Understanding the Selectivity of a Multi-Channel Fluorescent Probe for Peroxynitrite Over Hypochlorite

Quanjuan Zhang,[†] Na Zhang,[§] Yi-Tao Long,[§] Xuhong Qian^{†,‡} and Youjun Yang^{†,‡,*}

[†] State Key Laboratory of Bioreactor Engineering, [‡] Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, § Department of Chemistry, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China

Page	Content
S 3	ROS and RNS stock solution preparation
	Figure S1. Set-up for Nitric oxide preparation.
S4	Figure S2. Spectral of independently synthesized 1, 2 and 3 and those from titrations.
S5	Figure S3. Formation of 1 from hypochlorite mediated oxidation of PN600.
	Figure S4. Oxidation kinetics of 4a, 4b and PN600 by hypochlorite.
	Figure S5. Dose dependent decrease of 4a, 4b, PN600 and 4c by hypochlorite.
S6	Figure S6. Overlay of blue emissions from peroxynitrite mediated oxidations of 4a, 4b, PN600 and 4c.
	Figure S7. Oxidation of probe 12 by hypochlorite.
S7.	Figure S8. Oxidation of probe 12 by peroxynitrite.
	Figure S9. Oxidation of probe 11 by hypochlorite.
S 8	Figure S10. Oxidation of probe 11 by peroxynitrite.
	Figure S11. Oxidation of probe 14 by peroxynitrite.
S9	Figure S12. Selectivity of probe 14.
S10	Figure S13 . The ¹ H-NMR spectrum of 3 in CD_3OD .
S11	Figure S14. The ¹ H-NMR spectrum of 4a in CDCl ₃ .
S12	Figure S15. The ¹³ C-NMR spectrum of 4a in CDCl ₃ .
S13	Figure S16. The HRMS spectrum of 4a.
S14	Figure S17 . The ¹ H-NMR spectrum of 4c in CDCl ₃ .
S15	Figure S18 . The ¹³ C-NMR spectrum of 4c in CDCl ₃ .
S16	Figure S19. The HRMS spectrum of 4c.
S17	Figure S20 . The ¹ H-NMR spectrum of 7a in CDCl ₃ .
S18	Figure S21 . The ¹³ C-NMR spectrum of 7a in CDCl ₃ .
S19	Figure S22. The HRMS spectrum of 7a.
S20	Figure S23. The ¹ H-NMR spectrum of 7c in CDCl ₃ .
S21	Figure S24 . The ¹³ C-NMR spectrum of 7c in $CDCl_3$.

S22	Figure S25. The HRMS spectrum of 7c.
S23	Figure S26 . The ¹ H-NMR spectrum of 11 in $CDCl_3$.
S24	Figure S27 . The ¹³ C-NMR spectrum of 11 in CDCl ₃ .
S25	Figure S28. The HRMS spectrum of 11.
S26	Figure S29 . The ¹ H-NMR spectrum of 12 in $CDCl_3$.
S27	Figure S30 . The ¹³ C-NMR spectrum of 12 in $CDCl_3$.
S28	Figure S31. The HRMS spectrum of 12.
S29	Figure S32 . The ¹ H-NMR spectrum of 14 in CDCl ₃
S30	Figure S33 . The 13 C-NMR spectrum of 14 in CDCl ₃ .
S31	Figure S34. The HRMS spectrum of 14.
S32	Figure S35 . The ¹ H-NMR spectrum of 19 in $CDCl_3$.
S33	Figure S36 . The ¹ H-NMR spectrum of 21 in $CDCl_3$.
S34	Figure S37 . The ¹³ C-NMR spectrum of 21 in CDCl ₃ .
S35	Figure S38. The HRMS spectrum of 21.
S36	Figure S49 . The ¹ H-NMR spectrum of 23 in CDCl ₃ .
S37	Figure S40 . The ¹³ C-NMR spectrum of 23 in CDCl ₃ .
S38	Figure S41. The HRMS spectrum of 23.

Preparation of stock solutions of various ROS/RNS.

Hypochlorite (CIO⁻) stock solution (50 mM in H₂O) was prepared by diluting commercial NaClO solution in deionized water (pH = 10). The solution concentration was determined by UV-Vis spectroscopy ($\epsilon_{293 \text{ nm}}$ = 350 cm⁻¹M⁻¹).

Peroxynitrite (OONO⁻) stock solution (37 mM in H₂O at pH > 10) was prepared following procedure by Pryor et al. (Anal. Biochem. 1996, 236, 242-249). The solution concentration was determined by UV-Vis spectroscopy ($\varepsilon_{302 \text{ nm}}$ = 1,670 cm⁻¹M⁻¹).

Nitric Oxide (NO) stock solution (1.9 mM in H_2O) was generated by bubbling a stream of nitric oxide gas into deoxygenated deionized H_2O for 15 min. The nitric oxide gas was produced by dropping dilute H_2SO_4 (2 M) solution onto NaNO₂ solid and passed through 5 wt% NaOH solution to remove NO₂.

Figure S1. Setup for preparation of a nitric oxide stock solution. Note: 1) the entire system should be thoroughly deoxygenated with inert gas, i.e. N_2 or Ar; 2) H_2SO_4 solution should be dropped into a vigorously stirring NaNO₂ solution (or onto NaNO₂ solid) very slowly at the very beginning to avoid sudden build-up of internal gas pressure; 3) NaOH solution to wash off NO₂ can be replaced by NaOH pellets; 4) the system should be set up in a fume hood with good ventilation.

Superoxide(O₂⁻) stock solution (50 mM in DMF) was prepared by dissolving solid KO₂ in anhydrous DMF. Presence of H_2O in DMF leads to disproportionation of O_2^{-} .

Hydroxyl radical (HO') was generated *in situ* by addition of an aliquot of $Fe(CIO)_4$ solution (200 mM in H_2O) into a solution containing excess H_2O_2 .

Singlet oxygen (${}^{1}O_{2}$) was generated *in situ* by addition of an aliquot of hypochlorite stock into a solution containing excess H₂O₂.

Hydrogen peroxide (H₂O₂) stock solution (50 mM in H₂O) was prepared by dilution of commercial 30% H_2O_2 solution in deionized H_2O .

Spectral studies

Figure S2. Comparison of fluorescence spectra of independently synthesized **1**, **2** and **3** with those extrapolated from fluorescence titration of probe **PN600** by hypochlorite or peroxynitrite, as a verification of their formation during titration.

Figure S3. Dose dependant decrease of the probe emission upon addition of hypochlorite. *Note: it took similar* amount of hypochlorite (ca. 5-7 equiv.) to consume probe **4a**, **4b** and **PN600**. In comparison, consumption of **4c** require significantly higher dose of hypochlorite. An explanation to this observation is that the oxidation product of probe **4a**, **4b** and **PN600** are not reactive toward hypochlorite and the oxidation production of **4c** is also reactive toward hypochlorite and therefore competes with **4c**.

Figure S4. Excitation spectra monitoring emission at 610 nm, upon addition of an aliquot of hypochlorite into a solution of **PN600**, showing the decrease of excitation of **PN600** with a maximum at 350 nm and increase of excitation of **1** with a maximum at 467 nm as the dose of hypochlorite increases.

Figure S5. Oxidation kinetics of probe 4a, 4b and PN600, upon addition of an aliquot of hypochlorite (5 equiv.).

Figure S6. Overlay of the blue emissions (presumably from **3**) generated upon addition of an aliquot of peroxynitrite stock into a solution of probe **4a**, **4b**, **PN600** and **4c**, respectively. *Note: the presence of other species, which are also excitable by light of 355 nm and emit at longer wavelength than 3, are responsible for the spectral difference in the range of 475 nm to 700 nm.*

Figure S7. Oxidation of probe **12** by hypochlorite. A) Kinetics of the formation of **13**; B) emission spectra of a solution of probe **12**, upon addition of various equivalence of hypochlorite; C) dose dependent emission enhancement at 450 nm; D) a mechanistic explanation to the formation of **13** upon hypochlorite mediated oxidation of probe **12**.

Figure S8. Oxidation of probe **12** by peroxynitrite. A) Kinetics of the formation of **13**; B) emission spectra of a solution of probe **12**, upon addition of various equivalence of peroxynitrite; C) dose dependent emission enhancement at 450 nm; D) a mechanistic explanation to the formation of **13** upon peroxynitrite mediated oxidation of probe **12**.

Figure S9. Oxidation of probe **11** by hypochlorite. A) Kinetics of the formation of **13**; B) emission spectra of a solution of probe **11**, upon addition of various equivalence of hypochlorite; C) dose dependent emission enhancement at 450 nm; D) a mechanistic explanation to the formation of **13** upon hypochlorite mediated oxidation of probe **11**. Note: probe **11** can be oxidized, but to a limited extend only and kinetics is much slower compared to peroxynitrite mediate oxidation of probe **11**.

Figure S10. Oxidation of probe **11** by peroxynitrite. A) Kinetics of the formation of **13**; B) emission spectra of a solution of probe **11**, upon addition of various equivalence of peroxynitrite; C) dose dependent emission enhancement at 450 nm; D) a mechanistic explanation to the formation of **13** upon peroxynitrite mediated oxidation of probe **11**.

Figure S11. Oxidation of probe **14** by peroxynitrite. A) Kinetics of the formation of **15**; B) emission spectra of a solution of probe **14**, upon addition of various equivalence of peroxynitrite; C) dose dependent emission enhancement at 549 nm; D) a mechanistic explanation to the formation of **15** upon peroxynitrite mediated oxidation of probe **14**.

Figure S13. The 1 H-NMR spectrum of 3 in CD₃OD.

Figure S14. The ¹H-NMR spectrum of 4a in CDCl₃.

Figure S15. The ¹³C-NMR spectrum of 4a in CDCl₃.

Figure S16. The HRMS spectrum of 4a.

Figure S17. The 1 H-NMR spectrum of 4c in CDCl₃.

Figure S18. The ¹³C-NMR spectrum of 4c in CDCl₃.

Figure S19. The HRMS spectrum of 4c.

Figure S20. The ¹H-NMR spectrum of **7a** in CDCl₃.

Figure S21. The ¹³C-NMR spectrum of **7a** in CDCl₃.

Figure S22. The HRMS spectrum of 7a.

Figure S23. The ¹H-NMR spectrum of 7cin CDCl₃.

Figure S24. The ¹³C-NMR spectrum of 7c in CDCl₃.

Figure S25. The HRMS spectrum of 7c.

Figure S26. The ¹H-NMR spectrum of **11** in CDCl₃.

Figure S27. The ¹³C-NMR spectrum of 11 in CDCl₃.

268.0982	Mass	Minimum: Maximum:	0 218.20\$ 220	%		100	ZWB-THY-55	C: 0-20 H WB-ZHANG	Monoisotopi 41 formula(e	Single Ma Tolerance : Element pro Number of	Elementa
268.0974	Calc. Mass		97 230.2562 11 11 11 11 11 225 230 235				14 (0.521) Cm (13:14	1: 0-21 N: 0-2	c Mass, Even Elect evaluated with 5 r	ass Analysis = 30.0 mDa / D ediction: Off isotope peaks us	I Composition
0.8	mDa	30.0	246.246 240 245				(1	0: 0-7	ron lons ·esults within	BE: min = -1 ed for i-FIT =	Report
3.0	PPM	50.0	39 256.1757 						limits (up to	1.5, max = 1 = 2	
10.5	DBE	-1.5 100.0	262.2398 260 265			268		ECUST institu	1 closest res	00.0	
68.3	1-FIT		275	274.2765		0982		te of Fine Cher	ults for each i		
0.0	i-FIT (280 285					п	mass)		
	Norm)		290.2704 								
C16	Formu		298.0 295								
H14	ıla		302.30								
EO N			80 309.								
			1350	0 1350							
	6-Mar-2014 01:15:49)F MS ES+ 1.36e+003										Page 1

Figure S29. The ¹H-NMR spectrum of **12** in CDCl₃.

Figure S30. The ¹³C-NMR spectrum of **12** in CDCl₃.

Figure S31. The HRMS spectrum of 12.

Figure S33. The ¹³C-NMR spectrum of **14** in CDCl₃.

Figure S34. The HRMS spectrum of 14.

Figure S35. The ¹H-NMR spectrum of **19** in CDCl₃.

Figure S36. The ¹H-NMR spectrum of **21** in CDCl₃.

Figure S37. The ¹³C-NMR spectrum of **21** in CDCl₃.

Figure S38. The HRMS spectrum of 21.

Figure S39. The ¹H-NMR spectrum of 23 in CDCl₃.

Figure S41. The HRMS spectrum of 23.