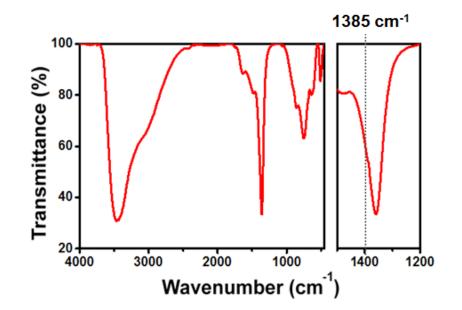
Supplementary Information


Synthesis of $(Ga_{1-x}Zn_x)(N_{1-x}O_x)$ with Enhanced Visible-Light Absorption and Reduced

Defects by Suppressing Zn Volatilization

Dennis P. Chen and Sara E. Skrabalak*

Table of Contents

FTIR spectrum of ZnGa-LDH (Figure S1)	S 2
Assignment of the main IR vibration modes of ZnGa-LDH (Table S1)	S2
Pawley refinement of ZnGa-LDH high resolution synchrotron XRD data (Figure S2)	S 3
STEM micrographs/EDS-mapping of GZNO-NH $_3$ and GZNO-O $_2$ /NH $_3$ (Figure S3)	S 4
Reaction time studies of GZNO-NH ₃ and GZNO-O ₂ /NH ₃ monitored ex situ by XRD (Figure S4).	S5
Powder patterns of GZNO-O ₂ /NH ₃ particles obtained from various nitridation times (Figure S5)	S6
XPS spectra of GZNO particles (Figure S6)	S7-8
Zn fraction in GZNO samples as determined by ICP-OES and XPS elemental analysis (Table S2)	S 8
XRD patterns of GZNO obtained from the nitridation of ZnGa-LDH (Figure S7)	S 9
Reliability values for Pawley refinements fitted to synchrotron GZNO-NH ₃ data comparing the relevance of each anisotropic broadening parameter (Table S4)	S10
References	S 10

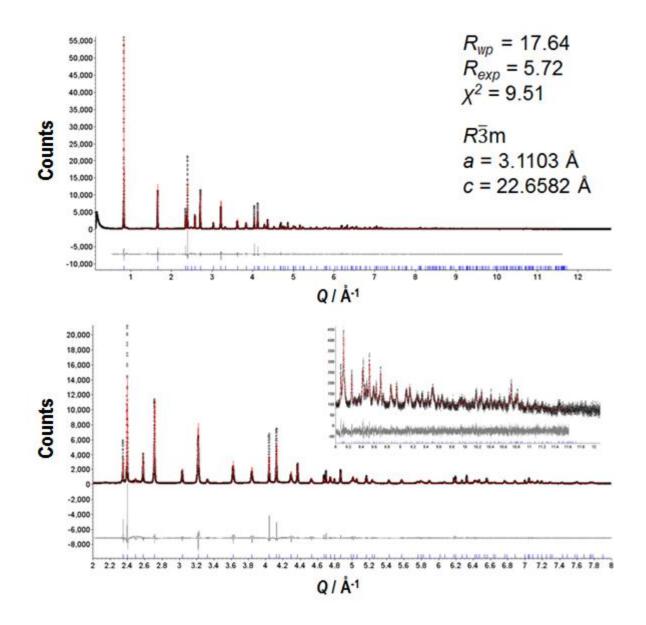
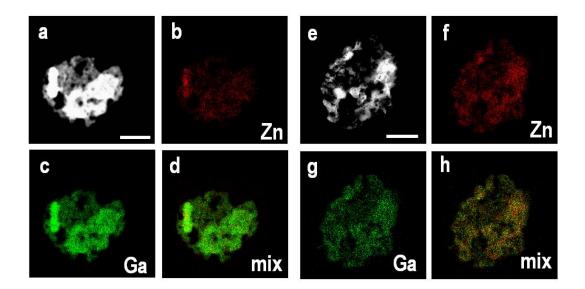
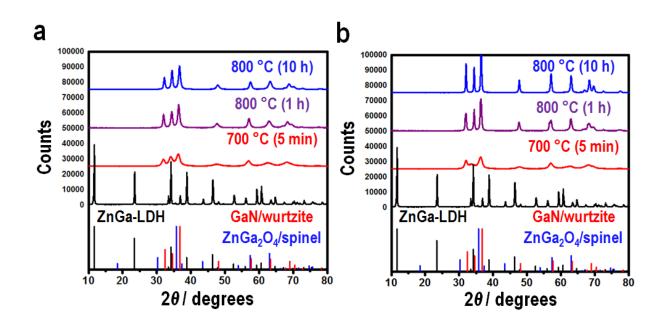
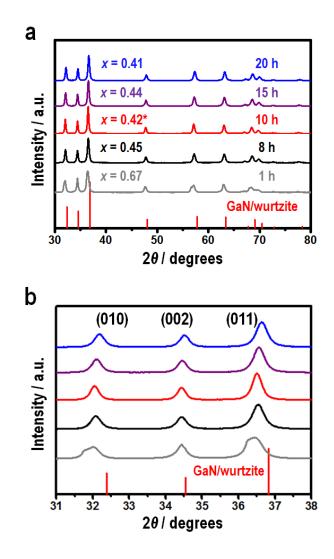


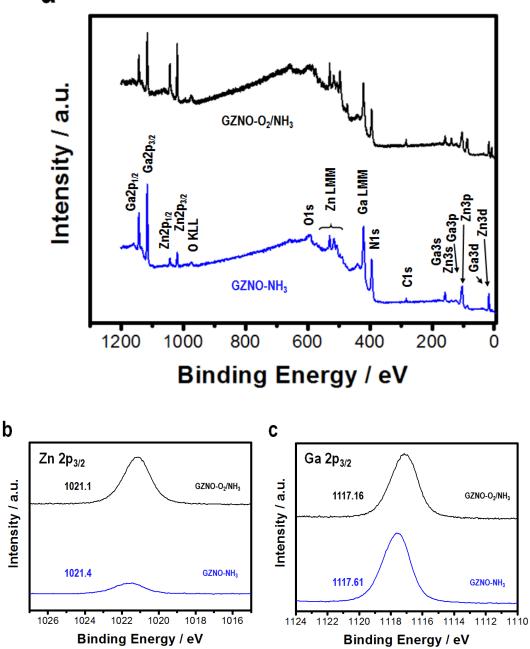
Figure S1. FTIR spectrum of ZnGa-LDH plates. The right panel is a zoom-in view highlighting the carbonate anion stretching mode and the absence of an N-O stretch (1385 cm⁻¹).


Table S1. Assignment of themain IR vibration modes ofZnGa-LDH.

Vibration Modes	Resonance Frequency (cm ⁻¹)	
υ[O-H]	3446	
υ[H-O-H]	1637	
υ[N-O]	(1385)	
υ[C-O] _s	1358	
υ[M-O]	735	


The ZnGa-LDH sample displays a strong absorption with a broad profile in the 3490-3440 cm⁻¹ region, associated with the presence of H-bonding interactions between the interlamellar water molecules and the OH functional groups of the hydroxide-based layers.¹ Absorption at the lower wavenumbers between 740-485 cm⁻¹ is attributed to the vibrational modes associated with the M(OH)₆ complexes.² More specifically, the carbonate species intercalated between the hydroxide layers show a strong intensity band at ca. 1358 cm⁻¹, which is typical for the carbonate's v_3 stretching mode.³ As can be seen in the zoom-in view of the spectra, no band at 1385 cm⁻¹, corresponding to the nitrate's v_3 stretching mode can be observed.⁴


Figure S2. Pawley refinement of ZnGa-LDH high resolution synchrotron XRD data. Whole powder pattern (a), *Q*-range 2-8 Å⁻¹ (b), and *Q*-range 8-12.1 Å⁻¹ (b, inset), respectively. Markers represent experimental data, while the solid red lines indicate the calculated pattern. The difference pattern is shown in gray below the experimental and calculated patterns. The high-*Q* region of the powder pattern is shown in the inset.


Figure S3. STEM micrographs/EDS-mapping of GZNO-NH₃ (a-d) and GZNO-O₂ /NH₃ (e-h). Scale bars = 200 nm.

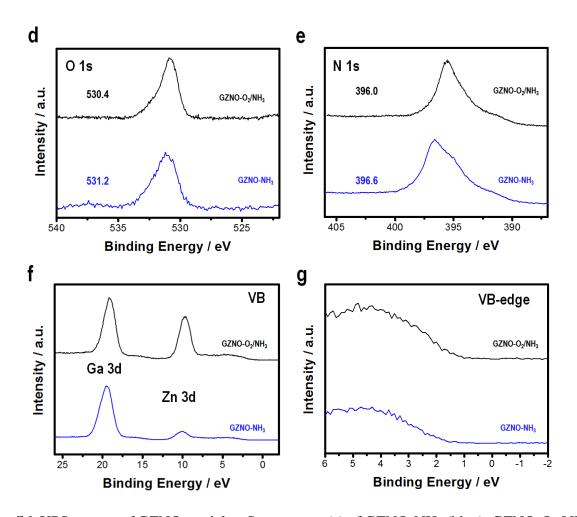

Figure S4. Reaction time studies monitored ex situ by XRD. Powder patterns of the set of reactions for GZNO-NH₃ (a) and GZNO-O₂/NH₃ (b). The data sets are identical to those shown in Figure 2, but left uncropped to show the entire range of 10-80 °2 θ . The black patterns corresponds to the precursor ZnGa-LDH while the red and blue pattern belongs to particles that were quenched at 700 °C (red) and 800 °C after 1 h (purple), respectively. The blue pattern corresponds to GZNO and GZNO-O₂ particles that were nitridated for 10 h. Reference patterns were obtained from ICDD PDF No. 01-076-3644, ICDD PDF No. 01-071-0843, and ICDD PDF No. 01-070-2546 which corresponds to rhombohedral-phase ZnGa-LDH phase (black), spinel ZnGa₂O₄ phase (blue), and hexagonal wurtzite GaN (red), respectively.

Figure S5. Powder patterns of GZNO-O₂/NH₃ particles obtained from various nitridation times. Powder patterns consisting of the predominant *hkl* reflections are shown in (a), while a narrow 30-40 ° 2θ range is shown in panel (b). The hexagonal wurtzite GaN (red) reference pattern was obtained from ICDD PDF No. 01-070-2546. Zn fractions (*x*) obtained from SEM-EDS analysis and reaction times are displayed above the corresponding pattern. *Fraction calculated from data obtained from ICP-OES analysis.

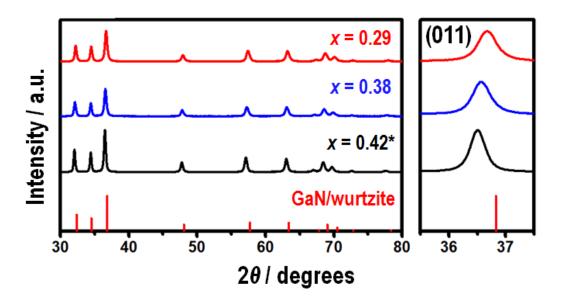

а

Figure S6. XPS spectra of GZNO particles. Survey scan (a) of GZNO-NH₃ (blue), GZNO-O₂/NH₃ (black), and GZNO-O₂/NH₃/ZnO (red). High resolution scans of the Zn2p (b), Ga2p (c), O1s (d), and N1s (e) lines were obtained. The valence band (VB) region and the VB-edge are shown in panels (f) and (g), respectively.

Table S2. Zn fraction in GZNO samples as determined by ICP-OES and XPS elemental analysis.

Sample ID	Starting Material	ICP-OES Zn/(Zn+Ga)	XPS Zn/(Zn+Ga)
GZNO-NH ₃	ZnGa-LDH	0.23	0.14
GZNO-O ₂ /NH ₃	ZnGa-LDH	0.42	0.42

Figure S7. XRD patterns of GZNO obtained from the nitridation of ZnGa-LDH. The black and red patterns represents GZNO-O₂/NH₃ and GZNO-O₂/NH₃ calcined at 800 °C under NH₃ for 5 h. The blue pattern correspond to ZnGa-LDH reacted sequentially with O2/NH3 for 10 h and NH3 for 5 h. Zn fractions (*x*) obtained from SEM-EDS or ICP-OES (*) analysis.

Anisotropic Broadening Parameter	R_{wp}	Rexp	χ^2			
S_{400}	11.295	7.044	2.571188			
S_{202}	11.953	7.044	2.879487			
S_{004}	9.599	7.044	1.857006			
η	9.474	7.044	1.808956			
all used	7.93	7.044	1.267876			
Refined Anisotropic Broadening Parameters						
S400	S ₂₀₂	S ₀₀₄	η			
16.4×10^4	16.4×10^{4}	7.8×10^{4}	0.49			

Table S1. Reliability values for Pawley refinements fitted to synchrotron GZNO-NH₃ data with each anisotropic broadening parameters⁵ in turn was fixed at zero while the others were refined.

References

- 1. Ulibarri, M. A.; Hernandez, M. J.; Cornejo, J., Hydrotalcite-like compounds obtained by anion exchange reactions. *J. Mater. Sci.* **1991**, *26*, 1512-1516.
- 2. Busca, G.; Trifiro, F.; Vaccari, A., Characterization and Catalytic Activity of Cobalt-Chromium Mixed Oxides. *Langmuir* **1990**, *6*, 1440-1447.
- 3. Hernandez-Moreno, M. J.; Ulibarri, M. A.; Rendon, J. L.; Serna, C., IR characteristics of hydrotalcite-like compounds. *J. Phys. Chem. Miner.* **1985**, *12*, 34-38.
- 4. Kruissink, E. C. ; Vanreijen, L. L.; Ross, J. R. H., Coprecipitated nickel-alumina catalysts for methanation at high temperature. Part 1.-Chemical composition and structure of the precipitates. *J. Chem. Soc., Faraday Trans.* **1981**, *77*, 649-663.
- 5. Stephens, P. W., Phenomenological model of anisotropic peak broadening in powder diffraction. J. Appl. Cryst. **1999**, 32 (2), 281-289.