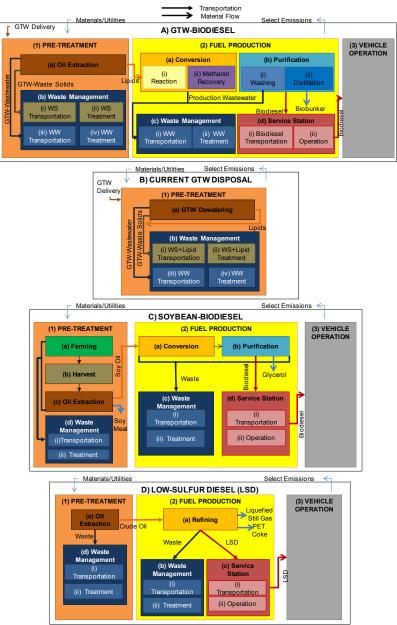
SUPPORTING INFORMATION 1

2 The supporting information consists of 63 pages, including cover page, containing 11 figures, 37 3 tables, and 11 equations.

Life Cycle Assessment of Biodiesel Produced from 4


5	Grease Trap Waste
6	Megan E. Hums ¹ , Richard A. Cairncross ^{1*} , & Sabrina Spatari ²
7	¹ Chemical and Biological Chemical Engineering, Drexel University
8	² Civil, Architectural, and Environmental Engineering, Drexel University

9 Supporting Information (SI)

10 RESEARCH SCOPE AND METHODS

11 System Boundary

- 12 The system boundary for A) GTW-Biodiesel, B) Current GTW Disposal, C) Soybean-
- 13 Biodiesel, and D) Low-sulfur diesel are shown in Figure SI-S1. The soybean biodiesel and LSD
- 14 processes were evaluated using GREET-2014 data^{1,2}.

- Figure SI-S1. System boundary for the production of A) GTW-biodiesel, B) Current GTW
- 17 Disposal C) Soybean-biodiesel, D) LSD. The boxes indicate process stages; thin arrows

represent transportation; and thick arrows are material flows. Each of the three main stages include the material and energy inputs and emission outputs for (1) Pre-treatment is represented by the orange box, (2) Fuel production is represented by the yellow box, and (3) Vehicle operation is represented by the gray box. Some process stages have a sub-stage marked with letters a-d and some sub-stages have individual steps marked i-iv.

For the soybean-biodiesel process, the pre-treatment included planting and harvesting of soybeans, soybean oil extraction, and transportation and treatment of waste. The fuel production stage included four sub-stages: conversion, purification, waste management, and the service station. Co-product soybean meal and glycerol were treated as mass and market allocations, respectively¹. The final stage was vehicle operation.

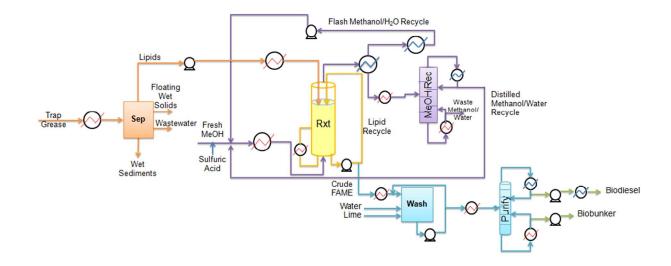
For LSD, the pre-treatment included oil extraction and transportation and treatment of waste. The fuel production stage included three sub-stages: refining of LSD, waste management, and service station. The final stage was vehicle operation. In the model LSD, by-products such as liquefied still gas and petroleum (PET) coke were treated as internal products².

32 GTW-Biodiesel Process Description

33 GTW Transportation to Transfer Station

The average distance of the collection route was 286 based on data collected from a grease hauler during a longitudinal study³. Table SI-S1 shows the 13 different routes that were used to determine the average distance.

37 **Table SI-S1.** Transportation of GTW to transfer station


Sampling	Route,
Date	km
6/26/2014	140
7/3/2014	170
7/15/2014	192
7/25/2014	144

364
157
272
518
223
234
407
320
373
344
459
266
286

38 The environmental impacts were determined using transportation emissions data in SimaPro8.

39 Process Flow Diagram

The process flow diagram (Figure SI-S2) shows the production of biodiesel from GTW including separation of lipids, reaction of lipids, methanol recovery, washing of crude FAME, and purification to ASTM grade biodiesel. The process model was developed using material and energy balances, process heuristics, and design projects.

45 Figure SI-S2. Process flow diagram for the GTW-biodiesel production process. Process stages
46 are represented: pre-treatment lipid separation (orange), biodiesel reaction (yellow), methanol
47 recovery (purple), and washing/purification (blue).

48 **Pre-treatment**

49 *Oil Extraction*

50 The separation step extracted the brown grease lipids from the rest of the trap waste. The 51 volumetric balance of the trap grease lipids was varied from 2% to 40% by volume. The floating solids and sediments were kept constant at 10% and 25%, respectively. The wastewater was the 52 53 remaining portion of the overall grease trap waste. The lipids contained 97% FFA which was 54 represented using oleic acid. Oleic acid (C18:1) is typically the highest percentage of substance present in the analysis of grease lipids. The GTW was heated to 60 °C for three hours with a 55 56 heat loss of 50%. Process steam from the combustion of natural gas was used to heat the 57 separator and electricity was used for a pump and vibrating screen.

58 Pre-treatment Waste Management

This section describes the method to determine GWP₁₀₀ for emissions associated with flaring and co-generation of landfill gas. A diagram of landfill gas emissions and collection is shown in Figure SI-S3.

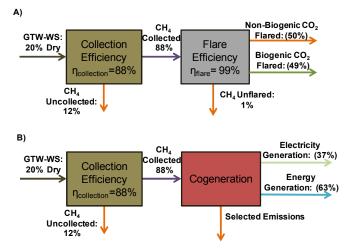


Figure SI-S3. Landfill emissions mass flow diagram for treatment of landfill gas by A) Flaring 64 and B) Co-generation to produce electricity and heat.

65 GTW-WS were wet when separated; a moisture content of 80% was assumed based off 66 laboratory tests to determine the dry mass. The waste in the landfill emits methane gas which assumed an average collection rate of 88%⁴. The flare landfill gas scenario included flaring with 67 an efficiency of $99\%^4$. Because 51% of the carbon content of food waste was biogenic⁴, 51% of 68 69 the carbon dioxide that was emitted through flaring did not contribute to the GWP₁₀₀. The co-70 generation scenario included the impacts of uncollected methane gas and the impacts associated 71 with the co-generation. The co-generation was modeled from the Ecoinvent database for bioenergy⁵ with an assumption of heat generation of 0.55 MJ/MJin and electricity generation of 72 73 0.32 MJ/MJin where MJin is the energy of the landfill gas that was collected. The electricity and 74 heat produced from co-generation were treated as avoided products where the GWP₁₀₀ associated 75 with electricity and the energy of natural gas for steam production were treated as a negative 76 value.

77 The landfill emissions were determined by a mass balance on the degradation food waste. The total amount of carbon dioxide equivalents emitted to the atmosphere through flaring of landfill 78 79 gas is calculated using the following mass balance:

S6

- $80 \quad \frac{gCO_2eq}{MJ-fuel} = \{ [300.7 * 0.2 * m_{GTW-WS,wet} * (1 \eta_{collection})] + [300.7 * 0.2 * m_{GTW-WS,wet} * 81 \\ \eta_{collection} * (1 \eta_{flare})] \} * 25 * \rho_{CH_4} + [(300.7 * 0.2m_{GTW-WS,wet} * \eta_{collection} * \eta_{flare}) * 81$
- 82 ρ_{CH_4}] * $\frac{44}{16}$ * %_{NonbiogenicCO2} (SI-S1)
- 83 Where,
- 84 300.7 = methane yield for food waste (mL CH₄/g dry mass)⁶
- 0.2 = dry fraction of GTW-WS (80% moisture content based on lab tests)
- 86 $m_{GTW-WS,wet} = \text{GTW-WS}$ wet mass per MJ-fuel
- 87 25 = 100-year global warming potential of methane (g CO₂-eq)
- 88 ρ_{CH4} = methane density = 0.66 g/L
- 44/16 = ratio of molecular weights of carbon dioxide to methane
- 90 $%_{NonbiogenicCO2}$ = percentage of non-biogenic carbon dioxide
- 91 η_i = efficiency at stage i: (1) methane collection = 88%⁴ (2) methane flare = 99%
- 92 The simplified GWP_{100} for the co-generation of landfill gas can be represented by equation SI-
- 93 S2:
- 94 $\frac{gCO_2eq}{MJ-fuel} =$

 $[CH_4uncollected] + \{[CogenerationGWP_{100} + LubricantGWP_{100}]\} - \{[AvoidedGWP_{100}]\} (SI-$ 95 96 S2) The GWP_{100} is determined by summing the GWP_{100} of the uncollected methane, the GWP_{100} 97 98 for the lubricant use and disposal in co-generation and subtracting the impacts associated with 99 the electricity and natural gas that are avoided because of the co-generation. The values for 100 lubricant, co-generation greenhouse gases, electricity, and heat are defined by the life cycle 101 inventory for bioenergy data as "per MJ" of methane gas into the process (Table SI-S2); 102 therefore, these impacts need to be multiplied by the energy of methane gas collected.

103 The uncollected methane gas GWP_{100} is determined using the following equation:

104
$$CH_4 uncollected = \frac{gCO_2eq}{MJ-fuel} = [300.7 * 0.2 * m_{GTW-WS,wet} * (1 - \eta_{collection})] * 25 * \rho_{CH_4} (SI-105 S3)$$

106 The amount of landfill gas produced for the co-generation emissions were determined by 107 truncating Equation SI-S1 before the flaring emissions and converting to energy using the lower 108 heating value of 0.0359 MJ/L:

 $E_{CH4} \text{collected} = \frac{E_{CH4}}{MJ-\text{fuel}} = \{ [300.7 * 0.2 * m_{GTW-WS,wet} * (\eta_{collection})] \} * 0.0359 \quad (SI-S4)$ The greenhouse gases associated with GWP₁₀₀ and materials used for co-generation were 109

110

determined using Table 13.12 in the life cycle inventories of bioenergy data⁵ summarized below: 111

112 Table SI-S2. Summary of co-generation inventory based off of 1 MJ of energy in (landfill gas

¹¹³ energy)

	1 1	
Unit	Value	
MJ/MJin	0.32	
MJ/MJin	0.55	
kg/MJin	3.00E-05	
kg/MJin	3.00E-05	
kg/MJin	2.30E-05	
kg/MJin	2.50E-06	
	MJ/MJin kg/MJin kg/MJin kg/MJin	

114

The GWP₁₀₀ impacts associated with 1 kg of lubricant consumption and disposal is found in 115 116 Table SI-S3. This table also includes the GWP₁₀₀ of producing 1 MJ of electricity and 1 MJ of 117 natural gas that are avoided depending on the amount of electricity and heat that is generated 118 from the landfill gas. The lubricating oil and electricity impacts were determined using SimaPro8⁷ while the natural gas impact was determined in GREET2014⁸. 119

120 Table SI-S3. Environmental impacts associated with processing and avoided impacts in co-121 generation.

	Processing	mpacts	Avoided Impacts			
		1 kg				
	1 kg			1 MJ		
	Lubricating	Mineral	1 MJ	Natural		
Unit	Oil ⁷	Oil ⁷	Electricity ⁷	Gas ⁸		
GWP ₁₀₀ g CO ₂	2-eq 886	2850	201	86		

129

123 The GWP₁₀₀ for the co-generation greenhouse gases were determined using the following

124 equation:

125 CogenerationGWP₁₀₀ = $\frac{gCO_2eq}{MJ-fuel}$ = [E_{CH4}collected] * {[CH₄ * 25 + N₂O * 298] * 1000} (SI-S5) 126 The GWP₁₀₀ associated with the lubricant were determined by multiplying the energy collected

- 127 (equation SI-S4) by the amount of lubricating oil (table SI-S2) and GWP₁₀₀ of lubricating oil
- 128 (table SI-S3):

LubricantGWP₁₀₀ = [E_{CH4}collected] * {[LubricatingOil * GWP₁₀₀LubricatingOil] + [DisposalMineralOil * GWP₁₀₀DisposalMineralOil]} (SI – S6) The avoided emissions were calculated using equation SI-S7:

AvoidedGWP₁₀₀

 $= [E_{CH4} collected]$

- * {[GeneratedElectricity * GWP₁₀₀Electricity]
- + [GeneratedHeat * GWP₁₀₀NaturalGas]} (SI S7)
- 130 Combining equations SI-S3 to SI-S7 and substituting into SI-S2 gives equation SI-S8 for the
- 131 total GWP₁₀₀ of landfill gas co-generation:
- 132 TotalGWP₁₀₀ = $\frac{gCO_2eq}{MI-fuel} = [300.7 * 0.2 * m_{GTW-WS,wet} * (1 \eta_{collection})] * 25 * \rho_{CH_4} +$

133 $\left\{ \left[300.7 * 0.2 * m_{GTW-WS,wet} * (\eta_{collection}) \right] \right\} * 0.0359 * \left(\left\{ \left[CH_4 * 25 + N_2 O * 298 \right] * 1000 \right\} + 1000 \right\} + 10000 + 10000 + 10000 + 10000 + 1000 + 10000 + 1000 + 1000 + 10000 +$

134 {[LubricatingOil * GWP₁₀₀LubricatingOil] +

- 135 [DisposalMineralOil * GWP₁₀₀DisposalMineralOil]} –
- 136 {[GeneratedElectricity * $GWP_{100}Electricity$] + [GeneratedHeat * $GWP_{100}NaturalGas$]}) (SI-
- 137 S8)
- 138 Fuel Production
- 139 Conversion

The model uses a bubble column reactor that has been developed by researchers at Drexel University. This work was inspired by experiments done by Kocsisová et al. on the esterification of FFA at ambient pressure and high temperature (50-60 °C higher than the boiling point of methanol)⁹. The bubble column is effective at converting high-FFA lipid sources into FAME and the esterification of lipid at any FFA/TAG ratio¹⁰. The column is also robust at converting 145 the FFA with a mixture of 80% methanol and 20% water which is beneficial when using 146 recycled methanol¹⁰.

The model uses the same conditions at which experimental data was collected with the bubble column reactor. The reactor was run at 125 °C for 3 hours with a heat loss of 50%. Fresh methanol and catalyst were also heated and pumped into the reactor. Another pump was used to re-circulate the oil. Pumping efficiencies were 60%. Process steam and cooling water were used for the reaction and electricity was used for the pumping.

152 *Methanol Recovery*

Methanol was recovered using a flash condenser and distillation column. The distillation column had a reflux ratio of 1.5 and a reboil ratio of 2 assuming pure methanol and water, respectively. A fractional recovery of water in the distillate was estimated to be 16.1%. Methanol was recovered 85% by mole in distillate during fractional distillation and 99% of methanol was recovered in the distillate of the distillation column. Natural gas combusted for process steam, cooling water, and electricity were used for heating/cooling and for powering pumps.

160 *Purification*

The crude biodiesel was first neutralized with sodium hydroxide, washed with water, and dried at 80 °C. A short-path evaporator was then used for further purification. Short-path evaporation operates similarly to a distillation column; however, it operates under vacuum to lower the boiling point of the crude material. The evaporator was run at 0.1 bar and 260 °C. Process steam, cooling water, and electricity were used for the heating/cooling and for pumping. The model has a rough estimate of conditions for the short-path evaporator and more research is being performed to optimize the conditions for purifying biodiesel.

S10

168 Life Cycle Inventory

- 169 The material and energy balances based on the process flow diagram, heuristics, and design
- 170 projects were used to calculate a process inventory.
- 171 **Table SI-S4.** Life cycle inventory by component and database used in the LCA

	Name in Database	Database	Program
INPUTS			
Materials			
Sulfuric acid	Sulphuric acid, liquid, at plant/RER U	Ecoinvent	SimaPro8
Methanol	Methanol, at regional storage/CH U	Ecoinvent	SimaPro8
Wash water	Water, deionised, at plant/CH U	Ecoinvent	SimaPro8
Sodium hydroxide	Sodium hydroxide, production mix, at plant/kg/RNA	USLCI	SimaPro8
Utilities			
Natural gas for steam production			GREET2014
Electricity	Electricity, medium voltage, at grid/US U	Ecoinvent	SimaPro8
Cooling water	Water, decarbonised, at plant/RER U	Ecoinvent	SimaPro8
OUTPUTS			
Materials			
Production wastewater	Waste water – untreated, slightly organic contaminated EU-27 S	ELCD	SimaPro8
	Waste water –		
GTW wastewater	untreated, EU-27 S	ELCD	SimaPro8
GTW waste solids:			
methane gas		Landfill	
production	Food Waste	Literature	Calculation
GTW waste solids:		E I ·	01.1.
co-generation		EcoInvent	Calculation

Production	Transport, lorry >16t,	EcoInvont	SimaPro8
wastewater	fleet average/RER U	EcoInvent	SimaPios
	Transport, lorry >16t,		
GTW wastewater	fleet average/RER U	EcoInvent	SimaPro8
	Transport, lorry >16t,		
GTW waste solids	fleet average/RER U	EcoInvent	SimaPro8

173 The full inventory for 2-40% lipid content is shown in Table SI-S5. Most of the materials and

174 utilities are independent of lipid content with the exception of rows 5, 15, 17, 19, 21 which are

175 part of the pre-treatment process.

176 **Table SI-S5.** Life Cycle Inventory for GTW-biodiesel production with lipid contents of 2-40%

	Lipid Content	2%	3%	4%	5%	7%	10%	20%	30%	40%
	INPUTS/MJ biodiesel									
	Materials									
1	Sulfuric acid, kg [a]	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
2	Methanol, kg [a]	0.0029	0.0029	0.0029	0.0029	0.0029	0.0029	0.0029	0.0029	0.0029
3	Wash water, kg [a]	0.0295	0.0295	0.0295	0.0295	0.0295	0.0295	0.0295	0.0295	0.0295
4	Sodium hydroxide, kg [a]	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
	Utilities									
	Oil Extraction									
5	Natural gas for steam production, m ³ [b]	0.0115	0.0076	0.0057	0.0045	0.0032	0.0022	0.0011	0.0007	0.0005
6	Electricity, kWh [a]	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
	Conversion									
7	Natural gas for steam production, m ³ [b]	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020
8	Electricity, kWh [a]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
9	Cooling water, kg [a]	0.7255	0.7255	0.7255	0.7255	0.7255	0.7255	0.7255	0.7255	0.7255
	Purification									

10	Natural gas for steam production, m ³ [b]			0.0017	0.0017	0.0017	0.0017	0.0017	0.0017	0.0017
11	Electricity, kWh [a]		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
12	Cooling water, kg [a]	0.9982	0.9982	0.9982	0.9982	0.9982	0.9982	0.9982	0.9982	0.9982
	OUTPUTS/MJ									
	Biodiesel									
	Materials									
13	GTW biodiesel, kg	0.0265	0.0265	0.0265	0.0265	0.0265	0.0265	0.0265	0.0265	0.0265
14	Biobunker, kg	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
15	GTW wastewater, kg [a]	0.9084	0.5960	0.4398	0.3460	0.2389	0.1586	0.0649	0.0336	0.0180
16	Production wastewater, kg [a]	0.0323	0.0323	0.0323	0.0323	0.0323	0.0323	0.0323	0.0323	0.0323
17	GTW waste solids, kg [c]	0.5046	0.3364	0.2523	0.2019	0.1442	0.1009	0.0505	0.0336	0.0252
	Transportation									
18	Biodiesel, tkm* [a]	0.0026	0.0026	0.0026	0.0026	0.0026	0.0026	0.0026	0.0026	0.0026
19	GTW wastewater, tkm* [a]	0.0454	0.0298	0.0220	0.0173	0.0119	0.0079	0.0032	0.0017	0.0009
20	Production wastewater, tkm* [a]	0.0016	0.0016	0.0016	0.0016	0.0016	0.0016	0.0016	0.0016	0.0016
21	GTW waste solids, tkm* [a]	0.0252	0.0168	0.0126	0.0101	0.0072	0.0050	0.0025	0.0017	0.0013
177	*metric ton time	s kilomete	ers travele	d						

177 *metric ton times kilometers traveled

178 [a] SimaPro8⁷

179 [b] GREET2014¹¹

180 [c] Landfill Literature^{4, 6}/EcoInvent database⁵

To produce 1 MJ of biodiesel, the amount of GTW entering the process increases as lipid content decreases; unlike the constant GTW input studied by Tu and McDonnell where biodiesel production was varied. In this scenario, many of the inputs do not change with lipid content because they are proportional to the amount of biodiesel produced. When lipid content decreases, the pre-treatment requires more energy and produces more GTW-WW and GTW-WS that need to be transported and treated for disposal.

187 Uncertainty/Model Fitting

A model was developed to analyze and test trends in the environmental impacts of producing biodiesel from GTW with varying lipid contents. The total impact normalized by the amount of biodiesel produced is expressed as a sum of the flowrates into each stage (Figure SI-S1-A) multiplied by the impact intensity from each of the process stages in Equation SI-S9:

192
$$\frac{I_{Total}}{E_{Biodiesel}} = \frac{\dot{M}_{GTW}\hat{I}_{PT} + \dot{M}_{Lipids}\hat{I}_{FP} + \dot{M}_{Biodiesel}\hat{I}_{VO}}{\dot{M}_{Biodiesel}\Delta\hat{H}_c}$$
(SI-S9)

193 Where,

194 \hat{I}_i = environmental impact intensity of process stage i per unit mass of input (PT = pre-treatment,

195 FP = fuel production, and VO = vehicle operation: combustion emissions)

196 \dot{M}_i = mass flowrate of j entering into the process stage

197 $\Delta \hat{H}_C$ = heat of combustion of biodiesel (lower heating value)

198 $E_{Biodiesel}$ = energy content of biodiesel produced

199 The impact intensity factors \hat{I}_i approximate the environmental impacts per unit of feedstock 200 entering each stage (GTW enters the pre-treatment stage, GTW lipids enter fuel production 201 stage, and biodiesel enters the vehicle operation stage). The relationship between the feedstock 202 flowrates can be estimated using the lipid content of GTW as x and the yield of the fuel 203 production process as ϕ :

204
$$\dot{M}_{Biodiesel} = \phi \dot{M}_{Lipids} = \phi x \dot{M}_{GTW}$$
 (SI-S10)

Combining Equations 2 and 3 produces a relationship between the total impacts and GTW lipid
 content that is useful for analyzing the LCA results shown in Equation SI-S11.

207
$$\frac{I_{Total}}{E_{Biodiesel}} = \left(\frac{\hat{I}_{PT}}{\phi \Delta \hat{H}_c}\right) \frac{1}{x} + \left(\frac{\hat{I}_{FP}}{\phi \Delta \hat{H}_c} + \frac{\hat{I}_{VO}}{\Delta \hat{H}_c}\right)$$
(SI-S11)

Equation SI-S11 predicts that the total environmental impacts are proportional to the reciprocal of the GTW lipid content, 1/x. The reciprocal of the lipid content is a measure of the amount of GTW that must be processed to produce a given amount of biodiesel. In the LCA model, more 211 lipid contents were used in the low-range lipid contents (2%, 3%, 4%, and 5%) to best represent

- 212 the hyperbolic rise. Linear regression of Equation SI-S11 to the theoretical environmental
- 213 impacts versus 1/x was used to estimate slope and intercept.
- For the model fitting, the lipid content by volume was inverted to get 1/x. Multiplying by the
- 215 density of the GTW (1.1 kg/L) the lipid content gives the lipid content by mass.

216 **RESULTS AND DISCUSSION**

217 100-year Global Warming Potential Consequential LCA

- 218 The table below lists the data for the GWP_{100} for the consequential analysis in Figure 2 of the
- article.
- 220 Table SI-S6. GWP₁₀₀ Consequential LCA for Flare Scenario. The colored cells indicate the
- corresponding bars in Figure 2.

Lipid Content	2%	3%	4%	5%	7%	10%	20%	30%	40%
Proposed GTW-Biodiesel Process									
Delivery to Transfer Station	44	29	22	18	13	9	4	3	2
Pre-treatment WM	131	87	65	52	37	25	12	8	6
GTW-Biodiesel Rest of									
Process	50	40	35	31	28	25	22	21	20
Total GTW-Biodiesel Process	226	156	122	101	77	59	39	32	28
Current GTW Process									
Delivery to Transfer Station	44	29	22	18	13	9	4	3	2
Current GTW Disposal	139	95	73	60	45	33	20	16	13
Low Sulfur Diesel	93	93	93	93	93	93	93	93	93
Total Displaced Current	276	217	100	170	150	125	117	111	100
GTW Process	276	217	188	170	150	135	117	111	108
Total GTW-Biodiesel - Total Current GTW Disposal	-50	-61	-66	-69	-73	-75	-78	-80	-80

222

223

225 **Table SI-S7.** GWP₁₀₀ Consequential LCA for Co-Generation Scenario

Lipid Content	2%	3%	4%	5%	7%	10%	20%	30%	40%
Proposed GTW-Biodiesel Process									
Delivery to Transfer Station	44	29	22	18	13	9	4	3	2
Pre-treatment WM	175	116	87	69	49	34	17	11	8
Biodiesel Co-Gen Avoided	107	71	<i></i>	42	21	0.1	1 1	7	~
Utilities	-107	-71	-54	-43	-31	-21	-11	-7	-5
GTW-Biodiesel Rest of Process	50	40	35	31	28	25	22	21	20
Total GTW-Biodiesel Process 162		114	90	76	59	47	32	27	25
Current GTW Process									
Delivery to Transfer Station	44	29	22	18	13	9	4	3	2
Current GTW Disposal	185	126	97	79	59	44	26	21	18
Current GTW Co-Gen Avoided Utilities	-112	-77	-59	-48	-36	-27	-16	-13	-11
Low Sulfur Diesel	93	93	93	93	93	93	93	93	93
Total Displaced Current		171	152	1 / 1	120	110	107	101	102
GTW Process	209	171	153	141	128	119	107	104	102
Total GTW-Biodiesel - Total Current GTW Disposal	-47	-57	-63	-66	-69	-72	-75	-76	-77

226

227 Attributional LCA

228 The two tables below represent are the results of GREET2014 for soybean-biodiesel and LSD.

229 **Table SI-S8.** Soybean biodiesel data

	GWP100	CED _{Fossil}	Carbon Monoxid e	Particulat e Matter	Mono- nitrogen Oxides	Sulfur Oxides
Unit	g-CO ₂ - eq/MJ-fuel	MJ/MJ- fuel	g- CO/MJ- fuel	g-PM/MJ- fuel	g- NOx/MJ- fuel	g- SOx/MJ- fuel
Soybean Production	5.663	0.049	0.010	0.002	0.018	0.017
Soy Oil Extraction	4.241	0.056	0.003	0.001	0.006	0.010
Soy oil Transportation	0.721	0.009	0.002	0.000	0.007	0.001
Pre-Treatment	10.625	0.113	0.014	0.003	0.032	0.028

Total						
Soy oil						
Conversion	9.117	0.138	0.004	0.001	0.008	0.008
Biodiesel						
Transportation	0.510	0.006	0.001	0.000	0.004	0.001
Biodiesel						
Storage	0.000	0.000	0.000	0.000	0.000	0.000
Fuel Production						
Total	9.627	0.144	0.004	0.002	0.011	0.009
Vehicle						
Operation	4.794	0.000	0.066	0.001	0.037	0.000
Total	25.046	0.257	0.085	0.006	0.080	0.037

231 **Table SI-S9.** LSD data

			Carlear	Dertioulate	Mono-	Sulfar
	CWD	CED	Carbon	Particulate	nitrogen	Sulfur
	GWP ₁₀₀	CED _{Fossil}	Monoxide	Matter	Oxides	Oxides
	g-CO ₂ -				g-	g-
	eq/MJ-	MJ/MJ-	g-CO/MJ-	g-PM/MJ-	NOx/MJ	SOx/MJ
	fuel	fuel	fuel	fuel	-fuel	-fuel
Heavy Butane from						
Crude Oil	0.001	0.000	0.000	0.000	0.000	0.000
Crude Recovery for						
U.S. Refineries	8.744	0.079	0.008	0.002	0.025	0.013
Well/Pre-treatment						
Total	8.744	0.079	0.008	0.002	0.025	0.013
LSD Refining	7.890	0.123	0.005	0.002	0.010	0.008
Processing LSD	0.463	0.005	0.001	0.000	0.003	0.001
LSD Storage	0.000	0.000	0.000	0.000	0.000	0.000
Fuel Production /						
Processing Total	8.353	0.128	0.005	0.002	0.013	0.009
Vehicle Operation	75.717	1.000	0.128	0.002	0.033	0.001
LSD Total	92.814	1.207	0.141	0.006	0.071	0.022

232

Presented below are the results for all environmental impacts for GTW-biodiesel for scenarios with landfill gas flaring, landfill gas co-generation of heat and electricity, and a scenario without GTW waste management (omits impacts associated with delivery of GTW to the transfer station and GTW wastewater and waste solids disposal. These results are compared to soybean-

- biodiesel and LSD. Note that the values of soybean-biodiesel and LSD do not change with eachGTW scenario.
- 239 The GWP_{100} was determined for the GTW-biodiesel process from 2-40% lipid content and
- compared to the soybean-biodiesel process and LSD process shown in Figure SI-S4.

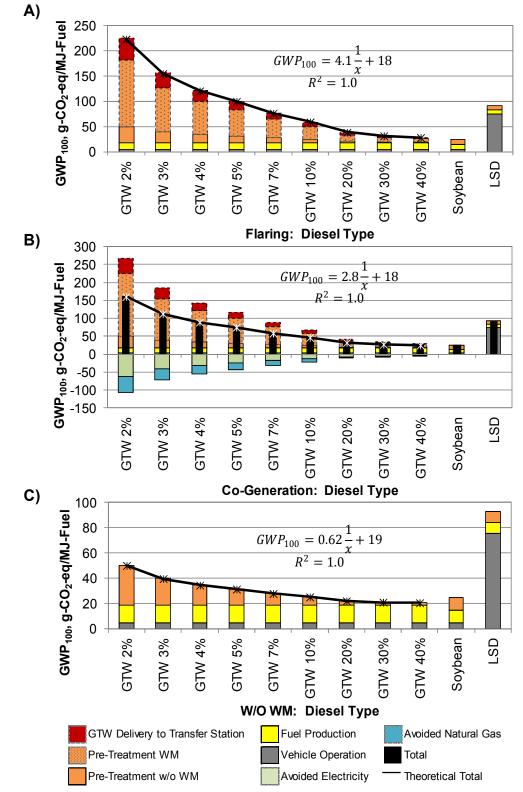


Figure SI-S4. 100-y Global Warming Potential Complete Parametric Study of GTW-Biodiesel

243 Compared to Soybean-biodiesel and LSD for A) Flaring landfill gas, B) Co-generation of landfill

gas, and C) without GTW waste management. The stacked bars represent GTW-biodiesel
stages: delivery of GTW to transfer station (red), pre-treatment WM (orange with blue dots),
pre-treatment without WM (orange), fuel production (yellow), vehicle operation (gray), avoided
electricity production from co-generation (light green), and avoided natural gas from cogeneration (teal). The total GWP₁₀₀ (black bar) and modeled curve (black line) are also shown.

The following tables show the GWP_{100} value by process stage, the percent contribution of each process stage, and the percent reduction compared to soybean-biodiesel and LSD for each of the waste scenarios.

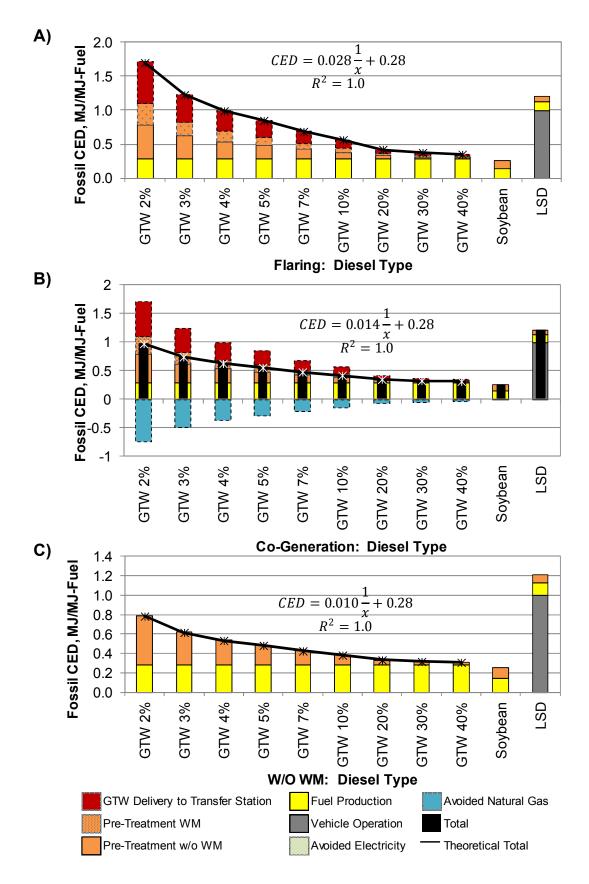
253	Table SI-S10.	Landfill Gas Flaring	Scenario for	100-y Global	Warming Potential

Dissol Type	GTW 2%	GTW 3%	GTW 4%	GTW 5%	GTW 7%	GTW 10%	GTW 20%	GTW 30%	GTW 40%	Soy- bean	LSD
Diesel Type GWP ₁₀₀ ,	2 70	J 70	4 70	370	170	1070	2070	3070	4070	Dean	LSD
g-CO ₂ -eq/MJ-fue	1										
Delivery to	21										
Transfer Station	44	29	22	18	13	8	4	3	2	N/A	N/A
Pre-Treatment		2)					'-			1 1/1 1	10/11
WM	131	87	65	52	37	25	12	8	6	N/A	N/A
Pre-Treatment											
w/o WM	31	21	16	13	9	6	3	2	1	11	9
Fuel Production	14	14	14	14	14	14	14	14	14	10	8
Vehicle											
Operation	5	5	5	5	5	5	5	5	5	5	5
Total	226	156	122	101	77	59	39	32	28	25	93
Percent											
Contribution, %											
Delivery to											
Transfer Station	20	19	18	17	16	15	11	9	7	N/A	N/A
Pre-Treatment											
WM	58	56	54	51	48	43	32	25	20	N/A	N/A
Pre-Treatment											
w/o WM	14	13	13	12	12	10	8	6	5	42	9
Fuel Production	6	9	12	14	18	24	37	45	50	38	9
Vehicle											
Operation	2	3	4	5	6	8	12	15	17	19	82
Reduction, %											
Compared to											
Soybean	802	525	386	303	208	137	54	26	13	0	271
Compared to		_	_			_	_	_	_	_	_
LSD	143	69	31	9	-17	-36	-58	-66	-70	-73	0

256 Table SI-S11. Landfill Gas with Co-Generation Scenario for 100-y Global Warming Potent	256	Table SI-S11.	Landfill Gas with	Co-Generation Sceneration	nario for 100-y Global	Warming Potentia
---	-----	---------------	-------------------	----------------------------------	------------------------	------------------

	GTW	GTW	GTW	GTW	GTW	GTW	GTW	GTW	GTW	Soy-	LCD
Diesel Type	2%	3%	4%	5%	7%	10%	20%	30%	40%	bean	LSD
<i>GWP</i> ₁₀₀ ,											
g-CO ₂ -eq/MJ-fuel											
Delivery to	4.4	20	22	10	10	0	4	2	2		NT/A
Transfer Station	44	29	22	18	13	9	4	3	2	N/A	N/A
Pre-treatment	175	116	07	(0	40	24	17	11	0	NT/A	NT/A
WM	175	116	87	69	49	34	17	11	8	N/A	N/A
Pre-treatment w/o WM	31	21	16	13	0	6	3	2	1	11	0
	.				9	6		2	1	11	9
Fuel Production	14	14	14	14	14	14	14	14	14	10	
Vehicle	_	-	_	~	_	-	_	_	_	_	70
Operation	5	5	5	5	5	5	5	5	5	5	78
Avoided	(2)	4.1	21	25	10	10	C	4	2		NT/A
Electricity	-62	-41	-31	-25	-18	-12	-6	-4	-3	N/A	N/A
Avoided Natural	45	20	22	10	10	0	_	2	2		NT/A
Gas	-45	-30	-23	-18	-13	-9	-5	-3	-2	N/A	<u>N/A</u>
Total	162	114	90	76	59	57	32	27	25	25	93
Percent											
Contribution, %											
Delivery to		•			0.1	10	10	10	0		37/4
Transfer Station	27	26	24	23	21	19	13	10	8	N/A	N/A
Pre-treatment	10	10	1.5	1.5	1.5	10	0	_	6	10	0
w/o WM	19	18	17		15	13	9	7	6	42	9
Fuel Production	9	12	16	19	24	30	44	52	57	38	9
Vehicle											
Operation	3	4	5	6	8	10	15	17	19	19	82
Avoided											
Electricity	-38	-36	-34	-33	-30	-26	-19	-15	-12	N/A	N/A
Avoided Natural											
Gas	-28	-27	-25	-24	-22	-19	-14	-11	-9	N/A	N/A
Reduction, %											
Compared to											
Soybean	547	355	259	201	136	86	29	9	0	0	271
Compared to											
LSD	75	23	-3	-19	-36	-50	-65	-70	-73	-73	0

Diesel Type	GTW 2%	GTW 3%	GTW 4%	GTW 5%	GTW 7%	GTW 10%	GTW 20%	GTW 30%	GTW 40%	Soy- bean	LSD
<i>GWP</i> ₁₀₀ ,					. , .		, .				
g-CO2-eq/MJ-fue	el										
Pre-treatment	31	21	16	13	9	6	3	2	2	11	9
Fuel Production	14	14	14	14	14	14	14	14	14	10	8
Vehicle											
Operation	5	5	5	5	5	5	5	5	5	5	76
Total	50	40	35	32	28	25	22	21	20	25	93
Percent											<u> </u>
Contribution, %											
Pre-treatment	62	52	45	40	32	25	14	9	7	42	9
Fuel Production	28	36	41	45	51	56	64	68	69	38	9
Vehicle											
Operation	10	12	14	15	17	19	22	23	23	19	82
Reduction, %											
Compared to											
Soybean	101	59	38	26	11	1	-12	-16	-18	0	271
Compared to											
LSD	-46	-57	-63	-66	-70	-73	-76	-77	-78	-73	0


259 Table SI-S12. Without GTW Waste Management Scenario for 100-y Global Warming Potential

261 Fossil Cumulative Energy Demand (Fossil CED)

262 The fossil cumulative energy demand (fossil CED) was determined for the GTW-biodiesel

263 process from 2-40% lipid content and compared to the soybean-biodiesel process and LSD

264 process shown in Figure SI-S5.

266 Figure SI-S5. Fossil Cumulative Energy Demand Complete Parametric Study of GTW-267 Biodiesel Compared to Soybean-biodiesel and LSD for A) Flaring landfill gas, B) Co-generation 268 of landfill gas, and C) without GTW waste management. The stacked bars represent GTW-269 biodiesel stages: delivery of GTW to transfer station (red), pre-treatment WM (orange with blue 270 dots), pre-treatment without WM (orange), fuel production (yellow), vehicle operation (gray), 271 avoided electricity production from co-generation (light green), and avoided natural gas from co-272 generation (teal). The total CED_{Fossil} (black bar) and modeled curve (black line) are also shown. 273 The following tables show the CED_{Fossil} value by process stage, the percent contribution of 274 each process stage, and the percent reduction compared to soybean-biodiesel and LSD for each 275 of the waste scenarios.

277	Table SI-S13.	Landfill Gas w	ith Flaring Sce	nario for Fossil	Cumulative Energy Demand	
_ , ,		Dunianni Oub n	Turi I farming See	14110 101 1 00011		

Diesel Type	GTW 2%	GTW 3%	GTW 4%	GTW 5%	GTW 7%	GTW 10%	GTW 20%	GTW 30%	GTW 40%	Soy- bean	LSD
Fossil CED,	2/0	570	T /U	570	170	10/0	20 /0	5070	TU /U	Dean	LSD
MJ/MJ-Fuel											
Delivery to											
Transfer Station	0.62	0.41	0.31	0.25	0.18	0.12	0.06	0.04	0.03	N/A	N/A
Pre-Treatment			0.51	0.20	0.10		0.00			1,011	
WM	0.31	0.20	0.15	0.12	0.08	0.06	0.03	0.02	0.01	N/A	N/A
Pre-Treatment											
w/o WM	0.51	0.34	0.25	0.20	0.14	0.10	0.05	0.03	0.02	0.11	0.08
Fuel Production	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.14	0.13
Vehicle											
Operation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00
Total	1.72	1.24	1.00	0.85	0.69	0.56	0.42	0.37	0.35	0.26	1.21
Percent											
Contribution, %											
Delivery to											
Transfer Station	36	33	31	29	26	22	14	11	9	N/A	N/A
Pre-Treatment											
WM	18	16	15	14	12	10	6	4	3	N/A	N/A
Pre-Treatment											
w/o WM	29	27	25	24	21	18	12	8	7	44	7
Fuel Production	17	23	29	33	41	50	68	76	82	56	11
Vehicle											
Operation	0	0	0	0	0	0	0	0	0	0	83
Reduction, %											
Compared to											
Soybean	568	381	287	231	167	119	63	45	35	0	370
Compared to LSD	42	2	-18	-29	-43	-53	-65	-69	-71	-79	0

280 Table SI-S14. Landfill Gas with Co-Generation Scenario for Fossil Cumulative Energy

281 Demand

Diesel Type	GTW 2%	GTW 3%	GTW 4%	GTW 5%	GTW 7%	GTW 10%	GTW 20%	GTW 30%	GTW 40%	Soy- bean	LSD
Fossil CED,	_ / 0	• / •	.,.	0,0	. , 0	1070	2070	00,0		<i>b</i> ett iii	100
MJ/MJ-fuel											
Delivery to											
Transfer											
Station	0.62	0.41	0.31	0.25	0.18	0.12	0.06	0.04	0.03	N/A	N/A
Pre-treatment											
WM	0.31	0.20	0.15	0.12	0.08	0.06	0.03	0.02	0.01	N/A	N/A
Pre-treatment											
w/o WM	0.51	0.34	0.25	0.20	0.14	0.10	0.05	0.03	0.02	0.11	0.08
Fuel											
Production	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.14	0.13
Vehicle											
Operation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00
Avoided											
Electricity	-0.01	-0.004	-0.003	-0.003	-0.002	-0.001	-0.001	<-0.001	<-0.001	N/A	N/A
Avoided										/ .	/ /
Natural Gas	-0.73	-0.49	-0.37	-0.29	-0.21	-0.15	-0.07	-0.05	-0.04	N/A	N/A
Total	0.98	0.74	0.63	0.56	0.48	0.42	0.35	0.32	0.31	0.26	1.21
Percent											
Contribution,											
%											
Delivery to											
Transfer											
Station	63	55	49	44	37	30	18	12	10	N/A	N/A
Pre-treatment											
WM	31	27	24	22	18	14	8	5	4	N/A	N/A
Pre-treatment											
w/o WM	52	45	40	36	30	24	14	10		44	7
Fuel											
Production	29	38	45	51	60	68	82	88	91	56	11
Vehicle											
Operation	0	0	0	0	0	0	0	0	0	0	83
Avoided			-	-							
Electricity	-1	-1	-1	-1	<-1	<-1	<-1	<-1	<-1	N/A	N/A
Avoided		- -	-0							3.7/4	3.7/ 4
Natural Gas	-75	65	58	53	-44	-35	-21	-15	-12	N/A	N/A
Reduction, %											
Compared to											
Soybean	281	190	144	117	85	62	35	25	21	0	370
Compared to											
LSD	-19	-38	-48	-54	-61	-66	-71	-73	-74	-79	0

284	Table SI-S15.	Without GTW	Waste Management	t Scenario for	r Fossil (Cumulative Energy

Lipid Content	GTW 2%	GTW 3%	GTW 4%	GTW 5%	GTW 7%	GTW 10%	GTW 20%	GTW 30%	GTW 40%	Soy- bean	LSD
Fossil CED,	4/0	J /0	4 /0	370	//0	10 /0	20 /0	30 /0	40 /0	Dean	LSD
MJ/MJ-fuel											
Pre-treatment	0.51	0.34	0.25	0.20	0.14	0.10	0.05	0.03	0.02	0.11	0.08
Fuel Production	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.14	0.13
Vehicle											
Operation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00
Total	0.79	0.62	0.54	0.48	0.43	0.38	0.33	0.32	0.31	0.26	1.21
Percent											
Contribution, %											
Pre-treatment	64	54	47	41	33	26	15	10	7	44	7
Fuel Production	36	46	53	59	67	74	85	90	93	56	11
Vehicle											
Operation	0	0	0	0	0	0	0	0	0	0	83
Reduction, %											
Compared to											
Soybean	207	141	108	89	66	49	29	23	19	0	370
Compared to LSD	-35	-49	-56	-60	-65	-68	-72	-74	-75	-79	0

286 Carbon Monoxide

285

287 The carbon monoxide (CO) emissions were determined for the GTW-biodiesel process from 2-

288 40% lipid content and compared to the soybean-biodiesel process and LSD process shown in

Example 289 Figure SI-S6.

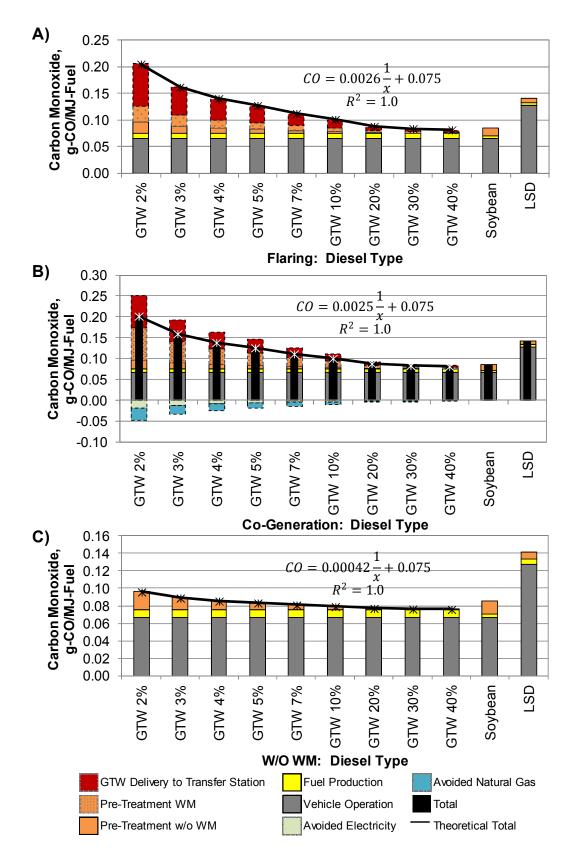


Figure SI-S6. Carbon Monoxide Complete Emissions Parametric Study of GTW-Biodiesel Compared to Soybean-biodiesel and LSD A) Flaring landfill gas, B) Co-generation of landfill gas, and C) without GTW waste management. The stacked bars represent GTW-biodiesel stages: delivery of GTW to transfer station (red), pre-treatment WM (orange with blue dots), pre-treatment without WM (orange), fuel production (yellow), vehicle operation (gray), avoided electricity production from co-generation (light green), and avoided natural gas from cogeneration (teal). The total CO (black bar) and modeled curve (black line) are also shown.

The following tables show the CO emissions by process stage, the percent contribution of each process stage, and the percent reduction compared to soybean-biodiesel and LSD for each of the waste scenarios.

302 Table SI-S16. Landfill Gas Flaring Scenario for Carbon Monoxide Emissions

GTW 2%	GTW 3%	GTW 4%	GTW 5%	GTW 7%	GTW 10%	GTW 20%	GTW 30%	GTW 40%	Soy- bean	LSD
						_ •				
0.079	0.053	0.039	0.032	0.022	0.016	0.008	0.005	0.004	N/A	N/A
0.030	0.020	0.015	0.012	0.009	0.006	0.003	0.002	0.001	N/A	N/A
	0.014	0.011		0.006				0.001	0.014	0.008
0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.004	0.005
0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.128
0.206	0.162	0.140	0.127	0.112	0.101	0.088	0.083	0.081	0.085	0.141
						_		_		
38	33	28	25	20	16	9	6	5	N/A	N/A
10	0	0	-	-						
10	9	8	7	5	4	2	2	l	N/A	N/A
1.5	10	1.1	0	0	ſ	2	2	1	17	C
										6
4	5	6	7	8	9	10	11	11	5	4
20	4.1	47	50	50			0.0	0.2	70	00
32	41	47	52	59	66	/6	80	82	/8	90
142	90	65	49	32	18	3	-2	-5	0	66
46	15	-1	-10	-21	-29	-38	-41	-43	-40	0
	0.079 0.030 0.021 0.009 0.066 0.206 38 10 15 4 32 142	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

305 Table SI-S17. Landfill Gas Co-Generation Scenario for Carbon Monoxide Emission	305	Table SI-S17.	Landfill	Gas Co-Genera	ation Scenario	for Carbon	Monoxide Emissions
---	-----	---------------	----------	---------------	----------------	------------	--------------------

Diesel Type	GTW 2%	GTW 3%	GTW 4%	GTW 5%	GTW 7%	GTW 10%	GTW 20%	GTW 30%	GTW 40%	Soy- bean	LSD
Carbon Monoxia		070	170	570	/ /0	1070	2070	0070	1070	bcan	LOD
g-CO/MJ-fuel	,										
Delivery to											
Transfer											
Station	0.079	0.053	0.039	0.032	0.022	0.016	0.008	0.005	0.004	N/A	N/A
Pre-treatment											
WM	0.076	0.051	0.038	0.030	0.022	0.015	0.007	0.005	0.004	N/A	N/A
Pre-treatment											
w/o WM	0.021	0.014	0.011	0.008	0.006	0.004	0.002	0.001	0.001	0.014	0.008
Fuel											
Production	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.004	0.005
Vehicle											
Operation	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.128
Avoided											
Electricity	-0.018	-0.012	-0.009	-0.007	-0.005	-0.004	-0.002	-0.001	-0.001	N/A	N/A
Avoided											
Natural Gas	-0.031	-0.020	-0.015	-0.012	-0.009	-0.006	-0.003	-0.002	-0.002	N/A	N/A
Total	0.203	0.160	0.139	0.126	0.111	0.100	0.087	0.083	0.081	0.085	0.141
<i>Contribution,</i> % Delivery to											/
Transfer Station	39	33	28	25	20	16	9	6	5	N/A	N/2
Pre-treatment							-			(-	/
WM	38	32	27	24	19	15	8	6	4	N/A	N/.
Pre-treatment	10	0	0	-	-		•	•	1	17	
w/o WM	10	9	8	7	5	4	2	2	1	17	
Fuel Production	4	5	6	7	8	9	10	11	11	5	
Vehicle											
Operation	33	41	48	53	60	66	76	80	82	78	9
Avoided											
Electricity	-9	-8	-7	-6	-5	-4	-2	-1	-1	N/A	N/.
Avoided				10				-	-	2.5/1	
Natural Gas	-15	-13	-11	-10	-8	-6	-4	-2	-2	N/A	N/.
<i>Reduction, %</i> Compared to											
Soybean	139	88	63	48	31	18	3	-2	-5	0	66
Compared to LSD	44	13	-2	-11	-21	-29	-38	-41	-43	-40	0

308	Table SI-S18.	Without GTW Waste Management Scenario for Carbon Monoxide Emissions

Diesel Type 2% 3% 4% 5% 7% 10% 20% 30% 40% bean LSD Carbon Monoxide, g- CO/MJ-fuel CO/MJ-fuel 0.021 0.014 0.011 0.008 0.006 0.004 0.002 0.001 0.011 0.008 Fuel Production 0.009 0.001 0.111 11	D: 17	GTW	GTW	GTW	GTW	GTW	GTW	GTW	GTW	GTW	Soy-	LCD
Fuel Production 0.009 0.005 0.005 Vehicle Operation 9 10 10 11 11 11 11 12 5 4 Vehicle Operation 69 74 77 79 82 84 86 87 87 78 90 Reduction, % Co	Carbon Monoxide, g-	2%	3%	4%	5%	/%	10%	20%	30%	40%	Dean	LSD
Vehicle Operation 0.066 0.085 0.141 Percent Contribution, % Pre-treatment 22 16 12 10 7 5 3 2 1 17 6 Fuel Production 9 10 10 11 11 11 11 12 5	Pre-treatment	0.021	0.014	0.011	0.008	0.006	0.004	0.002	0.001	0.001	0.014	0.008
Operation 0.066 0.076 0.076 0.076 0.085 0.141 Percent Contribution, % Pre-treatment 22 16 12 10 7 5 3 2 1 17 6 Fuel Production 9 10 10 11 11 11 11 12 5 4 Operation 69 74 77 79 82 84 86 <	Fuel Production	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.004	0.005
Total 0.096 0.089 0.086 0.083 0.081 0.079 0.077 0.076 0.076 0.085 0.141 Percent Contribution, % Pre-treatment 22 16 12 10 7 5 3 2 1 17 6 Fuel Production 9 10 10 11 11 11 12 5 4 Vehicle Operation 69 74 77 79 82 84 86 87 87 78 90 Reduction, % Compared to Soybean 13 5 1 -2 -5 -7 -9 -10 -11 0 66	Vehicle											
Percent Contribution, % Pre-treatment 22 16 12 10 7 5 3 2 1 17 6 Fuel Production 9 10 10 11 11 11 12 5 4 Vehicle 0 77 79 82 84 86 87 87 78 90 Reduction, % Compared to 5 1 -2 -5 -7 -9 -10 -11 0 66 Compared to 5 1 -2 -5 -7 -9 -10 -11 0 66	Operation	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.128
Contribution, % Pre-treatment 22 16 12 10 7 5 3 2 1 17 6 Fuel Production 9 10 10 11 11 11 11 12 5 4 Vehicle 0 0 77 79 82 84 86 87 87 78 90 Reduction, % Compared to 3 5 1 -2 -5 -7 -9 -10 -11 0 66	Total	0.096	0.089	0.086	0.083	0.081	0.079	0.077	0.076	0.076	0.085	0.141
Pre-treatment 22 16 12 10 7 5 3 2 1 17 6 Fuel Production 9 10 10 10 11 11 11 11 12 5 4 Vehicle 0 69 74 77 79 82 84 86 87 87 78 90 Reduction, % Compared to Soybean 13 5 1 -2 -5 -7 -9 -10 -11 0 66 Compared to 5 1 -2 -5 -7 -9 -10 -11 0 66												
Fuel Production 9 10 10 11 11 11 11 12 5 4 Vehicle 0 69 74 77 79 82 84 86 87 87 78 90 Reduction, % Compared to 5 1 -2 -5 -7 -9 -10 -11 0 66 Compared to 5 1 -2 -5 -7 -9 -10 -11 0 66												
Vehicle Operation 69 74 77 79 82 84 86 87 87 78 90 Reduction, % Compared to Soybean 13 5 1 -2 -5 -7 -9 -10 -11 0 66 Compared to 5 1 -2 -5 -7 -9 -10 -11 0 66	Pre-treatment	22	16	12	10	7	5	3	2	1	17	6
Operation 69 74 77 79 82 84 86 87 87 78 90 Reduction, % Compared to Soybean 13 5 1 -2 -5 -7 -9 -10 -11 0 66 Compared to Compared to	Fuel Production	9	10	10	10	11	11	11	11	12	5	4
Reduction, % Compared to Soybean 13 5 1 -2 -5 -7 -9 -10 -11 0 66 Compared to Compared t		60			-		.	0.6	~ -	~ -	-0	
Compared to Soybean 13 5 1 -2 -5 -7 -9 -10 -11 0 66 Compared to Compare to Compare to	Operation	69	74	77	79	82	84	86	87	87	78	90
Compared to	Compared to	13	5	1	-2	-5	-7	-9	-10	-11	0	66
-									- •		·	
	-	-32	-37	-39	-41	-43	-44	-45	-46	-46	-40	0

310 *Particulate matter*

311 The particulate matter (PM) emissions were determined for the GTW-biodiesel process from 2-

312 40% lipid content and compared to the soybean-biodiesel process and LSD process shown in

313 Figure SI-S7.

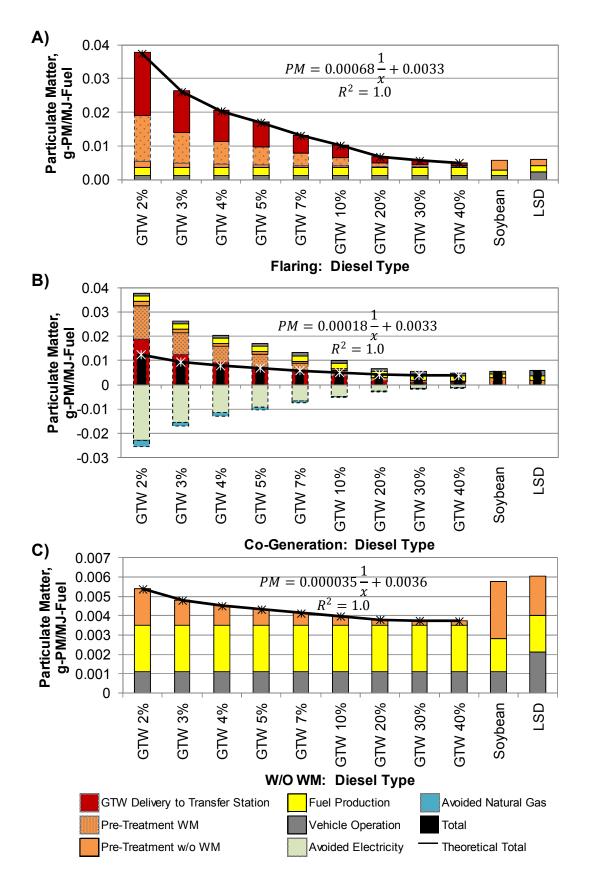


Figure SI-S7. Particulate Matter Complete Parametric Study of GTW-Biodiesel Compared to Soybean-biodiesel and LSD for A) Flaring landfill gas, B) Co-generation of landfill gas, and C) without GTW waste management. The stacked bars represent GTW-biodiesel stages: delivery of GTW to transfer station (red), pre-treatment WM (orange with blue dots), pre-treatment without WM (orange), fuel production (yellow), vehicle operation (gray), avoided electricity production from co-generation (light green), and avoided natural gas from co-generation (teal). The total PM (black bar) and modeled curve (black line) are also shown.

The following tables show the PM emissions by process stage, the percent contribution of each process stage, and the percent reduction compared to soybean-biodiesel and LSD for each of the waste scenarios.

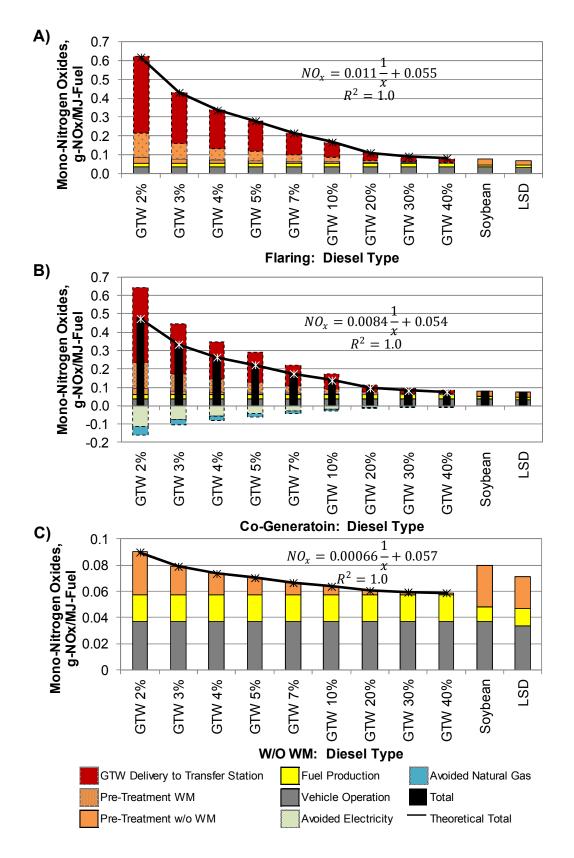
326	Table SI-S19.	Landfill Gas Fla	ring Scenario	for Particulate	Matter Emissions

Diesel Types	GTW 2%	GTW 3%	GTW 4%	GTW 5%	GTW 7%	GTW 10%	GTW 20%	GTW 30%	GTW 40%	Soy- bean	LSD
Particulate Matter, g-PM/MJ-Fuel											
Delivery to Transfer Station	0.019	0.012	0.009	0.007	0.005	0.004	0.002	0.001	0.001	N/A	N/A
Pre-treatment WM	0.014	0.009	0.007	0.005	0.004	0.002	0.001	0.001	0.000	N/A	N/A
Pre-treatment w/o WM	0.002	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.003	0.001
Fuel Production Vehicle	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Operation	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002
Total Percent Contribution, %	0.038	0.026	0.021	0.017	0.013	0.010	0.007	0.006	0.005	0.006	0.006
Delivery to Transfer Station	50	48	46	44	40	37	27	22	18	N/A	N/A
Pre-Treatment WM	36	34	32	31	28	24	16	11	7	N/A	N/A
Pre-Treatment w/o WM	5	5	5	5	5	5	4	4	4	52	33
Fuel Production	6	9	12	14	18	23	36	43	48	29	31
Vehicle Operation	3	4	5	7	9	11	17	20	23	19	35
<i>Reduction, %</i> Compared to Soybean	553	354	254	195	128	76	16	-4	-14	0	5
Compared to LSD	523	334	238	195	117	68	10	-8	-18	-5	0

Lipid Content	GTW 2%	GTW 3%	GTW 4%	GTW 5%	GTW 7%	GTW 10%	GTW 20%	GTW 30%	GTW 40%	Soy- bean	LSD
Carbon	g-										
Transfer Station	0.019	0.012	0.009	0.007	0.005	0.004	0.002	0.001	0.001	N/A	N/A
Pre-treatment WM	0.014	0.009	0.007	0.005	0.004	0.002	0.001	0.001	0.000	N/A	N/A
Pre-treatment w/o WM	0.002	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.003	0.002
Fuel Production	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Vehicle Operation	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002
Avoided Electricity	-0.023	-0.015	-0.011	-0.009	-0.006	-0.005	-0.002	-0.002	-0.001	N/A	N/A
Avoided Natural Gas	-0.003	-0.002	-0.001	-0.001	-0.001	-0.001	0.000	0.000	0.000	N/A	N/A
Total	0.012	0.009	0.008	0.007	0.006	0.005	0.004	0.004	0.004	0.006	0.006
	150	133	119	108	90	73	44	31	24	N/A	N/A
Transfer Station Pre-	150	133	119	108	90	73	44	31	24	N/A	N/A
Treatment WM	109	96	85	76	63	48	25	15	10	N/A	N/A
Pre- Treatment w/o WM	15	14	13	12	11	9	7	6	5	52	33
Fuel Production	19	25	30	34	40	47	57	62	<u>5</u>	29	31
Vehicle Operation	9	12	14	16	19	22	27	29	30	19	35
Avoided Electricity	-182	-161	-145	-131	-109	-89	-54	-39	-31	N/A	N/A
Avoided Natural Gas	-21	-18	-16	-15	-12	-10	-6	-4	-3	N/A	N/A
<i>Reduction, %</i> Compared to Soybean	116	63	36	20	3	-12	-28	-33	-36	0	5
Compared to LSD	106	55	30	14	-2	-16	-31	-36	-39	-5	0

329 Table SI-S20. Landfill Gas Co-Generation Scenario for Particulate Matter Emissions

Diesel Type	GTW 2%	GTW 3%	GTW 4%	GTW 5%	GTW 7%	GTW 10%	GTW 20%	GTW 30%	GTW 40%	Soy- bean	LSD
Particulate Matter, g-PM/MJ-fuel											
Delivery to Transfer Station	0.019	0.012	0.009	0.007	0.005	0.004	0.002	0.001	0.001	N/A	N/A
Pre-treatment	0.002	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.003	0.002
Fuel Production	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Vehicle Operation	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002
Total	0.005	0.005	0.005	0.004	0.004	0.004	0.004	0.004	0.004	0.006	0.006
<i>Percent</i> <i>Contribution</i> , % Pre-treatment	35	27	22	19	15	12	8	6	5	52	33
					58		63				
Fuel Production Vehicle Operation	<u>44</u> 21	<u>49</u> 23	53 25	<u>55</u> 26	<u>38</u> 27	60 28	30	<u>64</u> 30	<u>64</u> 30	29 19	<u>31</u> 35
<i>Reduction, %</i> Compared to Soybean	-7	-17	-22	-25	-29	-31	-34	-35	-36	0	5
Compared to LSD	-11	-17	-22	-23	-32	-34	-37	-38	-39	-5	0


	332	Table SI-S21.	Without GTW Waste Management Scenario for Particulate Matter Emi	ssions
--	-----	---------------	--	--------

334 Mono-Nitrogen Oxide

335 The mono-nitrogen oxide (NO_x) emissions were determined for the GTW-biodiesel process

336 from 2-40% lipid content and compared to the soybean-biodiesel process and LSD process

337 shown in Figure SI-S8.

Figure SI-S8. Mono-nitrogen Oxide Complete Parametric Study of GTW-Biodiesel Compared to Soybean-biodiesel and LSD for A) Flaring landfill gas, B) Co-generation of landfill gas, and C) without GTW waste management. The stacked bars represent GTW-biodiesel stages: delivery of GTW to transfer station (red), pre-treatment WM (orange with blue dots), pretreatment without WM (orange), fuel production (yellow), vehicle operation (gray), avoided electricity production from co-generation (light green), and avoided natural gas from cogeneration (teal). The total NOx (black bar) and modeled curve (black line) are also shown.

The following tables show the NOx emissions by process stage, the percent contribution of each process stage, and the percent reduction compared to soybean-biodiesel and LSD for each of the waste scenarios.

	GTW	Soy-									
Diesel Type	2%	3%	4%	5%	7%	10%	20%	30%	40%	bean	LSD
Mono-nitrogen Oxide, g-NOx/MJ-Fuel											
Delivery to Transfer Station	0.406	0.271	0.203	0.162	0.115	0.081	0.040	0.026	0.019	N/A	N/A
Pre-treatment WM	0.128	0.084	0.062	0.049	0.035	0.023	0.010	0.006	0.004	N/A	N/A
Pre-treatment w/o WM	0.033	0.022	0.017	0.013	0.009	0.007	0.003	0.002	0.002	0.032	0.025
Fuel Production	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.011	0.013
Vehicle Operation	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.033
Total	0.625	0.434	0.339	0.282	0.217	0.168	0.110	0.091	0.082	0.080	0.071
Percent Contribution, % Delivery to Transfer Station	65	62	60	58	53	48	36	29	24	N/A	N/A
Pre-treatment WM	20	19	18	17	16	14	9	6	4	N/A	N/A
Pre-treatment w/o WM	5	5	5	5	4	4	3	2	2	40	34
Fuel Production	3	5	6	7	9	12	18	22	25	14	19
Vehicle Operation	6	8	11	13	17	22	33	40	45	46	47
<i>Reduction, %</i> Compared to											
Soybean	684	445	325	254	172	110	39	15	3	0	-10
Compared to LSD	774	507	374	294	203	134	54	28	14	11	0

350 Table SI-S22. Landfill Gas Flaring Scenario for Mono-nitrogen Oxide Emissions	350	Table SI-S22.	Landfill Gas Flaring Scenario fo	or Mono-nitrogen Oxide Emissions
--	-----	---------------	----------------------------------	----------------------------------

353	Table SI-S23.	Landfill Gas	Co-Generation	Scenario for	r Mono-nitrogen	Oxide Emissions
					0	

Diesel Type	GTW 2%	GTW 3%	GTW 4%	GTW 5%	GTW 7%	GTW 10%	GTW 20%	GTW 30%	GTW 40%	Soy- bean	LSD
Mono-nitrogen	•	•			•	/•	/ •	/•	/•		_~2
Oxide,											
g-NOx/MJ-Fuel	!										
Delivery to											
Transfer											
Station	0.406	0.271	0.203	0.162	0.115	0.081	0.040	0.026	0.019	N/A	N/A
Pre-treatment											
WM	0.142	0.094	0.070	0.055	0.039	0.026	0.012	0.007	0.004	N/A	N/A
Pre-treatment											
w/o WM	0.033	0.022	0.017	0.013	0.009	0.007	0.003	0.002	0.002	0.032	0.025
Fuel											
Production	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.011	0.013
Vehicle	· · · · -			· · · · -	· · · · -		· · · · -	· · · · -	· · · · -		
Operation	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.033
Avoided	0 1 1 2	0.075	0.050	0.045	0.022	0.000	0.011	0.007	0.007		
Electricity	-0.112	-0.075	-0.056	-0.045	-0.032	-0.022	-0.011	-0.007	-0.006	N/A	N/A
Avoided Natural Gas	0.049	0.022	0.024	0.010	0.014	0.010	0.005	0.002	0.002	NT/A	NT/A
	-0.048	-0.032	-0.024	-0.019	-0.014	-0.010	-0.005	-0.003	-0.002	N/A	N/A
Total	0.479	0.337	0.266	0.223	0.175	0.138	0.096	0.082	0.074	0.080	0.071
Percent											
Contribution,											
%											
Delivery to											
Transfer	o -					-			•		
Station	85	80	76	73	66	58	42	32	26	N/A	N/A
Pre-treatment	•	• •	•			10					
WM	30	28	26	25	22	19	12	8	6	N/A	N/A
Pre-treatment	-	-	-		-	-	2	2	~	40	2.4
w/o WM	7	7	6	6	5	5	3	3	2	40	34
Fuel	Α	r	0	0	10	15	21	25	27	1 /	10
Production Vehicle	4	6	8	9		15	21	25	27	14	19
Operation	8	11	14	17	21	27	39	45	50	46	47
Avoided	0	11		1 /	<u></u>	<u> </u>		43	30	40	4/
Electricity	-23	-22	-21	-20	-18	-16	-12	-9	-8	N/A	N/A
Avoided	-23	-22	-21	-20	-10	-10	-12	-7	-0	1 N/ /A	1N/A
Natural Gas	-10	-9	-9	-9	-8	-7	-5	-4	-3	N/A	N/A
	-10	-)	- 7	-7	-0	- /	-5	-4	-5	1 N/ / N	1 N/ PA
Reduction, %											
Compared to	501	222	224	100	100	74	20	2	1	0	1.0
Soybean	501	323	234	180	120	74	20	2	-6	0	-10
Compared to	E70	271	272	212	1 45	0.2	2.4	1 /	٨	1 1	•
LSD	570	371	272	212	145	93	34	14	4	11	0

Diesel Type	GTW 2%	GTW 3%	GTW 4%	GTW 5%	GTW 7%	GTW 10%	GTW 20%	GTW 30%	GTW 40%	Soy- bean	LSD
Mono-nitrogen Oxides, g-NOx/MJ-fuel											
Pre-treatment	0.033	0.022	0.017	0.013	0.009	0.007	0.003	0.002	0.002	0.032	0.025
Fuel Production	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.011	0.013
Vehicle Operation	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.033
Total	0.090	0.079	0.074	0.070	0.067	0.064	0.060	0.059	0.059	0.080	0.071
Percent Contribution, %											
Pre-treatment	37	28	22	19	14	10	5	4	3	40	34
Fuel Production Vehicle Operation	22 41	26 47	27 50	29 52	<u> </u>	<u>32</u> 58	<u>34</u> 61	<u>34</u> 62	<u>35</u> 63	<u>14</u> 46	<u>19</u> 47
<i>Reduction, %</i> Compared to Soybean	13	0	-7	-12	-16	-20	-24	-25	-26	0	-10
Compared to LSD	26	11	3	-1	-7	-11	-15	-17	-18	11	0

356 **Table SI-S24.** Without Waste Management Scenario for Mono-nitrogen Oxide Emissions

357

358 Sulfur Oxides

The sulfur oxide (SO_x) emissions were determined for the GTW-biodiesel process from 2-40% lipid content and compared to the soybean-biodiesel process and LSD process shown in Figure SI-S9. The soybean-biodiesel pre-treatment dominates where soybean production accounts for 47% of total emissions due to the use of sulfuric acid in the production of phosphoric acid (P₂O₅) applied as a fertilizer. Soybean-biodiesel combustion does not have SO_x emissions because the feedstock/fuel does not contain sulfur.

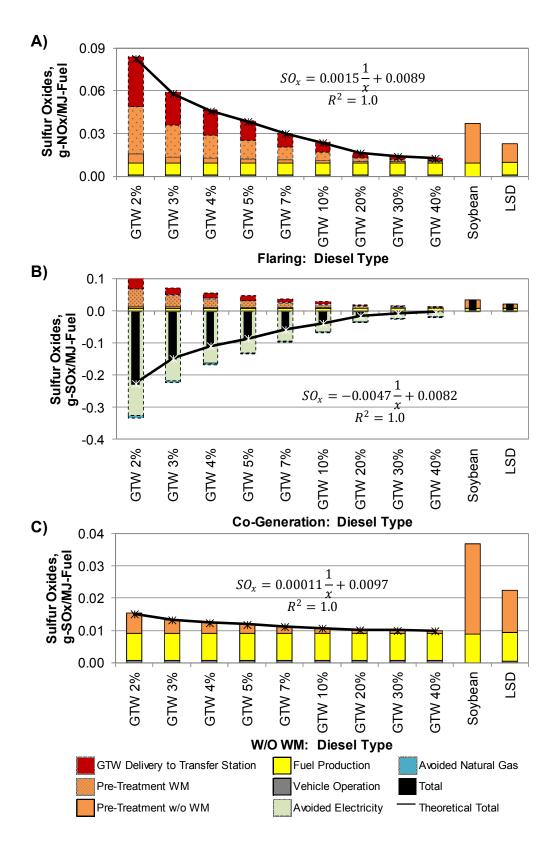


Figure SI-S9. Sulfur Oxide Complete Parametric Study of GTW-Biodiesel Compared to Soybean-biodiesel and LSD for A) Flaring landfill gas, B) Co-generation of landfill gas, and C) without GTW waste management. The stacked bars represent GTW-biodiesel stages: delivery of GTW to transfer station (red), pre-treatment WM (orange with blue dots), pre-treatment without WM (orange), fuel production (yellow), vehicle operation (gray), avoided electricity production from co-generation (light green), and avoided natural gas from co-generation (teal). The total SOx (black bar) and modeled curve (black line) are also shown.

The following tables show the SOx emissions by process stage, the percent contribution of each process stage, and the percent reduction compared to soybean-biodiesel and LSD for each of the waste scenarios.

378	Table SI-S25.	Landfill Gas Flaring Scenario for Sulfur Oxide Em	issions

	GTW	Soy-									
Diesel Type	2%	3%	4%	5%	7%	10%	20%	30%	40%	bean	LSD
Sulfur Oxides,											
g-SOx/MJ-Fuel											
Delivery to										4 .	/ .
Transfer Station	0.035	0.023	0.017	0.014	0.010	0.007	0.003	0.002	0.002	N/A	N/A
Pre-treatment										4 .	/ .
WM	0.033	0.022	0.016	0.013	0.009	0.006	0.003	0.001	0.001	N/A	N/A
Pre-treatment											
w/o WM	0.006	0.004	0.003	0.003	0.002	0.002	0.001	0.001	0.001	0.028	0.013
Fuel Production	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.009	0.009
Vehicle											
Operation	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.001
Total	0.084	0.059	0.046	0.039	0.030	0.024	0.016	0.014	0.012	0.037	0.022
Percent											
Contribution, %											
Delivery to											
Transfer Station	42	40	38	36	33	29	21	16	13	N/A	N/A
Pre-treatment											
WM	40	38	35	33	30	25	16	10	6	N/A	N/A
Pre-treatment											
w/o WM	7	7	7	7	7	7	7	7	7	76	58
Fuel Production	10	14	18	22	28	35	51	61	67	24	39
Vehicle											
Operation	1	1	2	2	3	3	5	6	6	0	2
Reduction, %											
Compared to											
Soybean	127	59	25	5	-18	-36	-56	-63	-66	0	-39
Compared to											
LSD	272	161	105	72	34	5	-28	-39	-45	64	0

381 Table SI-S26. Landfill Gas Co-Generation Scenario for Sulfur Oxide Emissions

Lipid Content	GTW 2%	GTW 3%	GTW 4%	GTW 5%	GTW 7%	GTW 10%	GTW 20%	GTW 30%	GTW 40%	S
Sulfur Oxides,	2/0	J /0	4 /0	370	//0	10/0	20 /0	30 /0	40 /0	3
g-SOx/MJ-Fuel										
Delivery to										
Transfer Station	0.035	0.023	0.017	0.014	0.010	0.007	0.003	0.002	0.002	Ν
Pre-treatment	0.055	0.025	0.017	0.011	0.010	0.007	0.005	0.002	0.002	1
WM	0.054	0.036	0.026	0.021	0.015	0.010	0.005	0.003	0.002	Ν
Pre-treatment										
w/o WM	0.006	0.004	0.003	0.003	0.002	0.002	0.001	0.001	0.001	0
Fuel Production	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0
Vehicle										
Operation	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0
Avoided										
Electricity	-0.325	-0.216	-0.162	-0.130	-0.093	-0.065	-0.032	-0.022	-0.016	Ν
Avoided										
Natural Gas	-0.008	-0.005	-0.004	-0.003	-0.002	-0.002	-0.001	-0.001	0.000	N
Total	-0.229	-0.150	-0.110	-0.086	-0.059	-0.039	-0.015	-0.007	-0.003	0
Percent										
Contribution, %										
Delivery to										
Transfer Station	-15	-15	-16	-16	-17	-18	-23	-31	-52	N
Pre-Treatment										
WM	-24	-24	-24	-24	-25	-26	-30	-38	-57	N
Pre-Treatment							0	10	~-	_
w/o WM	-3	-3	-3	-3	-4	-4	-8	-13	-27	7
Fuel Production	4	-6	-8	-10	-14	-21	-55	-117	-262	24
Vehicle										
Operation	0	-1	-1	-1	-1	-2	-5	-11	-24	0
Avoided										
Electricity	142	145	147	150	157	167	216	303	510	N
Avoided							_			
Natural Gas	4	4	4	4	4	4	5	8	13	N
Reduction, %										
Compared to	700	50 7	200	225	0(1	007	1 4 1	110	100	~
Soybean	-722	-507	-399	-335	-261	-205	-141	-119	-109	0
Compared to	1110	766	500	40.4	2(2	070	167	120	114	~
LSD	-1118	-766	-590	-484	-363	-273	-167	-132	-114	6

384	Table SI-S27.	Without GTW Wa	ste Management	Scenario fo	r Sulfur (Oxide Emissions

Diesel Type	GTW 2%	GTW 3%	GTW 4%	GTW 5%	GTW 7%	GTW 10%	GTW 20%	GTW 30%	GTW 40%	Soy- bean	LSD
Sulfur Oxides, g-SOx/MJ-fuel											
Pre-treatment	0.006	0.004	0.003	0.003	0.002	0.002	0.001	0.001	0.001	0.028	0.013
Fuel Production	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.009	0.009
Vehicle Operation	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.001
Total	0.015	0.013	0.012	0.012	0.011	0.011	0.010	0.010	0.010	0.037	0.022
Percent Contribution, %	4.1	22	27	24	10	17	11	10	0	76	50
Pre-treatment	41	32	27	24	19	16	11	10	9	76	58
Fuel Production Vehicle Operation	54 5	62 6	67 6	70 6	74 7	77 7	<u>81</u> 8	<u>83</u> 8	<u>84</u> 8	24 0	39 2
<i>Reduction, %</i> Compared to Soybean	-58	-64	-66	-68	-69	-71	-72	-73	-73	0	-39
Compared to LSD	-32	-40	-44	-47	-50	-52	-54	-55	-56	64	0

386 Sensitivity of model results to Percent FFA Composition of GTW Lipids

387 GTW lipid composition is also variable. In this model, the assumed free fatty acid content 388 (%FFA) was high which was based off of initial samples of GTW lipids received in the 389 In the longitudinal study, the average GTW lipid content was approximately laboratory. 80%FFA³. Therefore, a preliminary analysis was performed to determine the change in GWP₁₀₀. 390 391 GTW lipids composition was assumed to be 80% oleic acid and 20% triolein. The triolein was 392 not reacted into biodiesel since the process model does not include transesterification. The 393 triolein remains as the residual co-product, "bio-bunker," in the distillation process. The life cycle inventory was updated for this process and GWP₁₀₀ was determined. Lipid contents of 5% 394 395 and 30% containing 80%FFA were compared to the consequential LCA approach for 5% and 396 30% lipid contents shown in Table SI-S10.

Table SI-S28. Comparison of predicted GWP₁₀₀ from consequential LCA for low FFA GTW-

	GWP ₁₀₀ from Scenario	m Low FFA	GWP ₁₀₀ from Scenario	n High FFA	Ratio of Low FFA to High FFA			
	5% Lipids	30% Lipids	5% Lipids	30% Lipids	5% Lipids	30% Lipids		
Pre-Treatment	15.2	2.4	12.5	2.0	1.2	1.2		
Fuel Production	16.5	16.5	14.2	14.2	1.2	1.2		
Vehicle								
Operation	4.8	4.8	4.8	4.8	1.0	1.0		
Total	36.4	23.7	31.5	21.0	1.2	1.1		

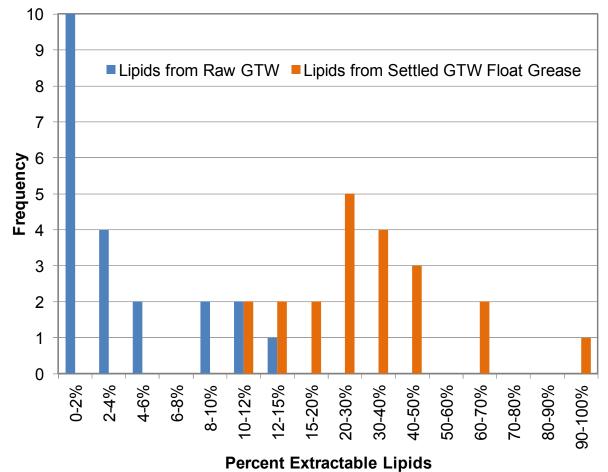
398 biodiesel process and high FFA GTW-biodiesel process.

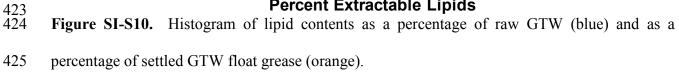
400 The lower FFA does not increase the GWP_{100} significantly for either 5% or 30% lipid contents.

401 The effect of FFA on GWP_{100} is similar to the effect of overall lipid content: the lower the FFA,

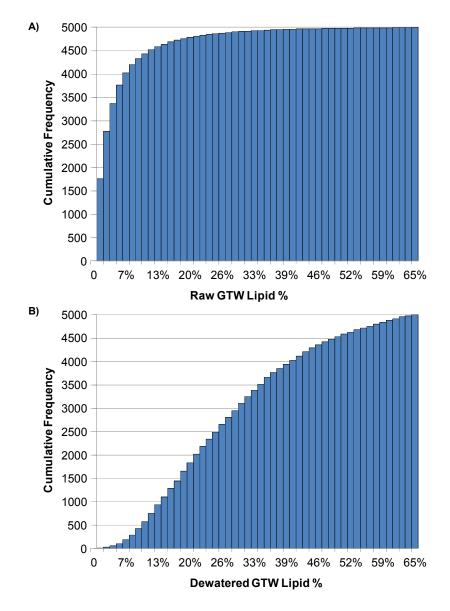
402 the higher the GWP_{100} . The lower FFA is equivalent to having a lower lipid content. For

403 example the 5% lipid content with 80% FFA GWP₁₀₀ is the same as 3.5% lipid content with 95%


404 FFA GWP₁₀₀.


405 Sensitivity to GTW Composition and Monte Carlo Simulation

The Monte Carlo simulation was performed to determine GWP₁₀₀ of both the attributional and consequential LCA approaches for the GTW-biodiesel process. Two lognormal distributions were used based off of raw GTW lipid contents and dewatered GTW lipid contents. The attributional LCA approach included two scenarios based off of landfill gas flaring and cogeneration of landfill gas. The consequential LCA approach omits the impacts associated with GTW waste management and the delivery of GTW to the transfer station because they are nearly the same in the current GTW handling process and the proposed GTW-biodiesel process.


413 Longitudinal Study

The longitudinal study occurred between June 2014 and June 2015. A 500 gal tank was located at a transfer station in New Jersey. The GTW hauler deposited interior grease trap collections into the tank. The GTW typically settled into three layers: 1) floating solids with 417 extractable lipids, 2) wastewater, and 3) sediments. Each layer width was measured and 418 knowing the diameter of the tank, the volume was estimated. The top floating layer was sampled 419 and heated to remove the lipids. The lipid percent was determined as a percent of the total tank 420 volume (lipids from raw GTW) and as a percent of the floating solids layer (lipids from settled 421 GTW float grease or dewatered GTW). The histogram below depicts the frequency of lipid 422 percentages found throughout the longitudinal study.

The data of each raw GTW lipid content and dewatered was fit to a lognormal distribution
using Oracale Crystal Ball. The cumulative distributions for the lipid contents are shown in
Figure SI-S11.

429

Figure SI-S11. Cumulative distributions for lipid content (as a mass fraction) used in the Monte
Carlo simulation for A) Raw GTW and B) Dewatered GTW.

The cumulative distribution for the raw GTW has a faster rate than the dewatered GTW as the median is 2% lipids and 27% for raw GTW and dewatered GTW, respectively. 90% confidence for the raw GTW distribution is 11% lipid content; lipid concentrations less than 10% were shown to have larger environmental impacts. This result emphasizes the need for GTW 436 dewatering since the lipids are concentrated and result in higher lipid contents and therefore437 lower environmental impacts.

438 Model Fitting Data

The environmental impacts were estimated by using the equation derived for the model fitting
and using the distribution of the lipid contents. The equation used to determine "Total Eqn SIS11" was calculated using SI-S11 shown again below:

442
$$\frac{I_{Total}}{E_{Biodiesel}} = \left(\frac{\hat{I}_{PT}}{\phi\Delta\hat{H}_c}\right)\frac{1}{x} + \left(\frac{\hat{I}_{FP}}{\phi\Delta\hat{H}_c} + \frac{\hat{I}_{VO}}{\Delta\hat{H}_c}\right) \quad (\text{SI-S11})$$

443 Where,

444 \hat{I}_i = environmental impact intensity of process stage i per unit mass of input (PT = pre-treatment,

445 FP = fuel production, and VO = vehicle operation: combustion emissions)

446 $\Delta \hat{H}_C$ = heat of combustion of biodiesel (lower heating value, MJ/kg)

447 Φ = yield of fuel production process

448 x = lipid content

449 $E_{Biodiesel}$ = energy content of biodiesel produced

	x (vol)	2%	3%	4%	5%	7%	10%	20%	30%	40%
	1/x (vol)	50.00	33.33	25.00	20.00	14.29	10.00	5.00	3.33	2.50
	1/x (mass)	55.98	37.26	27.93	22.32	15.91	11.10	5.49	3.61	2.68
	kg GTW	1.44	0.96	0.72	0.57	0.41	0.29	0.14	0.09	0.07
	IPT Flare	207	137	103	82	58	40	20	13	9
	Total	226	156	122	101	77	59	39	32	28
Flare	Total Eqn SI-S11	226	156	122	101	77	59	39	32	28
	Theoretical Total (slope*1/x+intercept)	223	155	121	100	77	59	39	32	29
	IPT Co-G	143	95	71	57	40	28	13	8	6
Co-	Total	162	114	90	76	59	47	32	27	25
Gen	Total Eqn SI-S11	162	114	90	76	59	47	32	27	25
	Theoretical Total (slope*1/x+intercept)	161	113	89	75	59	47	32	28	25
	IPT w/o	31	21	16	13	9	6	3	2	1
W/O	Total	50	40	35	31	28	25	22	21	20
W/O WM	Total Eqn SI-S11	50	40	35	31	28	25	22	21	20
,,,,,	Theoretical Total (slope*1/x+intercept)	50	40	34	31	28	25	22	21	20
			density							

Table SI-S29. GWP₁₀₀ Model Fitting Data

			density
IVO	IFP	phi	GTW
4.79	14.19	1.03	1.11

	x (vol)	2%	3%	4%	5%	7%	10%	20%	30%	40%
	1/x (vol)	50.00	33.33	25.00	20.00	14.29	10.00	5.00	3.33	2.50
	1/x (mass)	55.98	37.26	27.93	22.32	15.91	11.10	5.49	3.61	2.68
	kg GTW	1.44	0.96	0.72	0.57	0.41	0.29	0.14	0.09	0.07
	IPT Flare	1.43	0.95	0.71	0.57	0.40	0.28	0.14	0.09	0.06
	Total	1.72	1.24	1.00	0.85	0.69	0.56	0.42	0.37	0.35
Flare	Total Eqn SI-S11	1.71	1.23	0.99	0.84	0.68	0.56	0.41	0.36	0.34
	Theoretical Total (slope*1/x+intercept)	1.70	1.23	0.99	0.85	0.68	0.56	0.42	0.37	0.35
	IPT Co-G	0.70	0.46	0.34	0.27	0.19	0.13	0.06	0.04	0.03
Co-	Total	0.98	0.74	0.63	0.56	0.48	0.42	0.35	0.32	0.31
Gen	Total Eqn SI-S11	0.97	0.74	0.62	0.55	0.47	0.41	0.34	0.31	0.30
Gen	Theoretical Total (slope*1/x+intercept)	0.97	0.74	0.62	0.55	0.48	0.42	0.35	0.32	0.31
	IPT w/o	0.51	0.34	0.25	0.20	0.14	0.10	0.05	0.03	0.02
W/O	Total	0.79	0.62	0.54	0.48	0.43	0.38	0.33	0.32	0.31
W/O WM	Total Eqn SI-S11	0.78	0.61	0.53	0.48	0.42	0.37	0.32	0.31	0.30
	Theoretical Total (slope*1/x+intercept)	0.78	0.62	0.53	0.48	0.43	0.38	0.33	0.32	0.31
	dens	vity								

Table SI-S30. Fossil CED Model Fitting Data

			density
IVO	IFP	phi	GTW
0.00	0.28	1.03	1.11

	x (vol)	2%	3%	4%	5%	7%	10%	20%	30%	40%
	1/x (vol)	50.00	33.33	25.00	20.00	14.29	10.00	5.00	3.33	2.50
	1/x (mass)	55.98	37.26	27.93	22.32	15.91	11.10	5.49	3.61	2.68
_	kg GTW	1.44	0.96	0.72	0.57	0.41	0.29	0.14	0.09	0.07
	IPT Flare	0.131	0.087	0.065	0.052	0.037	0.026	0.013	0.008	0.006
	Total	0.206	0.162	0.140	0.127	0.112	0.101	0.088	0.083	0.081
Flare	Total Eqn SI-S11	0.206	0.162	0.140	0.127	0.112	0.100	0.087	0.083	0.081
	Theoretical Total (slope*1/x+intercept)	0.204	0.161	0.140	0.127	0.112	0.101	0.088	0.083	0.081
	IPT Co-G	0.128	0.445	0.333	0.266	0.190	0.132	0.065	0.043	0.032
Co-	Total	0.203	0.160	0.139	0.126	0.111	0.100	0.087	0.083	0.081
Gen	Total Eqn SI-S11	0.203	0.519	0.408	0.341	0.264	0.207	0.140	0.118	0.106
Gth	Theoretical Total (slope*1/x+intercept)	0.202	0.159	0.138	0.125	0.111	0.100	0.087	0.083	0.081
	IPT w/o	0.021	0.014	0.011	0.008	0.006	0.004	0.002	0.001	0.001
W/O	Total	0.096	0.089	0.086	0.083	0.081	0.079	0.077	0.076	0.076
WM	Total Eqn SI-S11	0.096	0.089	0.085	0.083	0.081	0.079	0.077	0.076	0.076
,,,,,,	Theoretical Total (slope*1/x+intercept)	0.096	0.089	0.086	0.083	0.081	0.079	0.077	0.076	0.076
	IVO IFP phi 0.066 0.0087 1.02	densit GTW 3 1.11	У							

Table SI-S31. Carbon Monoxide Model Fitting Data

	x (vol)	2%	3%	4%	5%	7%	10%	20%	30%	40%
	1/x (vol)	50.00	33.33	25.00	20.00	14.29	10.00	5.00	3.33	2.50
	1/x (mass)	55.98	37.26	27.93	22.32	15.91	11.10	5.49	3.61	2.68
	kg GTW	1.44	0.96	0.72	0.57	0.41	0.29	0.14	0.09	0.07
	IPT Flare	0.03	0.02	0.02	0.01	0.01	0.01	0.00	0.00	0.00
	Total	0.04	0.03	0.02	0.02	0.01	0.01	0.01	0.01	0.00
Flare	Total Eqn SI-S11	0.04	0.03	0.02	0.02	0.01	0.01	0.01	0.01	0.00
	Theoretical Total									
	(slope*1/x+intercept)	0.04	0.03	0.02	0.02	0.01	0.01	0.01	0.01	0.01
	IPT Co-G	0.01	0.41	0.30	0.24	0.17	0.12	0.06	0.04	0.03
Co-	Total	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00
Gen	Total Eqn SI-S11	0.01	0.41	0.31	0.25	0.18	0.12	0.06	0.04	0.03
Gen	Theoretical Total	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00
	(slope*1/x+intercept)									
	IPT w/o	0.002	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000
W/O	Total	0.005	0.005	0.005	0.004	0.004	0.004	0.004	0.004	0.004
WM	Total Eqn SI-S11	0.005	0.005	0.004	0.004	0.004	0.004	0.004	0.004	0.004
,,,,,,	Theoretical Total	0.005	0.005	0.005	0.004	0.004	0.004	0.004	0.004	0.004
	(slope*1/x+intercept)	0.005	0.005	0.005	0.004	0.004	0.004	0.004	0.004	0.004
		lensity								
	1	GTW								
	0.001 0.002 1.03	1.11								

460	Table SI-S32.	Particulate Matter	Model Fitting Data

	x (vol)	2%	3%	4%	5%	7%	10%	20%	30%	40%
	1/x (vol)	50.00	33.33	25.00	20.00	14.29	10.00	5.00	3.33	2.50
	1/x (mass)	55.98	37.26	27.93	22.32	15.91	11.10	5.49	3.61	2.68
	kg GTW	1.44	0.96	0.72	0.57	0.41	0.29	0.14	0.09	0.07
	IPT Flare	0.57	0.38	0.28	0.22	0.16	0.11	0.05	0.03	0.02
	Total	0.62	0.43	0.34	0.28	0.22	0.17	0.11	0.09	0.08
Flare	Total Eqn SI-S11	0.62	0.43	0.34	0.28	0.22	0.17	0.11	0.09	0.08
	Theoretical Total (slope*1/x+intercept)	0.62	0.43	0.34	0.28	0.22	0.17	0.11	0.09	0.08
	IPT Co-G	0.42	0.42	0.31	0.25	0.18	0.12	0.06	0.04	0.03
Co-	Total	0.48	0.34	0.27	0.22	0.18	0.14	0.10	0.08	0.07
Gen	Total Eqn SI-S11	0.48	0.48	0.37	0.31	0.24	0.18	0.12	0.09	0.08
Gen	Theoretical Total (slope*1/x+intercept)	0.47	0.33	0.26	0.22	0.17	0.14	0.10	0.08	0.08
	IPT w/o	0.033	0.022	0.017	0.013	0.009	0.007	0.003	0.002	0.002
W/O	Total	0.090	0.079	0.074	0.070	0.067	0.064	0.060	0.059	0.059
W/O WM	Total Eqn SI-S11	0.090	0.079	0.073	0.070	0.066	0.063	0.060	0.059	0.058
YY IYE	Theoretical Total (slope*1/x+intercept)	0.090	0.079	0.074	0.070	0.067	0.064	0.060	0.059	0.059
	density IVO IFP phi GTW									

	463	Table SI-S33.	Mono-Nitrogen	Oxides Model	Fitting Data
--	-----	---------------	---------------	--------------	--------------

densit IVO IFP phi GTW 0.04 0.02 1.03 1.11

464

	x (vol)	2%	3%	4%	5%	7%	10%	20%	30%	40%
	1/x (vol)	50.00	33.33	25.00	20.00	14.29	10.00	5.00	3.33	2.50
	1/x (mass)	55.98	37.26	27.93	22.32	15.91	11.10	5.49	3.61	2.68
	kg GTW	1.44	0.96	0.72	0.57	0.41	0.29	0.14	0.09	0.07
	IPT Flare	0.07	0.05	0.04	0.03	0.02	0.01	0.01	0.00	0.00
	Total	0.08	0.06	0.05	0.04	0.03	0.02	0.02	0.01	0.01
Flare	Total Eqn SI-S11	0.08	0.06	0.05	0.04	0.03	0.02	0.02	0.01	0.01
	Theoretical Total (slope*1/x+intercept)	0.08	0.06	0.05	0.04	0.03	0.02	0.02	0.01	0.01
	IPT Co-G	-0.24	0.23	0.17	0.14	0.10	0.07	0.03	0.02	0.02
Ca	Total	-0.23	-0.15	-0.11	-0.09	-0.06	-0.04	-0.02	-0.01	0.00
Co- Gen	Total Eqn SI-S11	-0.23	0.24	0.18	0.15	0.11	0.08	0.04	0.03	0.02
	Theoretical Total (slope*1/x+intercept)	-0.23	-0.15	-0.11	-0.09	-0.06	-0.04	-0.02	-0.01	0.00
	IPT w/o	0.006	0.004	0.003	0.003	0.002	0.002	0.001	0.001	0.001
W/O	Total	0.015	0.013	0.012	0.012	0.011	0.011	0.010	0.010	0.010
W/O WM	Total Eqn SI-S11	0.015	0.013	0.012	0.012	0.011	0.011	0.010	0.010	0.010
	Theoretical Total (slope*1/x+intercept)	0.015	0.013	0.012	0.012	0.011	0.011	0.010	0.010	0.010
L	IVO IFP phi 0.001 0.008 1.03	densi GTW 1.11	ity							

466 **Table SI-S34.** Sulfur Oxide Model Fitting Data

467

468 The table below shows the slopes and intercepts used in the analysis.

469 **Table SI-S35.** Equation Slope and Intercept for Model Fitting

	Fla	ring	Co-Gei	neration	w/o WM		
	slope intercept		slope intercept		slope	intercept	
GWP ₁₀₀	4.1	18	2.8	18	0.6	19	
CED	0.028	0.28	0.014	0.28	0.010	0.28	
CO	0.0026	0.075	0.0025	0.075	0.00042	0.075012	
PM	0.00068	0.0033	0.00018	0.0033	0.000035	0.0036	
NOx	0.011	0.055	0.0084	0.054	0.00066	0.057	
SOx	0.0015	0.0089	-0.0047	0.0082	0.00011	0.0097	

470

472 Slope = (y = Total, x = 1/x)*density

⁴⁷¹ Where,

- 473 Intercept = (y = Total, x = 1/x)
- 474 *Monte Carlo Results*

The statistical results of the distributions and Monte Carlo trials are summarized in Table SI-S12; these results include mean, median, standard deviation, minimum, maximum, 10% confidence and 90% confidence. For all data, the percentage of trials that were less than or equal to soybean-biodiesel and low sulfur diesel are shown.

- 479 **Table SI-S36.** Statistical Data from Monte Carlo Simulation Environmental Impacts of GTW-
- 480 Biodiesel

	Mean	Median	Std Dev	Min	Max	10th Percentile	90th Percentile	<= Sov	<= LSD
Lognormal Distribution, %Lipids								v	
Raw GTW	5%	2%	7%	0.15%	64%	0%	11%		
Dewatered GTW	29%	27%	14%	3%	65%	12%	49%		
GWP ₁₀₀ , <i>g-CO₂-eq/MJ-F</i> Raw GTW w/	uel								
Flare	352.10	197.86	418.76	24.64	2719.69	54.86	851.33	0%	24%
Raw GTW w/ Co-Generation	249.79	142.75	290.60	22.54	1892.80	43.51	596.24	1%	34%
Raw GTW w/o WM	69.57	46.17	63.51	19.90	428.67	24.49	145.29	12%	80%
Dewatered GTW w/ Flare	37.15	33.68	11.85	24.56	156.52	26.55	51.54	2%	99%
Dewatered GTW w/ Co- Generation	31.22	28.81	8.22	22.49	114.06	23.87	41.21	20%	100%
Dewatered GTW w/o WM	21.80	21.27	1.80	19.89	39.90	20.19	23.98	95%	100%
Fossil CED, <i>MJ/MJ-Fuel</i> Raw GTW w/ Flare	2.59	1.52	2.90	0.32	18.99	0.53	6.05	0%	41%
Raw GTW w/ Co-Generation	1.41	0.88	1.42	0.30	9.41	0.40	3.09	0%	63%

Raw GTW w/o									
WM	1.10	0.72	1.02	0.30	6.88	0.37	2.32	0%	73%
Dewatered									
GTW w/ Flare	0.41	0.39	0.08	0.32	1.24	0.34	0.51	0%	100%
Dewatered									
GTW w/ Co-									
Generation	0.34	0.33	0.04	0.30	0.74	0.30	0.39	0%	100%
Dewatered									
GTW w/o WM	0.33	0.32	0.03	0.30	0.62	0.30	0.36	0%	100%
Carbon Monoxid	le,								
g-CO/MJ-Fuel									0%
Raw GTW w/									
Flare	0.29	0.19	0.26	0.08	1.78	0.10	0.60	3%	34%
Raw GTW w/									
Co-Generation	0.28	0.19	0.26	0.08	1.74	0.10	0.59	3%	34%
Raw GTW w/o									
WM	0.11	0.09	0.04	0.08	0.35	0.08	0.16	31%	86%
Dewatered									
GTW w/ Flare	0.09	0.08	0.01	0.08	0.16	0.08	0.10	54%	100%
Dewatered									
GTW w/ Co-								/	
Generation	0.09	0.08	0.01	0.08	0.16	0.08	0.10	55%	100%
Dewatered	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1000/	1000/
GTW w/o WM	0.08	0.08	0.00	0.08	0.09	0.08	0.08	100%	100%
Particulate Matte	er,								
g-PM/MJ-Fuel									
Raw GTW w/	0.00	0.02	0.07	0.00	0.45	0.01	0.14	20/	20/
Flare	0.06	0.03	0.07	0.00	0.45	0.01	0.14	2%	3%
Raw GTW w/	0.02	0.01	0.02	0.00	0.12	0.00	0.04	100/	1.00/
Co-Generation	0.02	0.01	0.02	0.00	0.12	0.00	0.04	18%	19%
Raw GTW w/o WM	0.01	0.01	0.00	0.00	0.03	0.00	0.01	61%	64%
Dewatered	0.01	0.01	0.00	0.00	0.05	0.00	0.01	0170	04%
GTW w/ Flare	0.01	0.01	0.00	0.00	0.03	0.00	0.01	47%	54%
Dewatered	0.01	0.01	0.00	0.00	0.03	0.00	0.01	4//0	5470
GTW w/ Co-									
Generation	0.00	0.00	0.00	0.00	0.01	0.00	0.00	98%	99%
Dewatered	0.00	0.00	0.00	0.00	0.01	0.00	0.00	2070	JJ/0
GTW w/o WM	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100%	100%
Mono-Nitrogen (0.00	0.00	0.00	0.00	0.00	0.00	100/0	100/0
g-NOx/MJ-Fuel	SAIUCO,								
Raw GTW w/									
Flare	0.97	0.55	1.15	0.07	7.47	0.16	2.34	1%	0%
Raw GTW w/	~ • > 1			,	,,				0,0
Co-Generation	0.74	0.42	0.86	0.07	5.58	0.13	1.76	1%	0%
	<i></i>	2	0.00	0.07	2.20	~	1.10	1/0	0,0

Raw GTW w/o WM	0.11	0.09	0.07	0.06	0.49	0.06	0.19	42%	29%
Dewatered									
GTW w/ Flare	0.11	0.10	0.03	0.07	0.43	0.08	0.15	15%	0%
Dewatered									
GTW w/ Co-									
Generation	0.09	0.09	0.02	0.07	0.34	0.07	0.12	34%	11%
Dewatered									
GTW w/o WM	0.06	0.06	0.00	0.06	0.08	0.06	0.06	100%	100%
Sulfur Oxides,									
g-SOx/MJ-									
Fuel									
Raw GTW w/		-							
Flare	0.13	0.07	0.15	0.01	0.98	0.02	0.31	25%	10%
Raw GTW w/	0.27	0.00	0.40	2 00	0.00	0.04	0.02	1000/	1000/
Co-Generation	-0.37	-0.20	0.48	-3.08	0.00	-0.94	-0.03	100%	100%
Raw GTW w/o	0.02	0.01	0.01	0.01	0.00	0.01	0.02	020/	700/
WM Demostante 1	0.02	0.01	0.01	0.01	0.08	0.01	0.03	93%	79%
Dewatered GTW w/ Flare	0.02	0.01	0.00	0.01	0.06	0.01	0.02	100%	020/
Dewatered	0.02	0.01	0.00	0.01	0.00	0.01	0.02	100%	93%
GTW w/ Co-									
Generation	-0.01	-0.01	0.01	-0.15	0.00	-0.03	0.00	100%	100%
Dewatered	0.01	0.01	0.01	0.15	0.00	0.05	0.00	100/0	100/0
GTW w/o WM	0.01	0.01	0.00	0.01	0.01	0.01	0.01	100%	100%
	0.01	0.01	0.00	0.01	0.01	0.01	0.01	100/0	1007

482 Comparison to LCA for GTW-biodiesel production by Tu and McDonnell¹²

The GWP₁₀₀ and CED_{Fossil} data for the comparison below was estimated from Figure 6 and 7 in the Tu and McDonnell paper. The lower heating value of 125.2 MJ/gal⁸ was used to convert the Tu and McDonnell data to a MJ of fuel basis. The system boundaries between the analyses are similar; however, this work (Hums et al) contains the combustion of the fuel in a vehicle. The without anaerobic digestion scenario includes the transportation of waste solids to a landfill; however the analysis does not include the landfill gas emissions.

490	Table SI-S37.	Comparison of LCA	results for biodiesel	produced from GTW
-----	---------------	-------------------	-----------------------	-------------------

		GWP ₁₀₀			CED _{Fossil}			
		gCO ₂	eq/MJ	-fuel	MJ/MJ-fuel			
Author	Waste Scenario	avg	5%	95%	avg	5%	95%	
	w/Anaerobic							
Tu/McDonnell	Digestion	12	12	20	0.34	0.30	4.39	
	w/o Anaerobic							
Tu/McDonnell	Digestion	40	20	987	0.60	0.36	13.58	
	Raw GTW: Landfill							
Hums et al	Flare	352	42	1255	2.59	0.44	8.85	
	Raw GTW: Landfill							
Hums et al	Co-gen	250	34	877	1.41	0.36	4.46	
	Raw GTW: No							
Hums et al	Waste Treatment	37	26	59	1.10	0.34	3.30	
	Dewatered GTW:							
Hums et al	Landfill Flare	37	26	59	0.41	0.33	0.56	
	Dewatered GTW:							
Hums et al	Landfill Co-gen	31	23	47	0.34	0.30	0.42	
	Dewatered GTW No							
Hums et al	Waste Treatment	22	20	25	0.33	0.30	0.38	

492

493 SUPPORTING INFORMATION REFERENCES

- Huo, H.; Wang, M.; Bloyd, C.; Putsche, V., Life-Cycle Assessment of Energy and
 Greenhouse Gas Effects of Soybean-Derived Biodiesel and Renewable Fuels. In Argonne
 National Laboratory: 2008.
- Cai, H.; Han, J.; Forman, G.; Divita, V.; Elgowainy, A.; Wang, M., Analysis of
 Petroleum Refining Energy Efficiency of U.S. Refineries. In Argonne National Laboratory:
 2013.
- 500 3. Cairneross, R. A.; Olson, M. S.; Spatari, S., Extraction of Lipids from Wastewater to
- 501 Produce Biofuels: Statistical Variability of Grease Composition and Quantity. In *Unpublished* 502 *Interim Report for WERF*, Drexel University: Philadelphia, PA, 2015.
- 503 4. *Landfilling*; EPA: 2012; pp 1-22.
- 504 5. Jungbluth, N.; Chudacoff, M.; Dauriat, A.; Dinkel, F.; Doka, G.; Faist Emmenegger, M.;
- Gnansounou, E.; Kljun, N.; Schleiss, K.; Spielmann, M.; Stettler, C.; Sutter, J. *Life Cycle Inventories of Bioenergy Data v2.0 (2007)*; Swiss Centre for Life Cycle Inventories: Dübendorf,
- 507 CH, 2007.
- 508 6. Eleazer, W. E.; William S. Odle, I.; Wang, Y.-S.; Barlaz, M. A., Biodegradability of
- 509 Municipal Solid Waste Components in Laboratory-Scale Landfills. *Environmental Science and*
- 510 *Technology* **1997,** *31*, (3), 911-917.
- 511 7. *SimaPro* 8.0.3.14 PhD; PRé Consultants The Netherlands, 2014.
- 512 8. *Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model,*
- 513 Argonne National Laboratory: 2014.

- 514 9. Kocsisova, T.; Cvengros, J.; Lutisan, J., High-temperature esterification of fatty acids
- with methanol at ambient pressure. *European Journal of Lipid Science and Technology* 2005,
 107, (2), 87-92.
- 517 10. Stacy, C. J.; Melick, C. A.; Cairncross, R. A., Esterification of free fatty acids to fatty
- 518 acid alkyl esters in a bubble column reactor for use as biodiesel. *Fuel Processing Technology*

519 **2014**, *124*, (0), 70-77.

- 520 11. Xie, X.; Wang, M.; Han, J., Assessment of fuel-cycle energy use and greenhouse gas
- emissions for Fischer-Tropsch diesel from coal and cellulosic biomass. *Environmental science & technology* 2011, *45*, (7), 3047-53.
- 523 12. Tu, Q.; McDonnell, B. E., Monte Carlo analysis of life cycle energy consumption and
- 524 greenhouse gas (GHG) emission for biodiesel production from trap grease. *Journal of Cleaner*
- 525 *Production* **2015**.