^{4+}$  (red trace). Bare NiO with 5 mM  $[Mo_3S_4]^{4+}$  (blue trace).

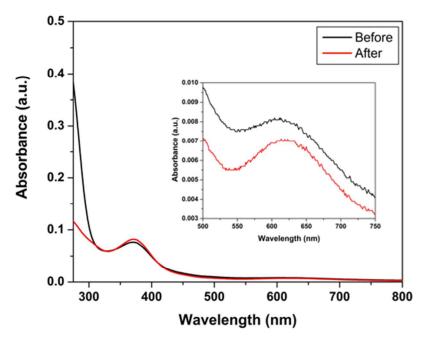



Figure S8. UV-Vis of the  $[Mo_3S_4]^{4+}$  cluster before (black trace) and after (red trace) a 2.7 hour chronoamperometry experiment with constant light illumination held at o V vs NHE. Inset: A zoomed view of the absorption peak at 610 nm.

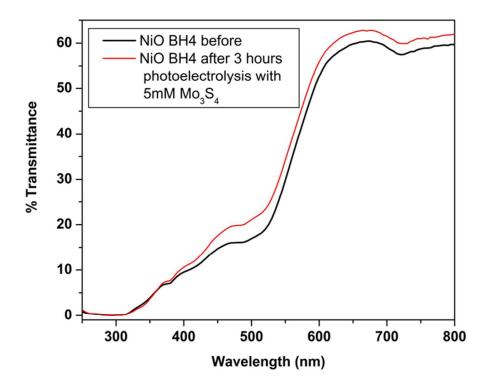



Figure S9. Transmittance of a BH4 sensitized NiO film before (black trace) and after (red trace) 3 hours of photoelectrolysis of a pH o (1M HCl) solution with 5 mM  $[Mo_3S_4]^{4+}$  at an applied potential of o V vs. NHE.

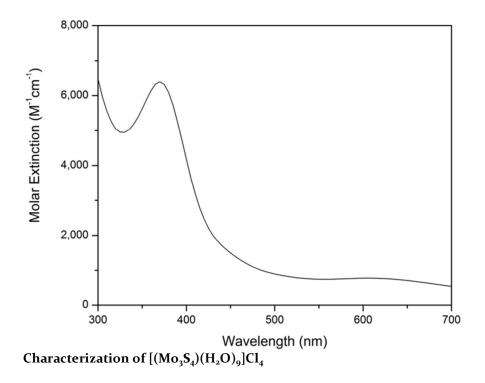



Figure S10. UV-Vis of  $[(Mo_3S_4)(H_2O)_9]Cl_4$  in 2M HCl.

| Trials             | Current Density<br>(µA/cm <sup>2</sup> ) |          |  |
|--------------------|------------------------------------------|----------|--|
|                    | All Data                                 | 95% C.I. |  |
| 1                  | 139                                      |          |  |
| 2                  | 146                                      |          |  |
| 3                  | 150                                      |          |  |
| 4                  | 171                                      | 171      |  |
| 5                  | 171                                      | 171      |  |
| 6                  | 178                                      | 178      |  |
| 7                  | 192                                      | 192      |  |
| 8                  | 210                                      |          |  |
| 9                  | 214                                      |          |  |
| 10                 | 254                                      |          |  |
| Average            | 183                                      | 178      |  |
| Standard Deviation | 36                                       | 10       |  |

Table S2: Current densities of 10 experiments of BH4 sensitized NiO films with 5 mM  $[Mo_3S_4]^{4+}$  in pH = 0 electrolyte (1M HCl) at an applied potential of 0 V vs. NHE with a 300 W xenon lamp. The confidence interval (C.I.) at 95% is defined based upon the total trials, average, and standard deviation.

## **IPCE (Incident Photon to Current Efficiency)**

The IPCE was calculated using the equation shown below where the light current was monitored at an applied potential of -0.170 V vs NHE while illuminating a BH4 sensitized NiO Film with  $5mM [Mo_3S_4]^{4+}$  in pH = 0 (1M HCl) electrolyte with a ModuLight-Module from Ivium Technologies that contains 6 LEDs with wavelengths 460, 525, 590, 623, 660, 740 nm. The power density of the LEDs were determined using a optical power meter (model 1916-C) from Newport optics.

$$IPCE \% = \left(\frac{1240 \times J_{Photocurrent}\left(\frac{mA}{cm^2}\right)}{Wavelength(nm) \times I_{PhotonPower}\left(\frac{mW}{cm^2}\right)}\right) \times 100$$

Where J<sub>photocurrent</sub> is the photocurrent density measured at a specified wavelength, I<sub>Photon Power</sub> is the incident power density at a specified wavelength.

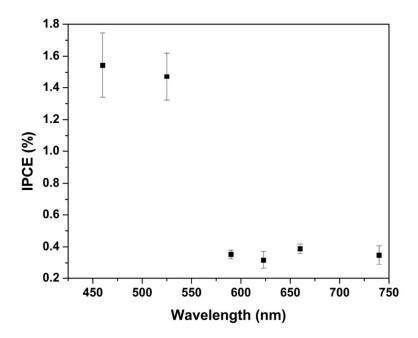



Figure S11. IPCE spectra of a BH4 sensitized NiO Film with 5mM  $[Mo_3S_4]^{4+}$  in pH = o (1M HCl) electrolyte at an applied potential of – 0.17 V vs NHE.

| Wavelength | <b>IPCE (%)</b> |  |
|------------|-----------------|--|
| 460        | 1.54 ± 0.20     |  |
| 525        | 1.47 ± 0.15     |  |
| 590        | 0.35 ± 0.027    |  |
| 623        | 0.32 ± 0.054    |  |
| 660        | 0.39 ± 0.030    |  |
| 740        | 0.35 ± 0.059    |  |

Table S<sub>3</sub>. Summary of IPCE results

| Wavelength<br>(nm) | Current<br>(µA) | Current<br>(µA/cm²) | Power (mW) | Power<br>(mW/cm²) | IPCE (%) |  |  |
|--------------------|-----------------|---------------------|------------|-------------------|----------|--|--|
| Trial #1           |                 |                     |            |                   |          |  |  |
| 460                | 41.10           | 0.14679             | 62         | 24                | 1.62     |  |  |
| 525                | 19.67           | 0.07025             | 32         | 13                | 1.32     |  |  |
| 590                | 11.77           | 0.04204             | 59         | 23                | 0.38     |  |  |
| 623                | 8.82            | 0.03150             | 45         | 18                | 0.35     |  |  |
| 660                | 9.86            | 0.03521             | 44         | 17                | 0.38     |  |  |
| 740                | 6.55            | 0.02339             | 35         | 14                | 0.28     |  |  |
| Trial #2           |                 |                     |            |                   |          |  |  |
| 460                | 42.98           | 0.15350             | 62         | 24                | 1.70     |  |  |
| 525                | 24.10           | 0.08607             | 32         | 13                | 1.61     |  |  |
| 590                | 10.07           | 0.03596             | 59         | 23                | 0.33     |  |  |
| 623                | 6.34            | 0.02264             | 45         | 18                | 0.25     |  |  |
| 660                | 9.32            | 0.03329             | 44         | 17                | 0.36     |  |  |
| 740                | 8.22            | 0.02936             | 35         | 14                | 0.36     |  |  |
| Trial #3           |                 |                     |            |                   |          |  |  |
| 460                | 33.28           | 0.11886             | 62         | 24                | 1.31     |  |  |
| 525                | 22.14           | 0.07907             | 32         | 13                | 1.48     |  |  |
| 590                | 10.92           | 0.03900             | 59         | 23                | 0.35     |  |  |
| 623                | 8.52            | 0.03043             | 45         | 18                | 0.34     |  |  |
| 660                | 10.84           | 0.03871             | 44         | 17                | 0.42     |  |  |
| 740                | 9.25            | 0.03304             | 35         | 14                | 0.40     |  |  |

Table S<sub>4</sub>. Data to determine the average IPCE%.